УТВЕРЖДАЮ Директор ИНК

В.Н. Бориков

«1» 03

_2016 г.

БАЗОВАЯ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ОПТИЧЕСКИЕ МЕТОДЫ В БИОЛОГИИ И МЕДИЦИНЕ

Направление ООП 12.0	4.04 Биотехнические системы и технологии				
Профили подготовки					
Медико-биологические аппараты, системы и комплексы,					
Биомедицинская инженерия					
Квалификация (степень)					
Базовый учебный план приемаг.					
Курс 2 семестр 3					
Количество кредитов 3					
Виды учебной	Временной ресурс по очной форме обучения				
деятельности					
Лекции, ч	16				
Практические занятия, ч	8				
Лабораторные занятия, ч	24				
Аудиторные занятия, ч	48				
Самостоятельная работа, ч	60				
ИТОГО, ч	108				
Вид промежуточной аттеста	ции: экзамен				
Обеспечивающее подраздел	ение: <i>кафедра промышленной и медицинской</i>				
электроники Института не	разрушающего контроля				
Заведующий кафедрой ПМЭ <u>Ф.А. Губарев</u>					
Руководитель ООП	$\Gamma.C.$ Евтушенко Φ				
Преподаватель	<u>Ф.А. Губарев</u>				

2016 г.

1. Цели освоения дисциплины

Целью учебной дисциплины является:

- в области обучения формирование специальных знаний, умений и навыков работы с оптическими приборами для медицинских исследований, диагностики и терапии.
- в области воспитания научить эффективно работать индивидуально и в команде, проявлять умения и навыки, необходимые для профессионального, личностного развития;
- в области развития подготовка студентов к дальнейшему освоению новых профессиональных знаний и умений, самообучению, непрерывному профессиональному самосовершенствованию.

2. Место дисциплины в структуре ООП

Дисциплина «Оптические методы в биологии и медицине» относится к вариативной части вариативного междисциплинарного профессионального модуля.

Дисциплине «Медицинское материаловедение» предшествует освоение дисциплин (ПРЕРЕКВИЗИТЫ): «Биотехнические системы и технологии.

Содержание разделов дисциплины «Медицинское материаловедение» согласовано с содержанием дисциплин, изучаемых параллельно (КОРЕКВИЗИТЫ):

- В.М1.1. «Биомедицинские сенсоры и сигналы»,
- В.М1.3.2 «Системы обработки и отображения информации».

Для удачного освоения дисциплины предварительно должны быть обязательно изучены такие дисциплины как «Физика», «Теоретические основы электротехники», «Материалы и элементы электронной техники».

3. Результаты освоения дисциплины

В соответствии с требованиями ООП освоение дисциплины «Оптические методы в биологии и медицине» направлено на формирование у студентов следующих компетенций (результатов обучения), в т.ч. в соответствии с ФГОС:

Таблица 1 Составляющие результатов обучения, которые будут получены при изучении данной дисциплины

Резу	Составляющие результатов обучения					
льта ты	Код	Знать	Код	Уметь	Код	Владеть
обуч						
ения						
Р1 (ОПК -1, ПК- 2)	31.2	- принципы системного подхода, на которых базируется анализ и синтез биотехнических систем;	У1.5	- разрабатывать структуру медицинских диагностических, исследовательских и информационных комплексов и оптимизировать состав их	B1.5	методами расчета основных функциональных характеристик биотехнических систем;
				элементов;		
Р2 (ОПК	32.2	- особенности биологических систем как элементов измерительных и	У2.3	- формулировать задачи инженерной реализации перспективных направлений	B2.2	- навыками методологического анализа научного исследования и

	1	T		T		
-1,		управляющих		развития		его результатов.
ОПК-		технических систем;		биомедицинской и		
2,				экологической		
ПК- 2)				инженерии;		
2)		- метопи и срепства		- HOUMANGTI MATORII		
	33.2	- методы и средства диагностики и	У3.1	- применять методы	B3.1	- схемами
D2		прогнозирования,	У 3.1	диагностических	D3.1	технического
P3		применяемые в		исследований;		сопровождения
(ПК-		биотехнических				лечебно-
1,		системах, аппаратные и				диагностического
ПК-		программные средства,				процесса;
2)		необходимые				процесса,
		исследователю для				
		автоматизированного			B3.2	- работы с
		анализа			D3.2	современными
		биомедицинской				аппаратными и
		информации при				программными
		проведении				средствами
		экспериментов.				исследования
						биотехнических
						систем;
		- классификацию и		- применять		- методами расчета
	34.2	структуры	У4.3	принципы	B4.1	основных
P4	34.2	биотехнических	3 4.3	1	D4.1	
				системного подхода		функциональных
(ПК- 1)		систем и технологий		для анализа и		характеристик
1)		различного типа;		синтеза		биотехнических
				биотехнических		систем;
		- примеры реализации		систем и		
		биотехнических		технологий;		
	34.3	систем и технологий				
		оценки, контроля и		- разрабатывать		
		управления		структуру		
		состоянием и	У4.4	медицинских		
		поведением живых		диагностических,		
		организмов;				
		оргинизмов,		исследовательских		
				и информационных		
				комплексов и		
				оптимизировать		
				состав их		
				элементов;		
				- разрабатывать		
	1			принципиальные		
			У4.5	электрические		
	1			схемы, чертежи		
	1			конструкции и технические		
				рисунки изделий.		
P6		отони и ото ти		- выполнять		- навыками
(ПК-	36.1	- этапы и стадии	У6.1	проекты	B6.1	использования
6)]	жизненного цикла	2 0.1	технического	20.1	ОСНОВНЫХ
		медицинской				
		техники;		обеспечения		технологических
				биотехнических		процессов
	2.5	- проблемы		систем на базе		обслуживания
	36.2	обеспечения		типовых средств;		медицинской
		надежной работы				техники;
	<u> </u>	технических средств		- грамотно		
			_		-	

		в условиях медико- биологической организации;	У6.2	использовать правовые основы и нормативные документы, регламентирующие методики обслуживания и метрологическое обеспечение медицинской техники;	B6.2	- навыками применения методов оценки надежности, испытания на безопасность обслуживания медицинской техники;
Р12 (ОПК -4)	312.1	- виды самостоятельной образовательной деятельности для профессионального, личностного, социального и культурного развития. - дидактические принципы формирования программ самообразования	У12.1 У12.2	- самообучаться для решения жизненных проблем и достижения профессиональных целей; - использовать в качестве источника самообучения.	B12.1	- управления временными, пространственными, профессиональными и социальными факторами, влияющими на процессы самообучения.

4. Структура и содержание дисциплины

Раздел 1. Оптические методы исследований

- 1.1. Фундаментальные оптические свойства объектов
- 1.2. Проникновение излучения в биоткань. Взаимодействие когерентного и некогерентного излучения с биообъектом.
- 1.3. Оптические методы исследования биотканей и биожидкостей.
- 1.4. Источники излучения.
- 1.5. Пассивные компоненты оптических схем.
- 1.6. Детекторы излучения.
- 1.7. Методы измерения оптических параметров биотканей.

Раздел 2. Физики и техника лазеров для медицины.

- 2.1. Объекты лазерного воздействия.
- 2.2. Обобщенная схема лазерных медицинских систем. Техника безопасности при работе с лазерными установками.
- 2.3. Классификация лазеров, применительно к медицинским применениям.
- 2.4. Физические основы лазерной техники.
- 2.5. Лазерная хирургия.

Раздел 3. Некогерентные источники излучения для медицины.

- 2.1. Светоизлучающие диоды, используемые в медицинской аппаратуре.
- 2.2. Эксилампы для биологии

Лабораторные работы

Работа №1. Прохождение излучения по оптоволокну. Применение оптоволокна для диагностики и терапии (4 часа)

Работа №2. Визуальная диагностика (4 часа)

Работа №3. Основы лазерной безопасности. Изучение принципа действия и параметров излучения гелий-неонового лазера (4 часа).

Работа 4. Изучение принципа действия и параметров излучения твердотельного лазера с диодной накачкой (4 часа).

Работа 5. Измерение параметров лазерного излучения (4 часа).

Работа 6. Визуализация изображения биообъекта с помощью лазерного монитора (4 часа). Работа 7. (дополнительная) Визуализация процесса свертывания крови с помощью

регистрации лазерных спекл-полей (4 часа).

№ п/п

РД1

В результате освоения дисциплины (модуля) «Оптические методы в биологии и медицине» студентом должны быть достигнуты следующие результаты:

Таблица 2 Планируемые результаты освоения дисциплины (модуля)

ПО

Результат

Осуществлять поиск, анализ научно-технической информации тематике исследования, использовать достижения отечественной

зарубежной науки, техники и технологии

РД2
Проводить расчет и проектирование оптических медицинских систем диагностики и терапии.

РД3
Проводить настройку, ремонт и проверку работоспособности лазерных и световых устройств для медицинских и биологических исследований.

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

6.1. Виды и формы самостоятельной работы

Приводится характеристика всех видов и форм самостоятельной работы студентов, включая текущую и творческую/исследовательскую деятельность студентов:

Текущая СРС, направленная на углубление и закрепление знаний студента, развитие практических умений:

- работа с лекционным материалом;
- подготовка к лабораторным и практическим занятиям;
- обзор литературы и электронных источников информации по индивидуально заданной проблеме курса (рекомендуется в случае недостаточного усвоения материала, а также студентам, пропустившим аудиторные занятия по какой-либо теме);
- опережающая самостоятельная работа;
- изучение тем, вынесенных на самостоятельную проработку (используется для тем, не вошедших из-за недостатка времени в лекционный курс, но имеющих непосредственное отношение к данной дисциплине);
- подготовка к контрольным работам, экзамену.

Творческая проблемно-ориентированная самостоятельная работа (ТСР):

- поиск, анализ, структурирование информации,
- подготовка индивидуального (командного) проекта, с презентацией,
- подготовка к защите лабораторных работ.

6.3 Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей. В частности, предусмотрена процедура защиты лабораторных работ.

7. Средства текущей и промежуточной оценки качества освоения дисциплины

Оценка качества освоения дисциплины производится по результатам следующих контролирующих мероприятий:

контролирующих мероприятии.					
Контролирующие мероприятия	Результаты обучения по дисциплине				
Выполнение и защита лабораторных работ	РД1, РД2, РД3				
Выполнение и защита ИДЗ	РД1, РД3				
Выполнение контрольных работ	РД1, РД2, РД3				
Экзамен	РД1, РД2, РД3				

ВОПРОСЫ, ВЫНОСИМЫЕ НА ЭКЗАМЕН

- 1. Место лазерной медицины в ряду современных методов лечения. Основные направления использования лазерной техники в медицине.
- 2. Прямая задача физического метода исследования.
- 3. Классификация лазеров.
- 4. Основные направления использования лазеров в медицине.
- 5. Источники некогерентного излучения, используемые в медицине.
- 6. Типы и принцип действия наиболее распространенных детекторов излучения.
- 7. Спектроскопические методы исследования.
- 8. Светоизлучающие диоды, их типы, принцип действия и КПД.
- 9. Физические процессы в лазерной хирургии.
- 10. Применение эксиламп в сельском хозяйстве.
- 11. Основные направления использования лазерной техники в медицине.
- 12. Механизм фотодинамического воздействия лазерного излучения на злокачественные образования.
- 13. Метод цифровой спекл-корреляции изображений.
- 14. Рассчитать дозу облучения при известной плотности мощности эксилампы и расстояния до объекта.
- 15. Основные методы и средства низкоинтенсивной лазерной терапии.
- 16. Лазеры для фотодинамической терапии.
- 17. Механизм фотодинамического воздействия лазерного излучения на злокачественные образования.
- 18. Особенности разработки и эксплуатации лазерной медицинской аппаратуры.
- 19. Расчет дозы облучения для низкоинтенсивной терапии.
- 20. Расчет плотности мощности излучения, падающей на объект.
- 21. Расчет квантового кпд лазера.
- 22. Расчет минимального значения фокусного расстояния оптической линзы, пригодной для заведения излучения в волокно (при заданных значениях коэффициентов преломления и диаметра лазерного пучка).
- 23. Расчет длины волн излучения вторых гармоник Nd-YAG и Cu-лазера.

ПРИМЕРЫ ЭКЗАМЕНАЦИОННЫХ БИЛЕТОВ

Экзаменационный билет № 1

- 1. Прямая задача физического метода исследования.
- 2. Классификация лазеров.
- 3. Основные направления использования лазеров в медицине.

4. Рассчитать квантовый КПД гелий-неонового лазера.

Экзаменационный билет № 2

- 1. Источники некогерентного излучения, используемые в медицине.
- 2. Типы и принцип действия наиболее распространенных детекторов излучения.
- 3. Спектроскопические методы исследования.
- 4. Рассчитать дозу для облучения для низкоинтенсивной терапии.

Экзаменационный билет № 3

- 1. Светоизлучающие диоды, их типы, принцип действия и КПД.
- 2. Физические процессы в лазерной хирургии.
- 3. Применение эксиламп в сельском хозяйстве.
- 4. Рассчитать плотность мощности излучения, падающую на сетчатку глаза при прямом попадании излучения лазерной указки в глаз (при заданных параметрах).

Экзаменационный билет № 4

- 1. Основные направления использования лазерной техники в медицине.
- 2. Механизм фотодинамического воздействия лазерного излучения на злокачественные образования.
- 3. Метод цифровой спекл-корреляции изображений.
- 4. Рассчитать дозу облучения при известной плотности мощности эксилампы и расстояния до объекта.

8. Рейтинг качества освоения дисциплины

Оценка качества освоения дисциплины в ходе текущей и промежуточной аттестации обучающихся осуществляется в соответствии с «Положением о проведении текущего оценивания и промежуточной аттестации в ТПУ», утвержденным приказом ректора в действующей редакции.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины

9.1. Основная литература

1. Hooker S., Webb C. Laser Physics. – Oxford: Oxford University Press, 2010. – 648 p.

- 2. Генина Э.А. Методы биофотоники: Фототерапия. Саратов: Новый ветер, 2012. 119 с.
- 3. Шахно Е.А. Физические основы применения лазеров в медицине // С-Пб, Учебное пособие, 2012 129с.
- 4. Лазерные системы в медицине [Электронный ресурс]: учебное пособие для вузов / Г. С. Евтушенко, А. А. Аристов; Томский политехнический университет. 1 компьютерный файл (pdf; 1337 KB). Томск: Изд-во ТПУ, 2003. Учебники Томского политехнического университета. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из сети НТБ ТПУ. Системные требования: Adobe Reader. Схема доступа:http://www.lib.tpu.ru/fulltext3/mv/2007/mv60.pdf
- 5. Лазерные системы в медицине: учебное пособие для вузов / Г. С. Евтушенко, А. А. Аристов; Томский политехнический университет. 2-е изд., доп.. Томск: Издво ТПУ, 2003. 131 с.: ил.. Учебники Томского политехнического университета. Библиогр.: с. 126-128.. ISBN 5-98298-060-9.
- 6. Квантовая и оптическая электроника [Электронный ресурс] : практикум / Г. С. Евтушенко, Ф. А. Губарев; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 1.1 МВ). Томск: Изд-во ТПУ, 2010. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader.Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2011/m177.pdf
- 7. Тучин В.В. Лазеры и волоконная оптика в биомедицинских исследованиях. 2-е изд., испр. и доп. Москва: Физматлит, 2010. 488 с.
- 8. Приложения лазеров в биологии и медицине: учебное пособие / Сибирский государственный медицинский университет; Российская академия наук (РАН), Сибирское отделение (СО), Институт оптики атмосферы им. В. Е. Зуева (ИОА); под ред. Ю. В. Кистенева. Томск: Изд-во ТПУ, 2007. 181 с.: ил..

9.2. Дополнительная

- 1. Приезжев А.В. Тучин В. В., Шубочкин Л. П. Лазерная диагностика в биологии и медицине. Москва: Наука, 1989. 240 с
- 2. Оптическая биомедицинская диагностика: учебное пособие / под ред. В. В. Тучина. М.: Физматлит, 2007. -Т. 1. 2007. 560 с.
- 3. Оптическая биомедицинская диагностика: учебное пособие / под ред. В. В. Тучина. М.: Физматлит, 2007. Т. 2. 2007. 368 с.
- 4. Тучин В.В.Оптика биологических тканей: методы рассеяния света в медицинской диагностике: пер. с англ. Москва: Физматлит, 2013. 812 с.
- 5. Laser Focus World. Периодический журнал (ежемесячный). США, 2010-2014 гг.
- 6. Карлов, Николай Васильевич. Лекции по квантовой электронике: учебное пособие для студентов физических специальностей вузов / Н. В. Карлов. Москва: Наука, 1983. 319 с.: ил.
- 7. Гладкова Н.Д., Сергеев А.М. Руководство по оптической когерентной томографии М.: Физматлит, 2007.

9.3. Internet-ресурсы:

http://portal.tpu.ru/SHARED/e/EVT — персональный сайт профессора Евтушенко Г.С. http://portal.tpu.ru/SHARED/g/GFADDTPU - персональный сайт преподавателя Губарева Ф.А.

10. Материально-техническое обеспечение дисциплины

№ п/п	Наименование (компьютерные классы, учебные лаборатории, оборудование)	Корпус, ауд.,
11/11	лаооратории, оборудование)	количество установок
1	Лаборатория квантовой электроники	Корпус 16в, ауд. 325
	1. Гелий-неоновый лазер ЛГ-05 – 1 шт.	
	2. Полупроводниковые лазеры – 3 шт.	
	3. Лазер на парах бромида меди – 1 шт.	
	4. Твердотельный лазер с диодной накачкой – 1 шт.	
	5. Измеритель мощности лазерного излучения ИМО-2Н – 1 шт.	
	6. Спектрометр Ocean Optics USB4000 – 1шт.	
	7. Скоростная видеокамера (FASTER HiSPEC1) – 1 шт.	
	8. Прибор PD 300 Фотодиодная головка. – 1 шт.	
	9. Прибор Фотодиод DET 10A/M – 2 шт.	
	10. Линейка, рулетка.	
	11. Линза с известным фокусным расстоянием – 2 шт.	
	12. Набор световодов – 5 шт.	
	13. Набор светофильтров – 11 шт.	
	14. Защитные очки.	
	15. Оптические элементы – 1 комплект.	
	16. Оптическая скамья – 1 шт.	
	17. Персональный компьютер – 1 шт.	

Программа составлена на основе СУОС ТПУ в соответствии с требованиями Φ ГОС по направлению подготовки 12.04.04 «Биотехнические системы и технологии», профили «Биомедицинская инженерия», «Медико-биологические аппараты, системы и комплексы».

Программа одобрена на заседании кафедры промышленной и медицинской электроники Института неразрушающего контроля (протокол № 10.16 от «26» августа 2016 г.)

Автор: Губарев Фёдор Александрович

Рецензент: Аристов Александр Александрович