

Военный учебный центр

при Томском политехническом университете

Цикл №2 «Боевое применение подразделений, вооружённых зенитными артиллерийскими самоходными установками с радиоприборными комплексами»

КУРС ЛЕКЦИЙ


Автор: преподаватель 2 цикла подполковник запаса Гаврилов А. А.

Дисциплина:

«Устройство и эксплуатация ЗСУ» Раздел 1:

«Основы построения ЗАК»

Тема №2 Основы радиолокации

Контрольные вопросы

Занятие №2 Структурная схема радиолокатора

Цели занятия:

Изучить:

- импульсный метод радиолокации, импульсные РЛС;
- основные технические характеристики импульсного радиолокатора;
- эффективную отражающую поверхность (ЭОП) цели.

Актуальность занятия:

Обусловлено:

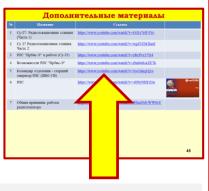
- необходимостью иметь глубокие и твердые знания по импульсному методу радиолокации, импульсным РЛС; основным техническим характеристикам импульсного радиолокатора; эффективной отражающей поверхности цели для формирования компетенций офицера войсковой ПВО.

вид занятия:

групповое занятие, 2 часа


Вопросы занятия:

- 1. Импульсный метод радиолокации. Импульсные РЛС.
- 2. Основные технические характеристики импульсного радиолокатора.
- 3. Эффективная отражающая поверхность (ЭОП) цели.



ЛИТЕРАТУРА:

1. Учебное пособие «Основы построения зенитных артиллерийских комплексов» 2013г., В.А. Подгорный, стр.47-54.

2. Учебное пособие «Основы построения зенитных артиллерийских комплексов» 2024г., В.А. Подгорный, А.А. Гаврилов, А.И. Целебровский, стр. 40-46

https://portal.tpu.ru/SHARED/g/GAA63/educational_activity/osn_zak/mat_disc/Osnovi_ZAK.pdf

Вопрос 1

Импульсный метод радиолокации. Импульсные РЛС

Структу

на обнаружение котор

т.е. до след

Система синхронизации РЛС - задает частоту повторения (период следования) импульсов электромагнитных волн СВЧ,

Вместе с тем **СС** вырабатывает управляющие сигналы, позволяющие согласовать по времени (синхронизировать) с работой передатчика работу остальных систем РЛС.

управляя работой передатчика.

История развития импульсных РЛС

Приказом Наркома обороны от 26 июля 1940 г. станция «Редут» была принята на вооружение войск ПВО под названием РУС-2 (радиоуловитель самолетный).

3 января 1934 г. в Ленинграде на небольшой специально построенной установке были зарегистрированы отраженные от самолета радиоволны.

С этого дня, который можно считать днем рождения советской радиолокации, начались интенсивные исследования, направленные на решение задачи обнаружения самолета и точного определения его местоположения.

Первая импульсная радиолокационная установка была испытана в 1937.

Промышленный выпуск импульсных РЛС (РУС-2, «Редут», автомобиль ГАЗ-ААА) начался в 1940.

Эти станции имели одну приёмо-передающую антенну и помещались вместе с источником электропитания в кузове автомашины.

Они позволяли обнаруживать самолёты при круговом обзоре воздушного пространства на расстояниях (в зависимости от высоты полёта) до 150 км.

История развития импульсных РЛС

В 1940 Ленинградским физико-техническим институтом было закончено сооружение стационарной РЛС для системы ПВО. Антенны станции располагались на большой высоте (20 м), что обеспечивало большую дальность обнаружения (~ 250 км) и давало возможность обнаруживать сравнительно низко летящие самолёты. Во время Великой Отечественной войны, кроме станций «Редут», было развёрнуто производство надёжных портативных станций «Пегматит», которые можно было легко перевозить в упакованном виде и быстро устанавливать в любом помещении.

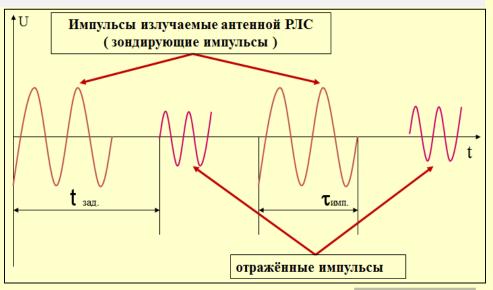
В последствии станции «Пегматит» были усовершенствованы так, что они позволили определять, кроме дальности и азимута самолёта, его высоту. В конце войны совершенствование РЛС происходило в направлении как повышения дальности их действия и точности измерений, так и автоматизации отдельных операций посредством автоматических следящих систем для измерения дальности и слежения по угловым координатам (в станциях орудийной наводки), автоматических счётных устройств (в станциях для «слепого» бомбометания) и т.д.

История развития импульсных РЛС

После 2-й мировой войны, с развитием авиации (повышением высоты, скорости полёта и манёвренности самолётов), появилась необходимость создания РЛС, способных работать в условиях сложной обстановки — при большом количестве объектов и действии умышленных помех.

Повышение точности измерения координат (в т. ч. благодаря новым методам их измерения), сопряжение РЛС с вычислительными машинами и общей системой радиоуправления снарядами-ракетами существенно изменили технические и тактические параметры РЛС, ставших важнейшим звеном автоматизированной системы управления средствами ПВО.

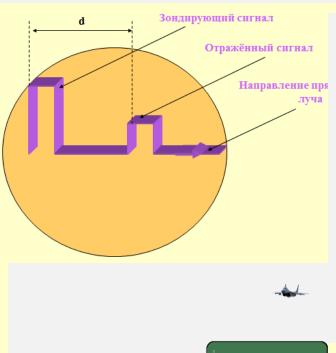
Появление в 50-60-х гг. ракетной и космической техники привело к созданию РЛС для решения ряда новых задач.


Были разработаны разнообразные РЛС для решения многих задач науки и народного хозяйства. 💢

Импульсный метод радиолокации

Импульсный метод основан на том, что:

- передатчик вырабатывает СВЧ энергию не непрерывно, а кратковременными **импульсами**.


Измеряя время между зондирующими и отраженными импульсами (эхо-сигнал), можно определить дальность до ВЦ

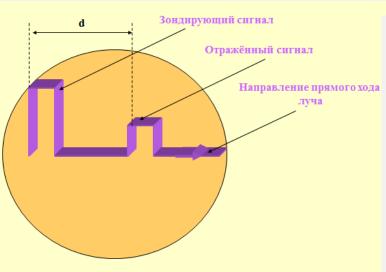
$$D = \frac{ct_{3a\partial}}{2}$$

Время задержки, **t** зад - измеряется в микросекундах. Измерения производят с помощью индикаторов на электронно-лучевой трубке (ЭЛТ).

Импульсный метод получил широкое распространение в РЛС разведки и целеуказания, применяемых в войсковой ПВО.

Импульсный метод радиолокации

Сущность импульсного метода.


Прямой ход луча горизонтальной развертки на экране ЭЛТ начинается в момент излучения импульса.

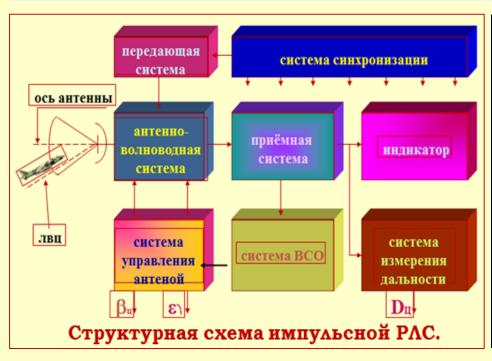
Отраженные эхо-сигналы после усиления и детектирования в приемном устройстве подводятся к вертикальным отклоняющим пластинам ЭЛТ и создают вертикальное отклонение луча.

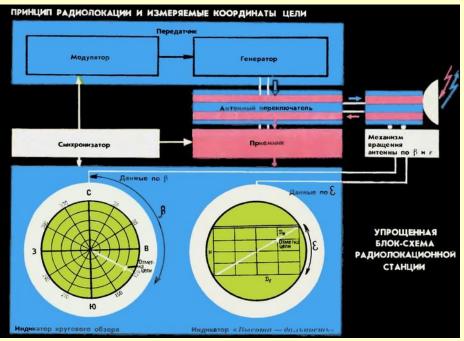
- расстояние d на экране ЭЛТ пропорционально времени t_{зад} вследствие постоянной скорости движения луча, а
- действительное расстояние D до цели пропорционально тому же времени $t_{\text{зад}}$ вследствие постоянства распространения 9M9.

Импульсный метод радиолокации

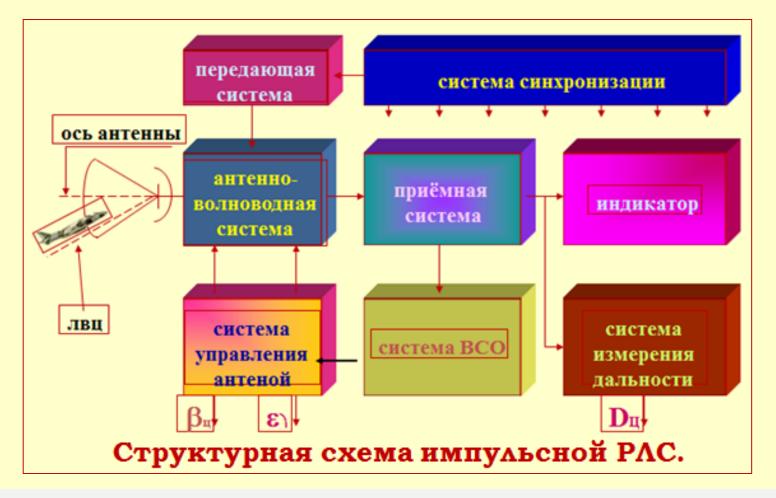
Чтобы на экране индикатора получить устойчивое изображение прямого и отраженного сигналов, электронный луч индикатора начинает движение в момент излучения каждого зондирующего импульса с одной и той же точки экрана.

Частота повторения импульсов выбирается таким образом, чтобы импульс, отраженный от наиболее удаленных целей, на обнаружение которых рассчитана РЛС, успел поступить в приемник до следующего зондирующего импульса,


т.е. до следующего прямого хода луча на индикаторе.



Импульсная РЛС

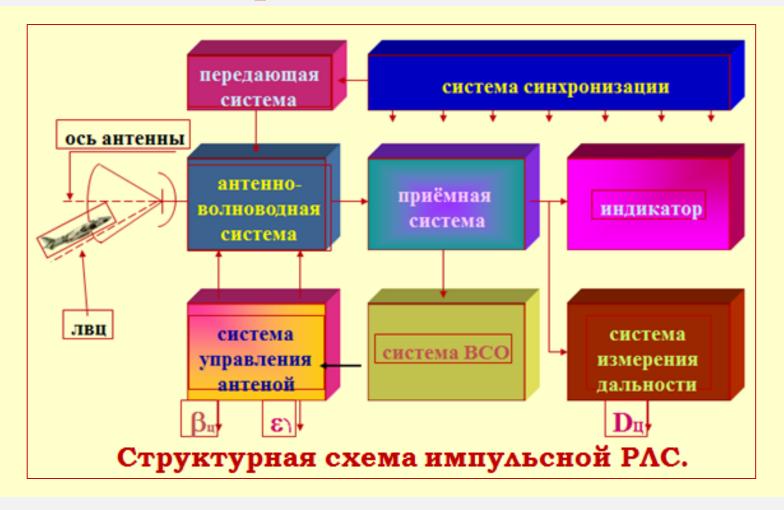

Радиолокационная станция (РЛС) - это сложное РТУ (радиотехническое устройство), предназначенное

- для обнаружения воздушных целей и определения их текущих координат (азимута $\beta_{\mathfrak{l}}$, угла места $\mathbf{\mathcal{E}}_{\mathfrak{l}}$, наклонной дальности $\mathbf{D}_{\mathfrak{l}}$).



1. Передающая система

Передающая система (ПРДС) - генератор электромагнитных волн. ПРДС — служит для формирования периодической последовательности зондирующих радиоимпульсов СВЧ, которые с помощью линий передач подводятся к антенне.


2. Антенно-волноводная система (АВС)

Антенно-волноводная система (АВС) служит для:

- передачи СВЧ сигналов с выхода ПРДС на вход антенны,
- формирования диаграммы направленности (ДНА) на передачу и прием,
- передачи принятых антенной СВЧ сигналов на вход приемной системы;
- подключения выхода передатчика на эквивалент антенны при скрытой работе.

3. Приемная система

Приемная система – предназначена для усиления сигналов, принятых антенной,

и их преобразования до величины, обеспечивающей нормальную работу оконечных устройств - индикатора, СИД, системы ВСО.

4. Система выделения сигнала ошибки

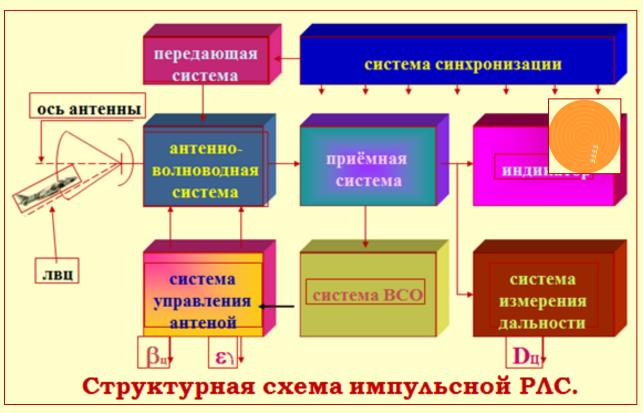
Система выделения сигнала ошибки (BCO) - для выделения напряжения сигнала ошибки ($\mathbf{U}_{\mathbf{CO}}$) сопровождения цели по угловым координатам из импульсных сигналов, поступивших из приемной системы.

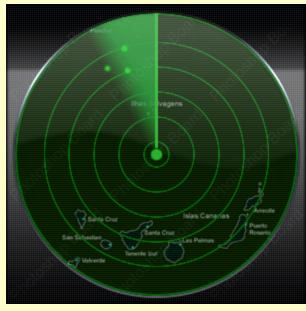
Сигнал ошибки, U_{CO} — представляет собой синусоидальное напряжение низкой частоты (десятки Γ ц) и содержит информацию о направлении и величине отклонения ВЦ от электрической оси антенны. При этом:

- фаза $\mathbf{U}_{\mathbf{CO}}$ будет изменяться при изменении направления отклонения ЛВЦ от электрической оси антенны;
- амплитуда от величины отклонения.

5. Система управления антенной

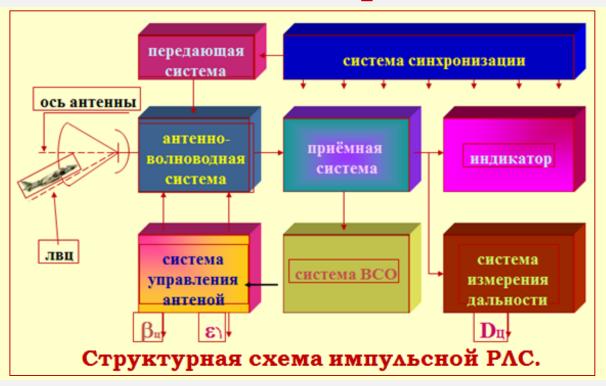
Система управления антенной — служит для преобразования, усиления по мощности $\mathbf{U}_{\mathbf{CO}}$ и подачи его на приводные двигатели **СУА**.


Двигатели будут разворачивать антенну РЛС по β и ε до тех пор, пока электрическая ось антенны не совместится с ЛВЦ и \mathbf{U}_{CO} на выходе системы ВСО не станет равным нулю. С датчиков антенны снимаются значения $\varepsilon_{\mathbf{u}}$, $\boldsymbol{\beta}_{\mathbf{u}}$, соответствующих положению антенны относительно выбранного направления и плоскости горизонта.


б. Система измерения дальности (СИД)

Система измерения дальности (СИД) — предназначена для точного измерения наклонной дальности до воздушного объекта.

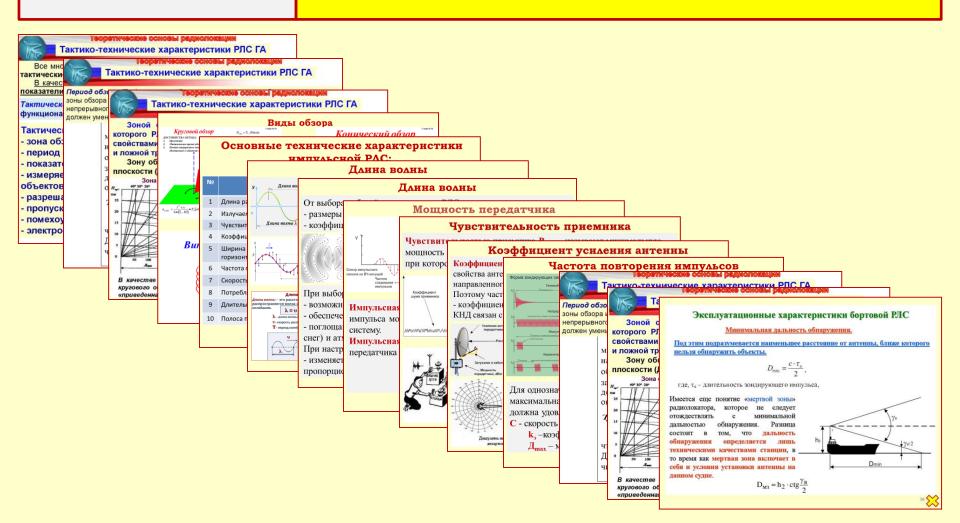
7. Индикатор РЛС



Индикатор РЛС— служит для отображения боевой обстановки в зоне действия станции,

а также определения координат воздушных объектов и их взаимного расположения.

8. Система синхронизации



Система синхронизации РЛС - задает частоту повторения (период следования) импульсов электромагнитных волн СВЧ, управляя работой передатчика.

Вместе с тем СС вырабатывает управляющие сигналы, позволяющие согласовать по времени (синхронизировать) с работой передатчика работу остальных систем РЛС.

Вопрос 2

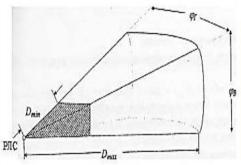
Основные технические характеристики импульсного радиолокатора

Теоретические основы радиолокации

Тактико-технические характеристики РЛС ГА

Все многообразие характеристик РЛС можно разделить на три группы: тактические, технические и эксплуатационные.

В качестве исходных данных при расчете РЛ берутся их тактические показатели.


I. Основные тактические характеристики РАС

Тактические характеристики РЛС определяют ее назначение и функциональные возможности при практическом применении.

Тактическими характеристиками РЛС являются:

- зона обзора;
- период обзора;
- показатели эффективности обнаружения объекта;
- измеряемые координаты и параметры движения объектов и точность измерений;
- разрешающая способность;
- пропускная способность;
- помехоустойчивость;
- электромагнитная совместимость;

Зона обзора ограничивается максимальной (D_{max}) и минимальной (D_{min}) дальностью действия и секторами обзора в горизонтальной (ϕ_{Γ}) и вертикальной (ϕ_B) плоскостях

Максимальная дальность радиолокационного обнаружения зависит от технических параметров РЛС, характеристик отражающего объекта, состояния атмосферы, подстилающей поверхности и ряда других факторов.

Минимальная дальность РЛС определяется длительностью зондирующего импульса (для импульсных РЛС), временем восстановления чувствительности приемников (включая инерционность антенного переключателя при переходе из режима передачи в режим приема), а также зависит от высоты установки антенны РЛС и ширины диаграммы направленности антенны в вертикальной плоскости.

Основные тактические характеристики РЛС

Творетические основы радиолокации

Тактико-технические характеристики РЛС ГА

Период обзора (T_{o63}) - время, требуемое для однократного облучения всех точек зоны обзора и обеспечения возможности приема сигналов из этих точек. Для непрерывного наблюдения за целями с увеличением их скорости период обзора должен уменьшаться.

Период обзора пространства зависит от многих факторов, в том числе от ширины диаграммы направленности антенны (ДНА) РЛС (φ_a) , сектора обзора $(\Delta \varphi)$, числа импульсов n, отраженных от цели за время одного обзора, и максимальной дальности действия. Для РЛС кругового обзора он определяется следующим выражением:

$$T_{o6} = t_{\varphi} \frac{360}{\varphi}$$

где $t_{\varphi}=nT_n$ - время, необходимое для того, чтобы антенна повернулась на угол, равный ширине ДН антенны; T_n - период повторения импульсов; n - число импульсов в пачке отраженных сигналов.

Творетические основы радиолокации

Тактико-технические характеристики РЛС ГА

Зоной обнаружения РЛС называют пространство, в пределах которого РЛС обнаруживает цели с определенными отражающими свойствами, с заданными вероятностями правильного обнаружения и ложной тревоги.

Зону обнаружения представляют в виде сечений в вертикальной

плоскости (Д в) и в горизонтальной (Д г):

Зона обнаружения РЛС

 $\mathcal{A}_{B} = R_{0 \max} F(\varphi, \theta)_{\varphi = const}$

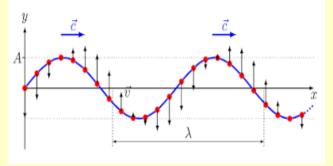
$$\mathcal{I}_{\Gamma} = R_{0\max} F(\varphi, \theta)_{H=const}$$

где $F(\varphi,\theta)$ - нормированная ДН антенны;

 $|\phi|$ - азимутальный угол;

θ - угол места;

Н - высота расположения цели;


R_{0 max} максимальная дальность действия РЛС.

В качестве примера приведено вертикальное сечение зоны обнаружения РЛС кругового обзора, которая строится в координатах «наклонная дальность» - «приведенная высота».

II. Основные технические характеристики РЛС

Nº	Характеристика	Условное обозначение	1РЛ33М3 3СУ-23-4М3
1	Длина рабочей волны передатчика	λ	$\lambda = 0.02 M$
2	Излучаемая мощность	Ризл = 120 кВт	
3	Чувствительность приемника	Pπp.min	
4	Коэффициент усиления антенны	g a 9000	
5	Ширина диаграммы направленности - в горизонтальной плоскости; - вертикальной плоскости	Град.	1.0° 15°
6	Частота повторения импульсов	Fπ	5750 Гц
7	Скорость вращения антенны	na	20°/c
8	Потребляемая станцией энергия	P	30 кВт
9	Длительность импульса	τи	0.2 мкс
10	Полоса пропускания приемника	$\Delta \mathbf{F}$	

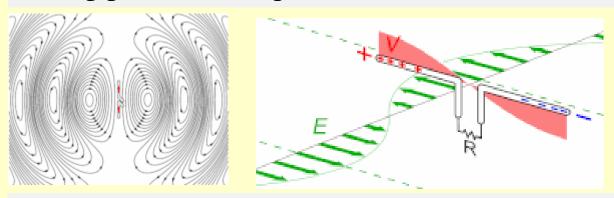
у Длина волны **х**Длина волны **х**

1. Длина волны

Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе. Длина́ волны́ (в линии передачи) — расстояние, на котором фаза электромагнитной волны вдоль направления распространения меняется на 2π.

$$\lambda = rac{299\,792\,458 \; ext{m/s}}{f}$$

Получить соотношение, связывающее длину волны с фазовой скоростью и частотой можно из определения.


Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой «проходит» за интервал времени, равный периоду колебаний, поэтому

$$\lambda = vT = rac{v}{f} = rac{2\pi v}{\omega}$$

1. Длина волны

От выбора рабочей длины волны РЛС зависят:

- размеры антенны, при требуемых значениях ширины ДНА;
- коэффициент направленного действия антенны.

При выборе длины волны учитывают:

- возможность получения необходимой мощности от передатчика;
- обеспечение требуемой чувствительности приемника;
- поглощающее и рассеивающее действие гидрометеоров (дождь, снег) и атмосферы.

При настройке РЛС:

- изменяется частота излучаемых колебаний ${\bf f}$, которая обратно пропорциональна длине волны.

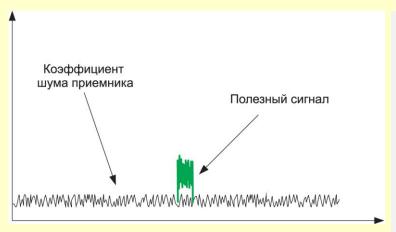
26

2. Мощность передатчика

Излучаемая мощность $\mathbf{P}_{\mathbf{изл.}}$ РЛС характеризуется **импульсной** мощностью передатчика $\mathbf{P}_{\mathbf{u}}$

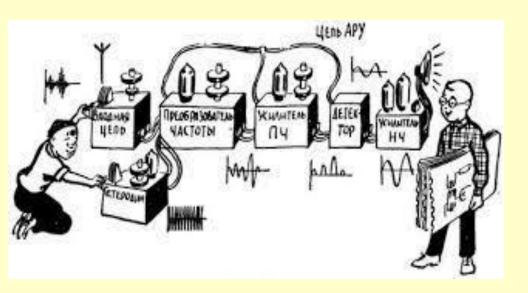
Импульсная мощность передатчика - средняя в течении импульса мощность, отдаваемая передатчиком в волноводную систему.

Импульсная мощность связана со средней мощностью передатчика за период следования импульсов $\mathbf{P}_{\mathbf{cp}}$ соотношением


$$P_u = P_{cp} / T_u * F_u$$

где T_{u} -длительность импульса в с.;

 $\mathbf{F}_{\mathbf{u}}$ — частота следования импульсов в Γ ц.


3. Чувствительность приемника

Чувствительность приемника $P_{\text{пр.min}}$ - это минимальная мощность сигнала на его входе, при которой обеспечивается прием отраженных сигналов (*мВ*).

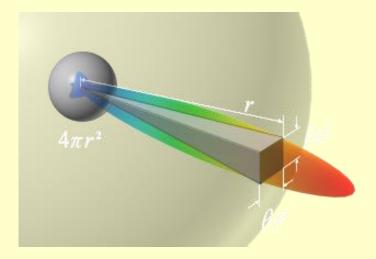
Обнаружение сигналов происходит на фоне собственных шумов приемного устройства: $P_{np.min} = v_p * P_{mo}$; где: P_{mo} - мощность шума в полосе пропускания приемника;

 $\mathbf{v}_{\mathbf{p}}$ - коэффициент различимости.

4. Коэффициент усиления антенны

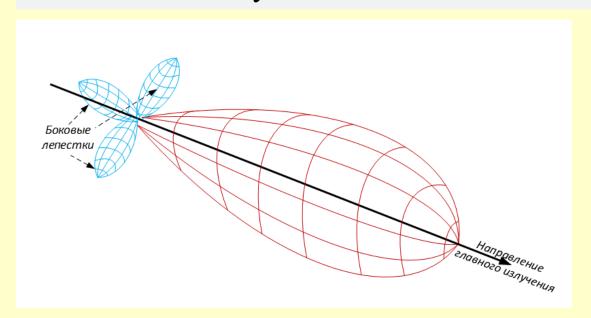
Коэффициент усиления антенны g_a характеризует направленные свойства антенной системы и практически равен коэффициенту направленного действия антенны G.

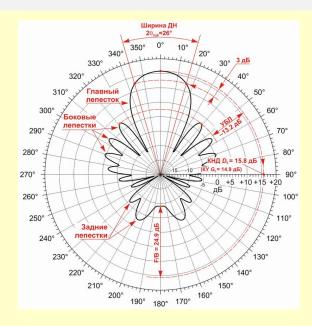
Поэтому часто вместо коэффициента усиления пользуются:

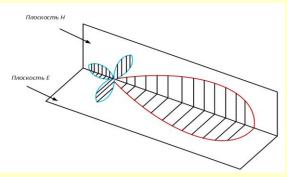

- коэффициентом направленного действия (КНД) антенны.

КНД связан с эффективной площадью антенны S_a :

 $G = 4\pi S_a / \lambda^2$

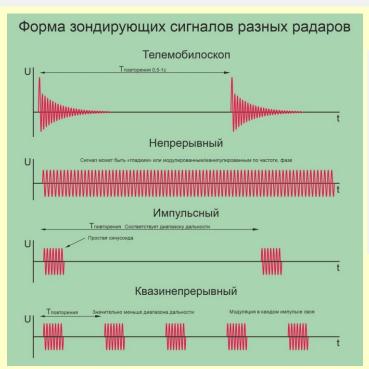






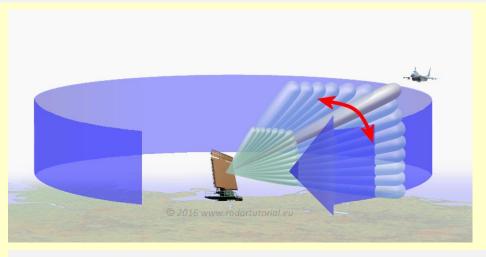
5. Диаграмма направленности антенны

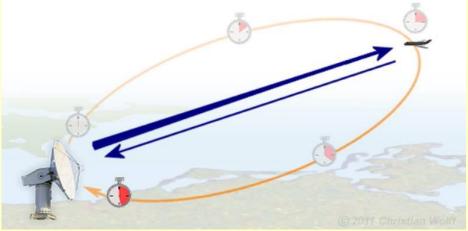
«Диаграмма направленности антенны» (или «диаграмма излучения») называют графическое изображение угловой зависимости излучения антенны.



Горизонтальная ДНА чаще всего строят либо в плоскости оси антенны, либо в плоскости, ей перпендикулярной. Эти плоскости называют, соответсвенно, азимутальной и угломестной.

б. Частота повторения импульсов



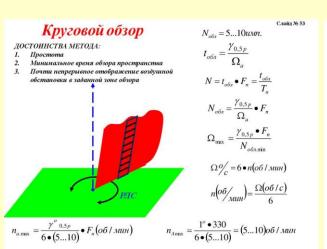

Частота повторения импульсов - количество импульсов одной и той же полярности в одну секунду.

 $\mathbf{F}_{\mathbf{u}} = \mathbf{1}/\mathbf{T}_{\mathbf{u}}$ ($\Gamma_{\mathbf{u}}$), где $\mathbf{T}_{\mathbf{u}}$ — период повторения импульсов.

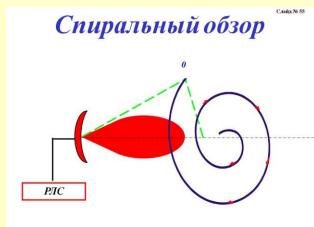
Для однозначного определения целей на заданных расстояниях максимальная частота повторения Fи зондирующих импульсов должна удовлетворять условию: $\mathbf{F}_{\text{и.max}} \cdot \leq \mathbf{C}/2*\mathcal{I}_{\text{max}} *\mathbf{k}_3$, где \mathbf{C} - скорость распространения радиоволн; \mathbf{k}_3 –коэффициент заполнения, равный 1,15-1,25; \mathcal{I}_{max} – максимальная дальность до цели.

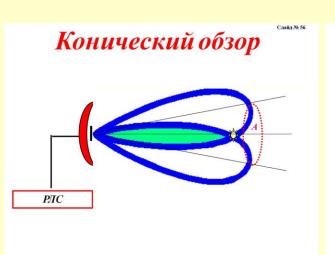
7. Скорость вращения антенны

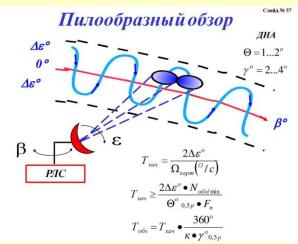
Системы вращения антенн (СВА) предназначены для осуществления обзора пространства в горизонтальной плоскости с заданными параметрами зоны обзора и программой.

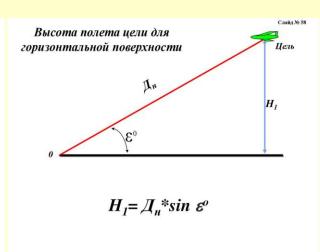

Эти системы обеспечивают как круговое вращение антенны с узким в горизонтальной плоскости лучом в пределах 0-360, так и программное управление антенной в секторе, а также установку антенны на заданный азимут.


Различные условия боевой обстановки (обнаружение РЛС низколетящих, высотных, малоразмерных и маневрирующих целей в простых условиях или в условиях активных и пассивных помех) требуют применения гибких методов обзора пространства, изменения скорости вращения, остановки антенны на заданном направлении или попеременное изменение направления сканирования в заданном секторе.


В связи с этим в РЛС используются следующие основные режимы работы СВА:


- •круговое вращение с постоянной заданной скоростью;
- •установка антенны на заданный азимут;
- •сканирование в заданном азимутальном секторе.

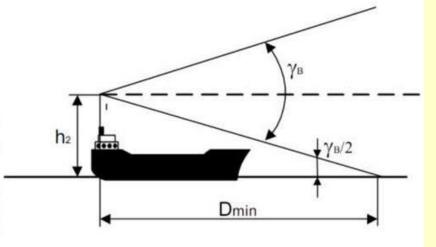

7. Виды обзора



III. Эксплуатационные характеристики РЛС

Эксплуатационные характеристики бортовой РЛС

Минимальная дальность обнаружения.


Под этим подразумевается наименьшее расстояние от антенны, ближе которого нельзя обнаружить объекты.

$$D_{\min} = \frac{c \cdot \tau_u}{2},$$

где, τ_u – длительность зондирующего импульса,

Имеется еще понятие «мертвой зоны» радиолокатора, которое не следует минимальной отождествлять C Разница дальностью обнаружения. состоит TOM, что дальность обнаружения определяется лишь техническими качествами станции, в то время как мертвая зона включает в себя и условия установки антенны на данном судне.

$$D_{M3} = h_2 \cdot ctg \frac{\gamma_B}{2}$$

Вопрос 3

Эффективная отражающая поверхность цели

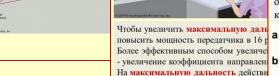
Эффективная отражающая поверхность

ЭОП цели (Se) - поверхность, которая при равномерном рассеивании энергии по всем направлениям дает такую же интенсивность отраженного сигнала в месте приема, как и реальная цель.

Реально энергия рассеивается в раз Учесть направленность вторичног сложного объекта (ракета, самоле элементов объекта все время измен

Одновременно изменяются фазовые различных элементов.

Поэтому направленностью отраж Цели с большой **ЭОП** дают большу Величина Se в зависимости от хара единиц до сотен кв. метров.


Очевидно, не при любой дальности и для того, чтобы различить на экра-

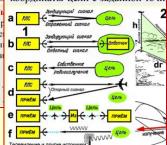
Максимальная дальность действия РЛС

Максимальная дальность действия РЛС - расстояние до цели, при котором мощность отраженного сигнала Рс упадет до значения

При большей дальности цели импульс на экране индикатора

- параметры самой станции, - свойства цели.

Поэтому, указывая для определенного для какой именно цели (тип самолета)


Максимальная дальность действия РАС

Зоны действия РАС

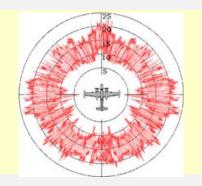
Зона видимости - область пространства, на границе которой цель обнаруживается с заданной вероятностью.

Зона обнаружения - пространств обнаруживает цели с заданной ве координаты цели с заданной точн

Зоны действия РАС

Граница зоны видимости - определяется результирующей диаграммой направленности (ДН) антенны. В РЛС обнаружения и целеуказания ДНА раздельно в горизонтальной и вертикальной плоскостях.

Зоны видимости по этому тоже строятся в этих плоскостях. Зона видимости в вертикальной плоскости - берется по максимуму ДН в горизонтальной плоскости.


Зона видимости в горизонтальной плоскости - горизонтальное сечение на определенной высоте зон видимости в вертикальной плоскости.

Зона видимости в горизонтальной плоскости на ровной позиции - окружность. Зона видимости в горизонтальной плоскости на неровной позиции- определяется из совокупности зон видимости вертикальной плоскости для характерных азимутальных направлений с учетом экранирующего действия местных предметов на заданной высор

Эффективная отражающая поверхность

ЭОП цели (Se) - поверхность, которая при равномерном рассеивании энергии по всем направлениям дает такую же интенсивность отраженного сигнала в месте приема, как и реальная цель.

Реально энергия рассеивается в различных направлениях по-разному.

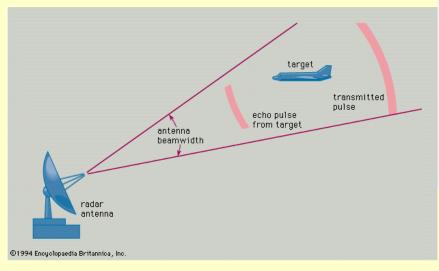
Учесть направленность вторичного излучения весьма трудно, так как при облучении сложного объекта (ракета, самолет и т.д.) характер отражения сигнала от различных элементов объекта все время изменяется вследствие изменении ориентации и вибрации цели.

Одновременно изменяются фазовые соотношения между сигналами, отраженными от различных элементов.

Поэтому направленностью отраженного сигнала обычно пренебрегают.

Цели с большой **ЭОП** дают большую амплитуду отраженного сигнала.

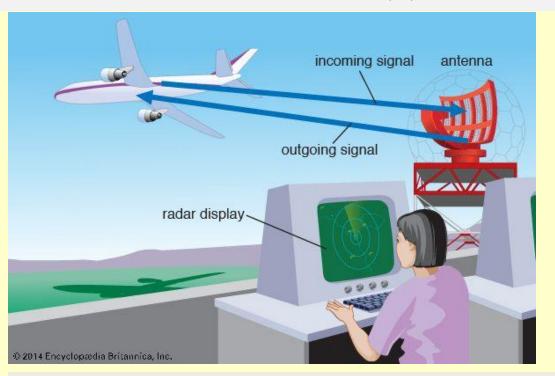
Величина **Se** в зависимости от характера воздушной цели колеблется в пределах от единиц до сотен кв. метров.


Очевидно, не при любой дальности цели мощность отраженного сигнала достаточна для того, чтобы различить на экране индикатора отраженный импульс на фоне шумов.

Максимальная дальность действия РЛС

Максимальная дальность действия РЛС - расстояние до цели, при котором мощность отраженного сигнала Рс упадет до значения Рс.мин.

При большей дальности цели мощность Рс<Рс.мин, а отраженный импульс на экране индикатора будет не различим в шумах.


$$\mathcal{I}_{\text{макс}} = 4 \sqrt{\frac{P_{\text{макс}} GS_{e} S_{A}}{16 \pi^{2} P_{c.\text{мин}} \mathbf{v_{p}}}}$$

- максимальная дальность действия радиолокационной станции **Дмакс**;
- максимальная импульсная мощность Рмакс;
- коэффициент направленного действия передающей антенны **G**;
- эффективная площадь приемной антенны Sa;
- эффективная отражающая поверхность цели **Se**.

Кроме того, дальность Дмакс тем больше, чем выше чувствительность приемника.

Максимальная дальность действия РЛС

Средние значения ЭОП

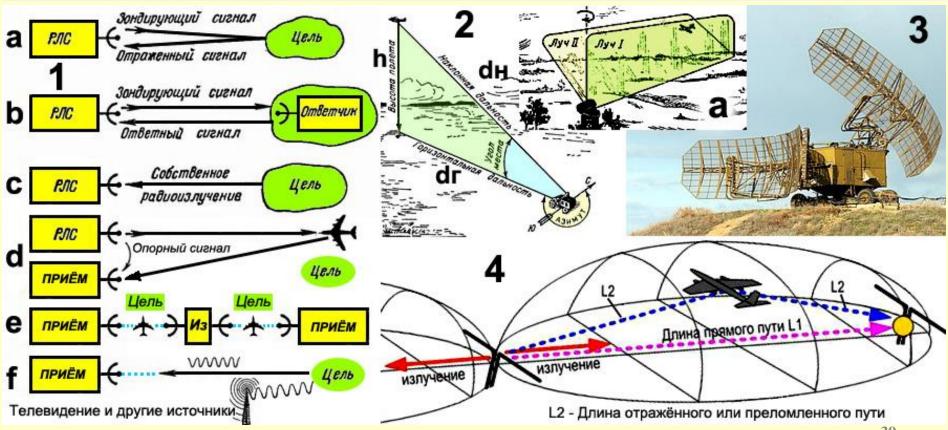
Тип цели	м2
Истребитель Дальний бомбардировщик Головка ракеты Транспортный самолет Человек	3÷5 20 0,2 50 0,8

Чтобы увеличить **максимальную дальность** действия в 2 раза, необходимо повысить мощность передатчика в 16 раз.

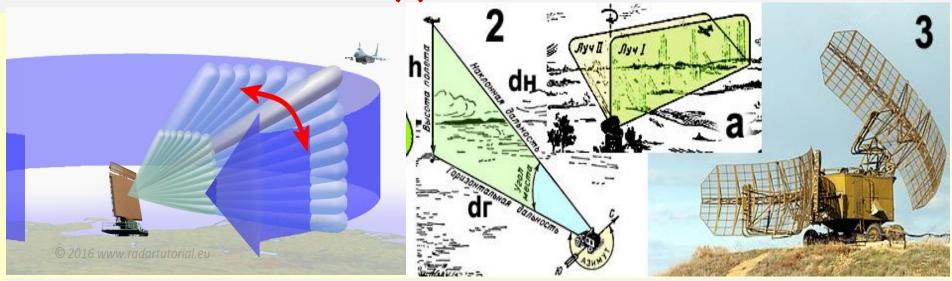
Более эффективным способом увеличения дальности является:

- увеличение коэффициента направленного действия (КНД) антенны G.

На максимальную дальность действия влияют:


- параметры самой станции,
- свойства цели.

Поэтому, указывая для определенного типа РЛС значение **Дмакс**, оговаривают, для какой именно цели (тип самолета) дается значение **ЭОП.**


Зоны действия РЛС

Зона видимости - область пространства, на границе которой цель обнаруживается с заданной вероятностью.

Зона обнаружения - пространство, в пределах которого РЛС обнаруживает цели с заданной вероятностью и измеряет координаты цели с заданной точностью.

Зоны действия РЛС

Граница **зоны видимости** - определяется результирующей диаграммой направленности (ДН) антенны. В РЛС обнаружения и целеуказания ДНА раздельно в горизонтальной и вертикальной плоскостях.

Зоны видимости по этому тоже строятся в этих плоскостях.

Зона видимости в вертикальной плоскости - берется по максимуму ДН в горизонтальной плоскости.

Зона видимости в горизонтальной плоскости - горизонтальное сечение на определенной высоте зон видимости в вертикальной плоскости.

Зона видимости в горизонтальной плоскости на ровной позиции - окружность.

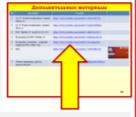
Зона видимости в горизонтальной плоскости на неровной позиции- определяется из совокупности зон видимости вертикальной плоскости для характерных азимутальных направлений с учетом экранирующего действия местных предметов на заданной высот

ЗАДАНИЕ НА САМОПОДГОТОВКУ:

Изучить материал занятия по конспекту и учебному пособию.

Вопросы занятия:

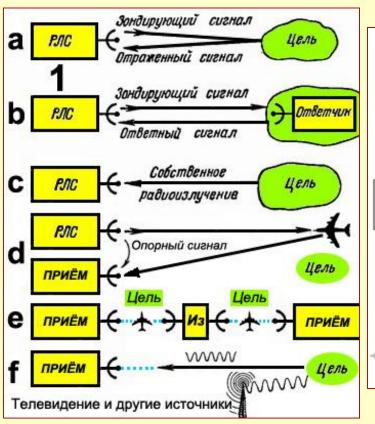
- 1. Импульсный метод радиолокации. Импульсные РЛС.
- 2. Основные технические характеристики импульсного радиолокатора.
- 3. Эффективная отражающая поверхность (ЭОП) цели.

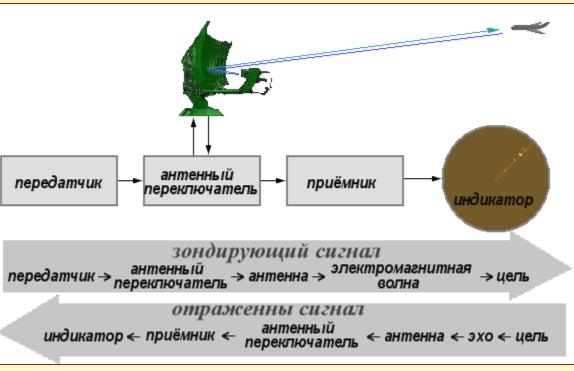


ЛИТЕРАТУРА:

1. Учебное пособие «Основы построения зенитных артиллерийских комплексов» 2013г., В.А. Подгорный, стр.47-54.

2. Учебное пособие «Основы построения зенитных артиллерийских комплексов» 2024г., В.А. Подгорный, А.А. Гаврилов, А.И. Целебровский, стр. 40-46

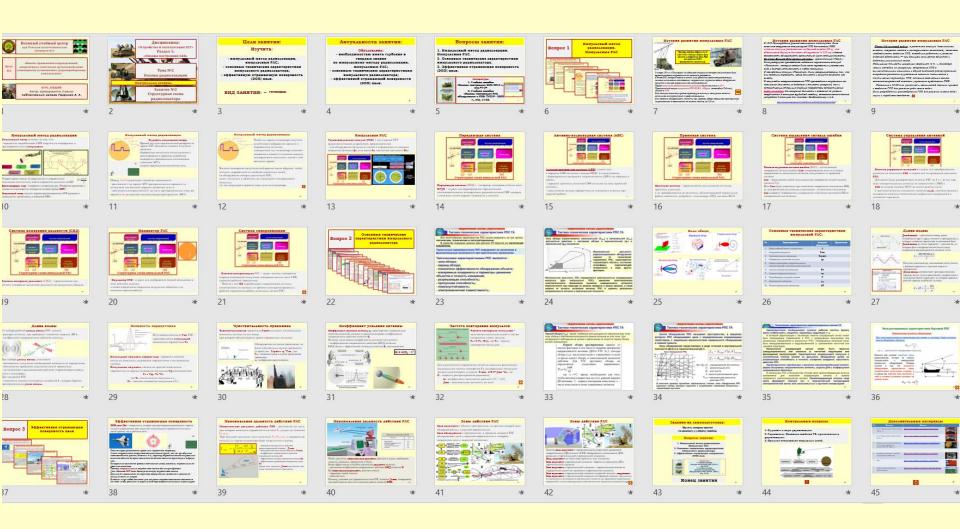



https://portal.tpu.ru/SHARED/g/GAA63/educational_activity/osn_zak/mat_disc/Osnovi_ZAK.pdf

Конец занятия

Контрольные вопросы

- 1. Сущность и виды радиолокации.
- 2. Радиоволны. Основные свойства РВ, применяемые в радиолокации.
- 3. Принцип опознавания воздушных целей.



Дополнительные материалы

	• •	•		
№	Название	Ссылка		
1	Су-27: Радиолокационная станция (Часть 1)	https://www.youtube.com/watch?v=OzEy7rtF4Yo		
2	Су 27 Радиолокационная станция Часть 2	https://www.youtube.com/watch?v=wpZ3ZM2heiI		
3	Штука из за которой истребитель Су 35 видит дальше РС управления РЛС Ирбис Э	https://www.youtube.com/watch?v=oVmSSKIGE2g		
5	Командир отделения - старший оператор РЛС (ПВО СВ)	https://www.youtube.com/watch?v=Joc1uhq1Qzs	GEPHANT	
6	РЛС	https://www.youtube.com/watch?v=-0J9yNHFZiw	Р лс	
7	Общие принципы работы радиолокатора	https://www.youtube.com/watch?v=WkmNdvWW0sU	Enylud enylud:	

Занятие №2.Структурная схема радиолокатора.

