

Военный учебный центр

при Томском политехническом университете

Цикл №2 «Боевое применение подразделений, вооружённых зенитными артиллерийскими самоходными установками с радиоприборными комплексами»

КУРС ЛЕКЦИЙ

Автор: преподаватель 2 цикла подполковник запаса Гаврилов А. А.

Дисциплина:

«Устройство и эксплуатация зенитной самоходной установки»

Тема №7 Устройство РПК-2М

Контрольные вопросы -

Занятие №16 Счетно-Решающий Прибор

Цели занятия:

Изучить:

- назначение, устройство и принцип действия блоков φ; Ту; βу и К1; блока проверок.

Актуальность занятия:

Обусловлено:

- необходимостью иметь глубокие и твердые знания по устройству и принципу действия блоков φ; Ту; βу и К1; блока проверок.

ВИД ЗАНЯТИЯ: - Самостоятельная работа

Вопросы занятия:

- 1. Назначение, устройство и принцип действия блока ф.
- 2. Назначение, устройство и принцип действия блока Ту.
- 3. Назначение, устройство и принцип действия блока ву и К1.
- 4. Назначение, устройство и принцип действия блока проверок.

Литература:

1. Учебное пособие «Устройство и эксплуатация ЗСУ-23-4М», стр.16-21 2. Альбом рисунков «Устройство и ТО ЗСУ-23-4» ч.2, стр.12-22

Вопрос 1

Назначение, устройство и принцип действия блока ф

Блок ф

Блок ф предназначен:

- для выработки угла возвышения и определения \mathbf{d}_0 и \mathbf{Z}_0 .

 $\frac{d_0}{d_0}$ и $\frac{Z_0}{d_0}$ - упрежденные координаты цели, выработанные в прямоугольной стабилизированной системе координат)

Блок ф обеспечивает: возможность введения корректуры по углу места. Механизм корректуры в блоке **ф**: - служит для ввода поправок в случае систематического отклонения трасс снаряда от цели.

Анцевая панель блока ф фонарь освещения шкалы шкала с рукояткой корректуры, 1 дел.- 5 д.у. гнезда, используемые при настройке ССф фонарь освещения шкал

шкала грубого отсчета ф, 1 де

шкала точного отсчета ф, 1 де

ручка для вынимания блока

Принцип действия блока ф

Выработка ф производится СС блока ф. На вход усилителя блока ф подается сигнал $\Delta 3$. Напряжение $\Delta 3$ получается на ВТ М52 и масштабном трансформаторе М67 при подаче напряжений пропорциональных $\delta H, \Delta 1$ и $\Delta H'$ соsф на их статорные обмотки.

Масштабный трансформатор М67 служит для масштабирования значений углов прицеливания α. Ротор ВТ М52 соединен через редуктор с валом исполнительного двигателя М53.

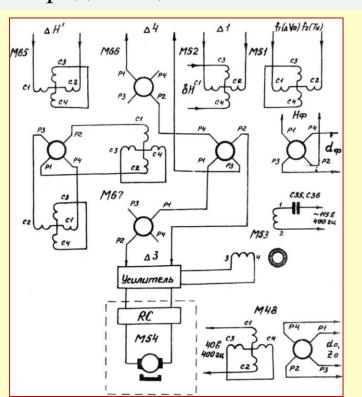
При изменении текущих координат цели величины $\Delta 1$, δH и $\Delta H'\cos \phi$ изменяются и двигатель отрабатывает такое значение ϕ , при котором напряжение $\Delta 3$ стремится к нулю, чтобы удовлетворилось равенство (13).

Для демпфирования CC на усилитель подается сигнал обратной связи вырабатываемый тахогенератором ТГП-1 M54 и RC-контуром.

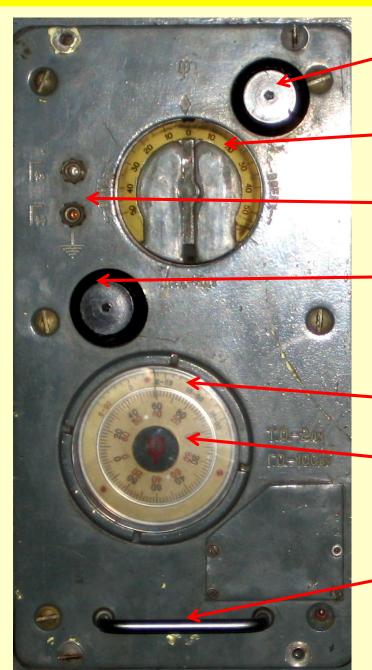
Сигнал обратной связи пропорционален скорости и ускорению вращения двигателя. Таким образом, СС блока выработала ф. С роторных обмоток ВТ М48 при повороте ротора на утол ф сиимаются напряжения, пропорциональные d_0 , Z_0

ВТ М65_совместно с масштабными трансформаторами М66 и М67 вырабатывают поправки $\Delta H'$ sin ϕ и $\Delta H'$ соs ϕ , учитывающие зависимость T_y и α от утла места.

Блок ф


Блок ф предназначен:

- для выработки *угла возвышения* и определения $\mathbf{d_0}$ и $\mathbf{Z_0}$.


 $\mathbf{d_0}$ и $\mathbf{Z_0}$ - упрежденные координаты цели, выработанные в прямоугольной стабилизированной системе координат)

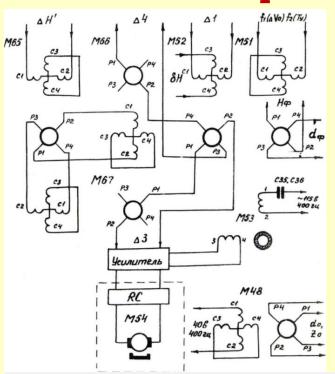
Блок ф обеспечивает: возможность введения корректуры по углу места. Механизм корректуры в блоке **ф:** - служит для ввода поправок в случае систематического отклонения трасс снаряда от цели.

Лицевая панель блока ф

фонарь освещения шкалы

шкала с рукояткой корректуры, 1 дел.- 5 д.у.

гнезда, используемые при настройке ССф


фонарь освещения шкалы

шкала грубого отсчета ф, 1 дел – 100 д.у.

шкала точного отсчета ф, 1 дел – 2 д.у.

ручка для вынимания блока из каркаса СРП

Принцип действия блока ф

Выработка ϕ производится СС блока ϕ . На вход усилителя блока ϕ подается сигнал $\Delta 3$. Напряжение $\Delta 3$ получается на ВТ М52 и масштабном трансформаторе М67 при подаче напряжений пропорциональных δH , $\Delta 1$ и $\Delta H'$ cos ϕ на их статорные обмотки.

Масштабный трансформатор M67 служит для масштабирования значений углов прицеливания α. Ротор BT M52 соединен через редуктор с валом исполнительного двигателя M53.

При изменении текущих координат цели величины $\Delta 1$, δH и $\Delta H'$ соѕ ϕ изменяются и двигатель отрабатывает такое значение ϕ , при котором напряжение $\Delta 3$ стремится к нулю, чтобы удовлетворилось равенство (13).

Для демпфирования СС на усилитель подается сигнал обратной связи вырабатываемый тахогенератором ТГП-1 M54 и RC-контуром.

Сигнал обратной связи пропорционален скорости и ускорению вращения двигателя.

Таким образом, СС блока выработала φ . С роторных обмоток ВТ М48 при повороте ротора на угол φ снимаются напряжения, пропорциональные d_0, Z_0 .

ВТ M65_совместно с масштабными трансформаторами M66 и M67 вырабатывают поправки $\Delta H'$ sin ϕ и $\Delta H'$ cos ϕ , учитывающие зависимость $T_{\rm y}$ и α от угла места.

Вопрос 2

Назначение, устройство и принцип действия блока Ту

Блок Т.

Блок Т, предназначен для:

- выработки упредительного времени T_v;
- выработки сигнала ЕСТЬ ДАННЫЕ, позволяющего открыть огонь в диапазоне изменения Т, от 0,2 сек до 5,5 сек;
- выработки баллистической зависимости $\Delta H' = f(T_v)$;
- выработки величины Т_v +т.

фонарь освещения шкалы переключатель УПР шкала точного отсчета Лампа ЕСТЬ Д гнезда, используем переключатель ручка для вынимани:

Лицевая панель блока T_v

шкала грубого отсчета, 1 дел – 1 сек.

При подаче ∆4 на вход усилителя двигатель начинает вращатьс следовательно и ротор BT M26. С роторной обмотки BT M26 с пропорциональное фиктивной дальности Дфо, которое использ координат фиктивной (упрежденной) точки $X_{\phi}, Y_{\phi}, H_{\phi}$. Двигату поворачивает ротор ВТ M26 до тех пор, пока сигналы δH, Δ1 и и Δ4 не обратятся в нуль.

Для демпфирования СС на вход усилителя по цепи обратной ст напряжение, вырабатываемое тахогенератором ТГП-1. С помог связи - получают напряжение, пропорциональное ускорению Для уменьшения скорости вращения двигателя напряжение на уменьшается путем отключения конденсатора С16, контактам срабатывает одновременно с реле схемы электрического стоп

Зависимость $\Delta H' = f(T_v)$ может быть апроксимирована зави поворота ССТ, Для воспроизведения этой зависимости испол

Принцип действия блока Ту

Напряжение, пропорциональное Д4, поступает в блок Т, с роторных обмоток ВТ М-52 и масштабного трансформатора М66, расположенных в блоке ф. Отрабатывающим элементом в СС является ВТ М26, ротор которого соединяется с исполнительным двигателем через редуктор, кулачок и щуп.

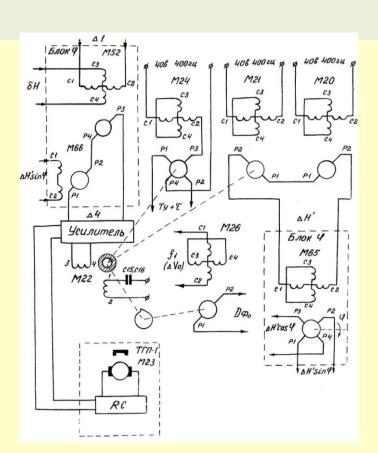
Принцип действия блока Ту

Выходное напряжение ВТ М20 и М21 пропорционально величине превышения ДН'. Напряжение, снимаемое с роторной обмотки М21 изменяется по закону косинуса.

Напряжение, снимаемое с роторной обмотки ВТ М20, постоянно по амплитуле и равно максимальному напряжению, снимаемому с синусной обмотки М21. При вычитании этих двух напряжений получаем выходное

Это напряжение, пропорциональное $\Delta H' = f(T_v)$ поступает на статорную обмотку BT M65 в блоке ф, с роторных обмоток которого снимаются напряжения, пропорциональное АН'sinq и АН'соsq. Масштабные трансформаторы М66 и М67 служат для согласования этих напряжений с напряжением Оф и Dy.

Реле Р4,Р7,Р8, микровыключатели В7, В9 осуществляют коммутацию цепи стрельбы и выдают сигнал ЕСТЬ ДАННЫЕ.


Выработка упредительного времени, с учетом динамического отставания СС Х, У, Н, (т+T_v) производится ЛВТ M24, ротор которого соединен с валом используемого двигателя М22 через редуктор. На ЛВТ М24 подается напряжение питания 40В 400Гц. Напряжение, снимаемое с роторной обмотки ЛВТ М24, пропорционально углу поворота Т, Для того, чтобы компенсировать динамическое отставание сглаживающих СС Х, Y, H необходимо линейную зависимость напряжения, снимаемого с роторной обмотки ЛВТ М24, сместить по отношению к нулю шкалы блока на т=0,5 сек. Это осуществлено разворотом статора ВТ М24 на угол, соответствующий 0,5 сек.Т.О, при установке по шкалам любого значения T_v с выхода ЛВТ M24 снимается напряжение, пропорциональное Т,+т.

Блок Ту

Блок Т_у предназначен для:

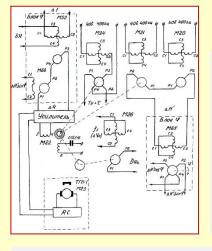
- выработки упредительного времени $\mathbf{T}_{\mathbf{y}}$;
- выработки сигнала ЕСТЬ ДАННЫЕ, позволяющего открыть огонь в диапазоне изменения $\mathbf{T_v}$ от 0,2 сек до 5,5 сек;
- выработки баллистической зависимости $\Delta H' = f(T_v)$;
- выработки величины $T_v + \tau$.

Лицевая панель блока Т_у

- фонарь освещения шкалы

шкала грубого отсчета , 1 дел – 1 сек.

переключатель УПР


шкала точного отсчета , 1 дел – 0,05 сек.

Лампа ЕСТЬ ДАННЫЕ

гнезда, используемые при настройке СС Т_у

переключатель α

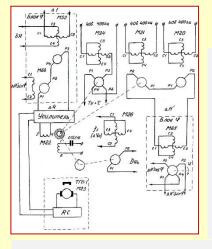
ручка для вынимания блока из каркаса СРП

Принцип действия блока Ту

Напряжение, пропорциональное $\Delta 4$, поступает в блок T_y с роторных обмоток ВТ M-52 и масштабного трансформатора M66, расположенных в блоке ϕ .

Отрабатывающим элементом в СС является ВТ M26, ротор которого соединяется с исполнительным двигателем через редуктор, кулачок и щуп.

При подаче $\Delta 4$ на вход усилителя двигатель начинает вращаться, вращается кулачок, а следовательно и ротор ВТ M26. С роторной обмотки ВТ M26 снимается напряжение пропорциональное фиктивной дальности $D_{\phi o}$, которое используется для выработки координат фиктивной (упрежденной) точки X_{ϕ} , Y_{ϕ} , H_{ϕ} .


Двигатель, вращаясь, поворачивает ротор BT M26 до тех пор, пока сигналы δH , $\Delta 1$ и ΔH sin ϕ , а следовательно и $\Delta 4$ не обратятся в нуль.

Для демпфирования СС на вход усилителя по цепи обратной связи поступает напряжение, вырабатываемое тахогенератором ТГП-1. С помощью RC-контура обратной связи — получают напряжение, пропорциональное ускорению вращения вала.

Для уменьшения скорости вращения двигателя напряжение на обмотке возбуждения уменьшается путем отключения конденсатора С16, контактами реле Р38, которое срабатывает одновременно с реле схемы электрического стопорения.

Зависимость $\Delta H' = f(T_y)$ может быть апроксимирована зависимостью Icosj, где j-угол поворота CCT $_y$. Для воспроизведения этой зависимости используются два BT M20 и M21.

12

Принцип действия блока Ту

Выходное напряжение BT M20 и M21 пропорционально величине превышения ΔH '. Напряжение, снимаемое с роторной обмотки M21 изменяется по закону косинуса.

Напряжение, снимаемое с роторной обмотки BT M20, постоянно по амплитуде и равно максимальному напряжению, снимаемому с синусной обмотки M21. При вычитании этих двух напряжений получаем выходное напряжение.

Это напряжение, пропорциональное $\Delta H' = f(T_y)$ поступает на статорную обмотку ВТ M65 в блоке ϕ , с роторных обмоток которого снимаются напряжения, пропорциональное $\Delta H' \sin \phi$ и $\Delta H' \cos \phi$. Масштабные трансформаторы M66 и M67 служат для согласования этих напряжений с напряжением $D\phi$ и Dy.

Реле Р4,Р7,Р8, микровыключатели В7, В9 осуществляют коммутацию цепи стрельбы и выдают сигнал ЕСТЬ ДАННЫЕ.

Выработка упредительного времени, с учетом динамического отставания СС X,Y,H, $(\tau+T_y)$ производится ЛВТ M24, ротор которого соединен с валом используемого двигателя M22 через редуктор. На ЛВТ M24 подается напряжение питания 40В 400Гц. Напряжение, снимаемое с роторной обмотки ЛВТ M24, пропорционально углу поворота T_y Для того, чтобы компенсировать динамическое отставание сглаживающих СС X,Y,H необходимо линейную зависимость напряжения, снимаемого с роторной обмотки ЛВТ M24, сместить по отношению к нулю шкалы блока на τ =0,5 сек.

Это осуществлено разворотом статора ВТ M24 на угол, соответствующий 0,5 сек.Т.О, при установке по шкалам любого значения T_y с выхода ЛВТ M24 снимается напряжение, пропорциональное $T_v^+\tau$.

Вопрос 3

Назначение, устройство и принцип действия блока ву и К1

Блок «В, и К₁» БЛОК «В и K₁» предназначен для: выработки упрежденного азимута В; - отработки угла курса К₁, поступающего из ГАГ. Лицевая панель блока β, и К1 - выдачи значения отработа - выработки курсового угла Потенциометр СС КІ, контура обратной связи, закрыт крышкой Потенциометр РЕГ. МАСШТАБА СС KI, закрыт крышкой Лицевая панель блока β, и К1 фонарь освещения шкалы сигнальная лампа ПРИБОР ГОТ шкалы грубого и точного отсчето переключатель ДВИГ. В, гнезда, используемые при настр

Принцип действия следящей системы Ву

Выработка упрежденного азимута β_v производится СС β_v блока β_v и KI. При этом на вход усилителя СС В, подается сигнал:

Напряжение $\Delta 2$ получается на Е напряжений, пропорциональных б Ротор BT M63 соединен через 1 М 60. Напряжение, пропорциона поступает на вход усилителя.

шкала ЦУ

При изменении текущих коорд двигатель М60 отрабатывает так пропорциональные δΧ и δΥ, а сле

Для демпфирования СС на вхо обратной связи, вырабатываемый связи и RC-контуром. Сигнал об ускорению вращения двигателя.

Таким образом, следящая сист азимут β_ν.

гнезда, используемые при настройке СС

Принцип действия следящей системы KI

Отработка курса, определенного гироазимутгоризонтом, осуществляется СС КІ блока в, и KI (рис.13).

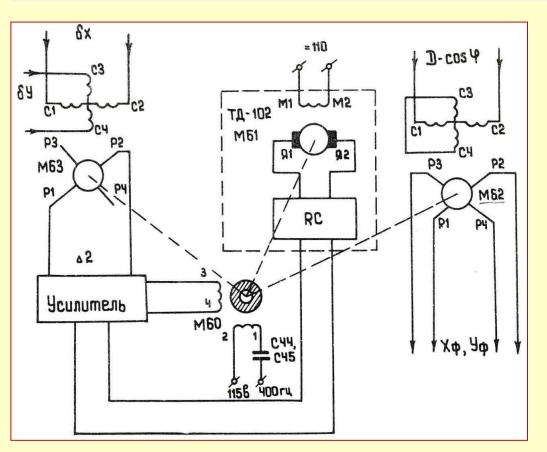
Задающий ВТ, установленный в ГАГ, и отрабатывающий ВТ М57 блока В, и КІ соединены трехпроводной связью по трансформаторной схеме включения.

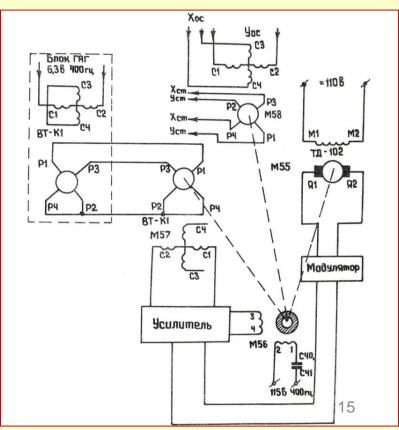
На вход усилителя СС КІ блока поступает напряжение с обмотки C2-C1 BT M57. Ротор ВТ М57 через редуктор соединен с валом исполнительного двигателя М56.

При появлении сигнала рассогласования на входе усилителя, двигатель приходит во вращение. Вращаясь, двигатель поворачивает ротор ВТ М57 до тех пор, пока сигнал снимаемый с его статорной обмотки не станет равным нулю.

Таким образом, СС KI блока В, и KI отработала определенное гироазимутгоризонтом значение курса.

Для демпфирования СС KI на вход усилителя через модулятор подается сигнал, вырабатываемый таходинамо ТД-102, контура обратной связи. С помощью контура обратной связи получаем напряжение, пропорциональное скорости вращения вала. Величина сигала обратной связи регулируется потенциометром СС КІ ОС, выведенным на лицевую панель блока В., и KI.


С ВТ М58, ротор которого соединён с исполнительным двигателем, отработанное значение курса К (Х,, У,) подается в ВПК.


Связь СС В_у и KI осуществляется на дифференциале. Ротор ВТ М64 связан с выходной осью дифференциала и поворачивается на угол q_v= β_v - KI. При подаче на его статорную обмотку напряжения, пропорционального do, с роторных обмоток снимаются напряжения, пропорциональные Хо и Уо.

Блок « β_v и K_1 »

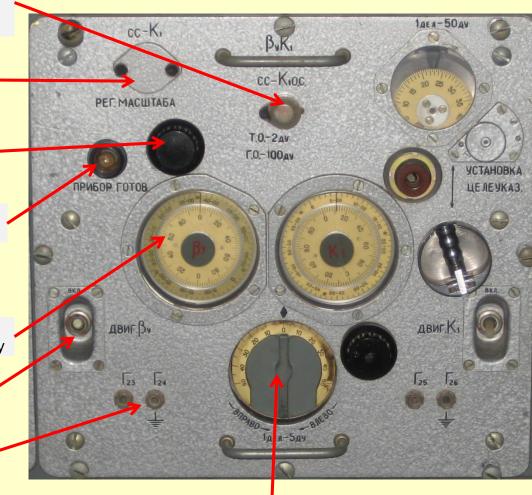
БЛОК « β_{v} и K_{1} » предназначен для:

- выработки упрежденного азимута β_{v} ;
- отработки угла курса K_1 , поступающего из ГАГ;
- выдачи значения отработанного курса в блок Т-2;
- выработки курсового угла $\mathbf{q}_{\mathbf{v}}$;

Λ ицевая панель блока β_v и K_1

Потенциометр СС KI, контура обратной связи. закрыт крышкой

Потенциометр РЕГ. МАСШТАБА СС KI, закрыт крышкой

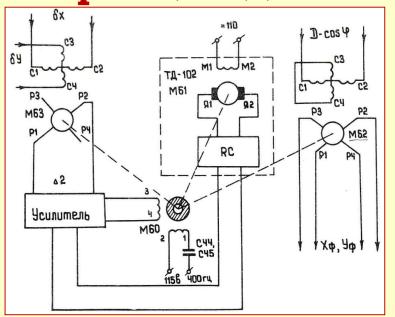

фонарь освещения шкалы

сигнальная лампа ПРИБОР ГОТОВ

шкалы грубого и точного отсчетов β_{v}

переключатель ДВИГ. β_v

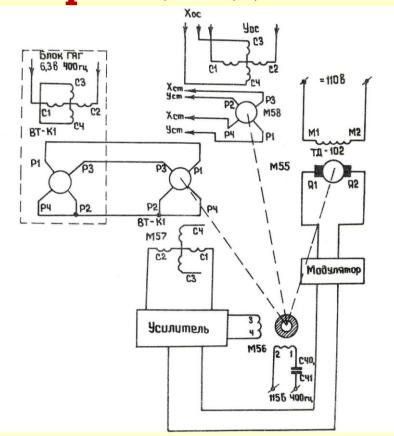
гнезда, используемые при настройке СС β_ν



Лицевая панель блока β_y и K₁

17

Принцип действия следящей системы Ву

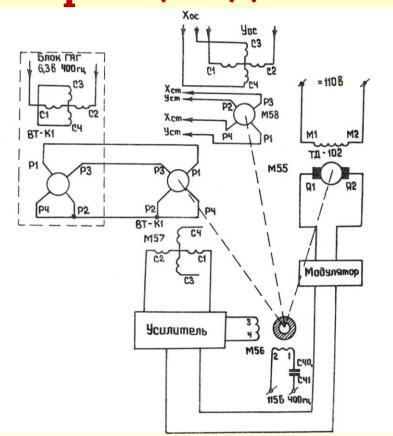

Выработка упрежденного азимута β_y производится СС β_y блока β_y и КІ. При этом на вход усилителя СС β_y подается сигнал: $\Delta 2 = \delta \text{У} \cos \beta_y - \delta \text{X} \sin \beta_y$ Напряжение $\Delta 2$ получается на ВТ М63 при подаче на его статорные обмотки напряжений, пропорциональных δX и δY . Ротор ВТ М63 соединен через редуктор с валом исполнительного двигателя М 60.

Напряжение, пропорциональное $\Delta 2$ с роторной обмотки ВТ M63 поступает на вход усилителя.

При изменении текущих координат цели величины δX и δY изменяются и двигатель M60 отрабатывает такое значения β_y , при котором напряжения, пропорциональные δX и δY , а следовательно и $\Delta 2$ стремятся к нулю. Для демпфирования СС на вход обратной связи усилителя подается сигнал обратной связи, вырабатываемый таходинамо ТД-102 М61 контура обратной связи и RC-контуром. Сигнал обратной связи пропорционален скорости и ускорению вращения двигателя.

Таким образом, следящая система вырабатывает упрежденный азимут β_v .

Принцип действия следящей системы КІ



Отработка курса, определенного гироазимутгоризонтом, осуществляется СС KI блока β_v и KI (рис.13). Задающий ВТ, установленный в ГАГ, и отрабатывающий ВТ М57 блока β_v и $\,$ KI соединены трехпроводной связью по трансформаторной схеме включения. На вход усилителя СС КІ блока поступает напряжение с обмотки C2-C1 BT M57. Ротор ВТ М57 через редуктор соединен с валом исполнительного двигателя М56. При появлении сигнала рассогласования на входе усилителя, двигатель приходит во вращение. Вращаясь, двигатель поворачивает ротор ВТ М57 до тех пор, пока сигнал снимаемый с его статорной обмотки не станет равным нулю.

Таким образом, СС КІ блока β_y и КІ отработала определенное гироазимутгоризонтом значение курса.

19

Принцип действия следящей системы КІ

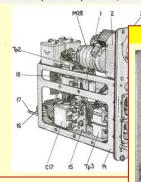
Для демпфирования СС КІ на вход усилителя через модулятор подается сигнал, вырабатываемый таходинамо ТД-102, контура обратной связи.

С помощью контура обратной связи получаем напряжение, пропорциональное скорости вращения вала. Величина сигала обратной связи регулируется потенциометром СС КІ ОС, выведенным на лицевую панель блока β_y и КІ.

С ВТ М58, ротор которого соединён с исполнительным двигателем, отработанное значение курса К (X_{ct}, Y_{ct}) подается в ВПК.

Связь СС β_y и КІ осуществляется на дифференциале. Ротор ВТ М64 связан с выходной осью дифференциала и поворачивается на угол $q_y = \beta_y$ - КІ. При подаче на его статорную обмотку напряжения, пропорционального d_0 , с роторных обмоток снимаются напряжения, пропорциональные X_0 и Y_0 .

Вопрос 4


Назначение, устройство и принцип действия блока проверок

Блок проверок

БЛОК ПРОВЕРОК предназначен для выработки питающих напряжений:

- 6,3 В 400Ги;
- 40 В 400Гц;
- 115 B 400Γ_{II}; =110 B;
- введения поправки на изменение начальной скорости снаряда AV₀%.

Лицевая панель блока проверок

<mark>∽</mark> шкала с рукояткой корректуры ΔV₀, 1 дел.- 1 д.у.

сигнальная лампа включения питания ~115В

лампа, сигнализирующая о работе прибора в

тумблер включения питания ~115В

тумблер СКОРОСТЬ, стопорения двигателей о систем блоков V_x, V_y, V_H, при настройке прибо статике.

тумблер ф, β,, Т, выключения следящих систе

тумблер ЗУ, переключения прибора на режим

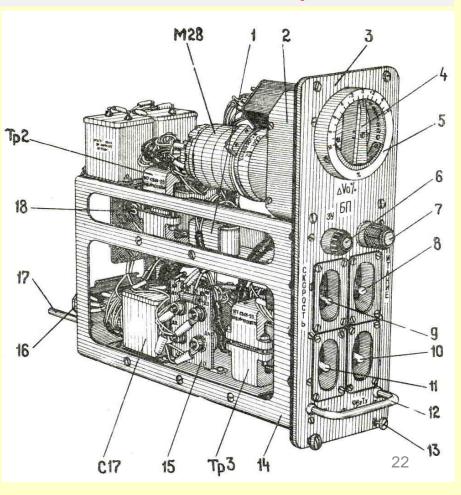
Блок проверок

БЛОК ПРОВЕРОК является

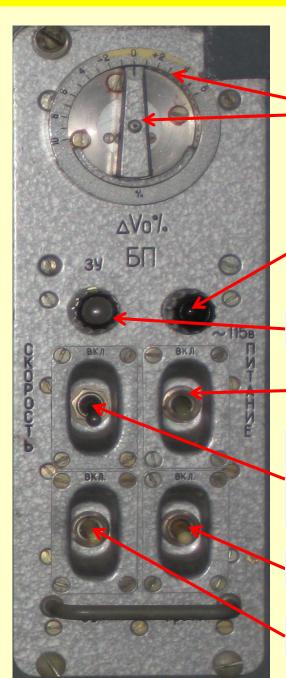
вспомогательным блоком, в каркасе которого смонтированы:

- редуктор механизма ΔV₀;
- реле времени;
- блок трансформатора с реле;
- блок выпрямителя.

Трансформатор - $T_p 2$ предназначен для получения питающих напряжений 6,3 В 400 Γ ц и 40 В 400 Γ ц при подаче на его первичную обмотку 115В 400 Γ ц. **Механизм** ΔV_0 - служит для ввода поправки на изменения начальной скорости снаряда. Он состоит из редуктора и ВТ M28.


Реле времени - предназначено для задержки выдачи команды «Есть данные» на 3 с после выдачи команды «Автомат» для того, чтобы СРП успел отработать входные данные, а ОПК и привода успели навести АЗП в упреждённую точку.
Блок выпрямителя - предназначен для получения напряжения постоянного тока 110 В для питания тахогенератора ТД-102В.

Блок проверок


БЛОК ПРОВЕРОК предназначен для выработки питающих напряжений:

- 6,3 В 400Гц;
- 40 В 400Гц;
- 115 B 400Гц; =110 B;
- введения поправки на изменение начальной скорости снаряда ΔV_0 %.

Лицевая панель блока проверок

шкала с рукояткой корректуры ΔV₀, 1 дел.- 1 д.у.

сигнальная лампа включения питания ~115В

лампа, сигнализирующая о работе прибора в режиме ЗУ

тумблер включения питания ~115В

тумблер СКОРОСТЬ, стопорения двигателей следящих систем блоков V_x , V_y , V_H , при настройке прибора в статике.

тумблер ϕ , β_y , T_y выключения следящих систем ϕ , β_y T_y

тумблер ЗУ, переключения прибора на режим ЗУ

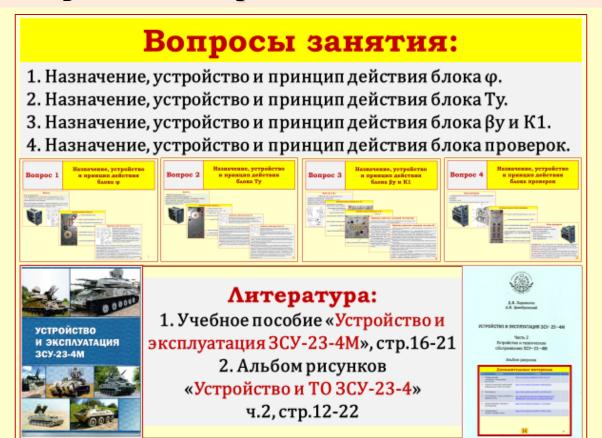
Блок проверок

БЛОК ПРОВЕРОК является

вспомогательным блоком, в каркасе которого смонтированы:

- .редуктор механизма ΔV_0 ;
- .реле времени;
- .блок трансформатора с реле;
- •блок выпрямителя.

Трансформатор - $T_p 2$ предназначен для получения питающих напряжений 6,3 В 400 Гц и 40 В 400 Гц при подаче на его первичную обмотку 115В 400 Гц. **Механизм** ΔV_0 - служит для ввода поправки на изменения начальной скорости


снаряда. Он состоит из редуктора и ВТ М28.

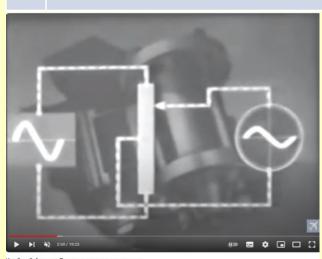
Реле времени - предназначено для задержки выдачи команды «Есть данные» на 3 с после выдачи команды «Автомат» для того, чтобы СРП успел отработать входные данные, а ОПК и привода успели навести АЗП в упреждённую точку.

Блок выпрямителя - предназначен для получения напряжения постоянного тока 110 В для питания тахогенератора ТД-102В.

ЗАДАНИЕ НА САМОПОДГОТОВКУ:

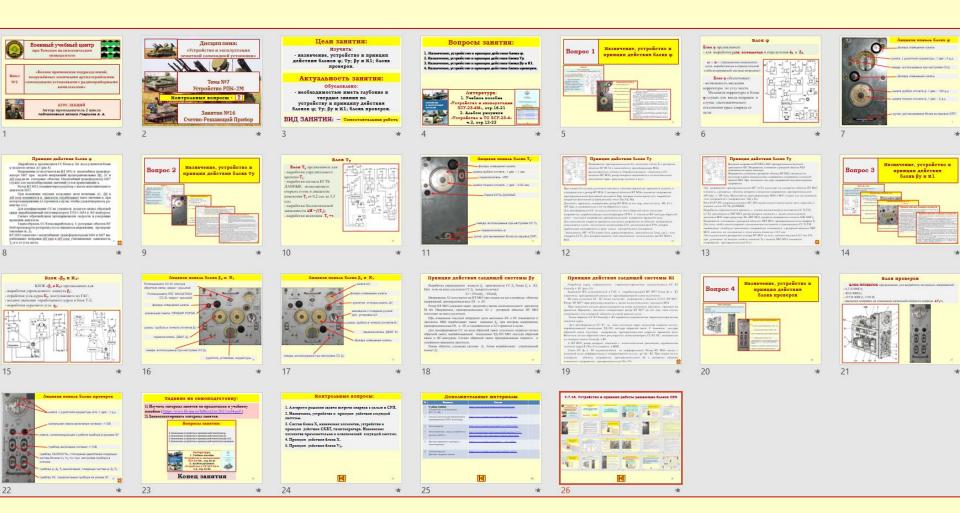
- 1) Изучить материал занятия по презентации и учебному пособию (<u>https://www.lib.tpu.ru/fulltext2/m/2021/m54.pdf</u>).
- 2) Законспектировать материал занятия.

Конец занятия


Контрольные вопросы:

- 1. Алгоритм решения задачи встречи снаряда с целью в СРП.
- 2. Назначение, устройство и принцип действия следящей системы.
- 3. Состав блока X, назначение элементов, устройство и принцип действия СКВТ, тахогенератора. Назначение элементов применительно к классической следящей системе.
- 4. Принцип действия блока Х.
- 5. Принцип действия блока V_X .

Дополнительные материалы


№	Название	Ссылка	
1	Учебное пособие «Устройство и эксплуатация ЗСУ-23-4М»	https://www.lib.tpu.ru/fulltext2/m/2021/m54.pdf	
2	Синусно-косинусный вращающийся трансформатор (СКВТ, резольвер)	https://www.youtube.com/watch?v=QHeFnaHgZyI	
3	Тахогенератор	https://www.youtube.com/watch?v=tcyVRNwxSJU	
4	Тахогенераторы - виды, устройство и принцип работы	http://electricalschool.info/spravochnik/maschiny/2112-tahogeneratory-vidy-ustroystvo-i-princip-raboty.html	
5	Датчики вращения: энкодеры и тахогенераторы	https://www.youtube.com/watch?v=U8-yxMJps	
6	Учебный фильм: Датчики следящих систем	https://www.youtube.com/watch?v=sZDB_x4Ol4o	

Т-7.16. Устройство и принцип работы решающих блоков СРП

