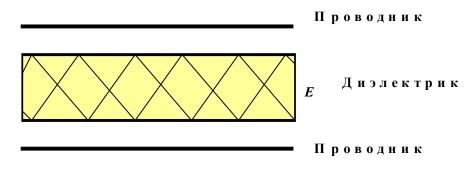
Энергия электрического поля. Электроемкость.

> Электроемкость проводника

$$C = \frac{q}{\varphi}$$

- ▶ Электроемкость проводника это физическая величина, численно равная заряду, который необходимо сообщить проводнику, чтобы увеличить его потенциал на 1В.
- **▶** В СИ *C* измеряется в фарадах [1Φ = 1Kπ / 1B].
- **Конденсатор** система из двух проводников, разделенных слоем диэлектрика, продольные размеры которых много больше расстояния между ними.

$$C = \frac{q}{\varphi_1 - \varphi_2}$$



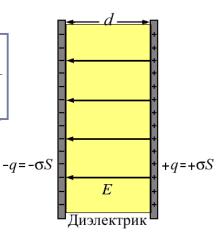
 $\varphi_1 - \varphi_2$ — разность потенциалов между обкладками; q — заряд конденсатора.

Плоский конденсатор

Расстояние между обкладками d много

меньше линейных размеров конденсатора.

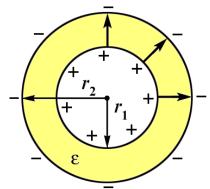
Следовательно, поле конденсатора можно рассматривать как поле между двумя бесконечными пластинами.



Сферический конденсатор

Состоит из двух концентрических обкладок сферической формы, разделенных слоем диэлектрика.

$$C = \frac{q}{\varphi_1 - \varphi_2} = 4\pi\varepsilon\varepsilon_0 \frac{r_1 \cdot r_2}{r_2 - r_1}$$

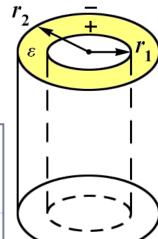


Цилиндрический конденсатор

Состоит из двух полых коаксиальных цилиндров с радиусами

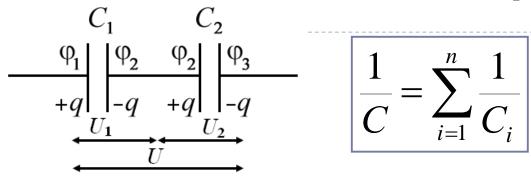
 r_1 и r_2 , вставленных один в другой $(r_1 < r_2)$ и разделенных слоем диэлектрика.

$$C = \frac{q}{\varphi_1 - \varphi_2} = \frac{2\pi\varepsilon\varepsilon_0 l}{\ln\frac{r_2}{r_1}}$$

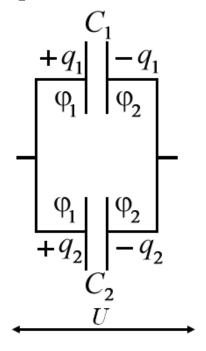


Соединения конденсаторов

• Последовательное соединение конденсаторов



• Параллельное соединение конденсаторов



$$C = \sum_{i=1}^{n} C_i$$

Энергия заряженного проводника:

Энергия заряженного проводника равна работе, которую необходимо

совершить, чтобы зарядить этот проводник:

$$W = \frac{q^2}{2C} = \frac{C\varphi^2}{2}$$

Энергия заряженного конденсатора

$$W = \frac{q^2}{2C} = \frac{CU^2}{2} = \frac{qU}{2}$$

Объемная плотность энергии электрического поля

- энергия, приходящаяся на единичный объем однородного поля.

$$\omega = \frac{\varepsilon \varepsilon_0 E^2}{2} = \frac{ED}{2}$$

Задача 1. Вычислить энергию поля заряженного проводящего шара радиуса R, помещенного в однородный безграничный диэлектрик.

Решение:

Напряженность поля: $E = \frac{1}{4\pi\varepsilon\varepsilon_0} \frac{q}{r^2}$

Разобьем окружающее шар пространство на концентрические шаровые слои толщиной dr. Объем слоя: $V = 4\pi r^2 dr$

В нем заключена энергия $dW = \omega dV$.

$$\omega = \frac{\varepsilon \varepsilon_0}{2} E^2$$

$$dW = \frac{\varepsilon \varepsilon_0}{2} \left(\frac{1}{4\pi \varepsilon \varepsilon_0} \frac{q}{r^2} \right)^2 4\pi r^2 dr = \frac{q^2}{8\pi \varepsilon \varepsilon_0 r^2} dr$$

Тогда энергия поля

$$W = \int dW = \frac{q^2}{8\pi\varepsilon\varepsilon_0} \int_{R}^{\infty} \frac{dr}{r^2} = \frac{q^2}{8\pi\varepsilon\varepsilon_0 R}$$

$$W=rac{q^2}{2C}$$
 => для шара $C=4\pi arepsilon arepsilon_0 R$

Задача 2. В вершинах квадрата со стороной a находятся одинаковые по абсолютной величине заряды q. Определить энергию взаимодействия системы.

Решение:

Взаимная потенциальная энергия двух зарядов: $W = \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r_{12}}$

$$W = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{12}}$$

Если зарядов N штук, то энергия равна сумме энергий взаимодействия зарядов,

$$W = \frac{1}{2} \sum_{i=1}^{N} q_i \sum_{k=1}^{N} \frac{1}{4\pi\varepsilon_0} \frac{q_k}{r_{ik}}$$

$$W = \frac{1}{2} \sum_{i=1}^{N} W_{ik}, i \neq k \qquad W_{ik} = \frac{1}{4\pi\varepsilon_0} \frac{q_i q_k}{r_{ik}}$$

$$W = \frac{1}{4\pi\varepsilon_0} \frac{1}{r_{ik}} W = \frac{1}{2} \sum_{i=1}^{N} q_i \varphi_i$$

<u>1-ый способ</u>:

Пусть в вершинах квадрата находятся все положительные заряды. Каждый заряд взаимодействует попарно с другими. Тогда энергия всей системы:

$$W = W_{12} + W_{13} + W_{14} + W_{23} + W_{24} + W_{34}$$

Энергия взаимодействия двух точечных зарядов:

$$W = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{12}}$$

$$W_{12} = W_{14} = W_{23} = W_{34} = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{a}$$
 $W_{13} = W_{24} = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{\sqrt{2}a}$

$$W_{13} = W_{24} = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{\sqrt{2}a}$$

$$\Rightarrow W = 4W_{12} + 2W_{13} = \frac{1}{4\pi\epsilon_0} \frac{q^2}{a} (4 + \sqrt{2})$$

Задача 2. В вершинах квадрата со стороной a находятся одинаковые по абсолютной величине заряды q. Определить энергию взаимодействия системы.

Решение:

<u>2-ой-способ</u>:

Пусть в вершинах квадрата на диагонали находятся отрицательные заряды.

Тогда энергия всей системы: $W = \frac{1}{2} \sum q_i \varphi_i$

 φ_i — потенциал в точке, где находится i-ый заряд, создаваемый всеми другими зарядами (кроме i-го). $W = \frac{1}{2}(q_1\varphi(1) - q_2\varphi(2) + q_3\varphi(3) - q_4\varphi(4))$

Определим потенциал по принципу суперпозиции:

$$\varphi(1) = -k\frac{q_2}{a} + k\frac{q_3}{\sqrt{2}a} - k\frac{q_4}{a} = -2k\frac{q}{a} + k\frac{q}{\sqrt{2}a} \qquad \Rightarrow \varphi(1) = -\varphi(2) \\ = \varphi(3) = -\varphi(4)$$

$$\varphi(2) = k\frac{q_1}{a} + k\frac{q_3}{a} - k\frac{q_4}{\sqrt{2}a} = 2k\frac{q}{a} - k\frac{q}{\sqrt{2}a} \qquad W = 2q\varphi(1)$$

$$\varphi(3) = -k\frac{q_2}{a} + k\frac{q_3}{\sqrt{2}a} - k\frac{q_4}{a} = -2k\frac{q}{a} + k\frac{q}{\sqrt{2}a} \qquad = 2q\left(-2k\frac{q}{a} + k\frac{q}{\sqrt{2}a}\right)$$

$$\varphi(4) = k\frac{q_1}{a} - k\frac{q_2}{\sqrt{2}a} + k\frac{q_3}{a} = 2k\frac{q}{a} - k\frac{q}{\sqrt{2}a} \qquad = k\frac{q^2}{a}(\sqrt{2} - 4)$$

Энергия будет отрицательной, т.е. это энергия связи зарядов.

Задача 3. Уединенная металлическая сфера электроемкостью $C=10 \text{ п}\Phi$ заряжена до потенциала φ =3 кВ. Определить энергию W поля, заключенного в сферическом слое, ограниченном сферой и концентрической с ней сферической поверхностью, радиус которой в три раза больше радиуса сферы.

Решение:

Электроемкость сферы: $C = 4\pi\varepsilon\varepsilon_0 R$ Т.к. сфера полая, то $\varepsilon=1$. $\Rightarrow R = \frac{C}{4\pi\varepsilon_0}$ Напряженность поля заряженной сферы: $E = \frac{Q}{4\pi\varepsilon_0 r^2}$

Плотность энергии: $\omega = \frac{\varepsilon \varepsilon_0 E^2}{2} = \frac{\varepsilon_0 E^2}{2}$

Плотность энергии.
$$w = \frac{1}{2} - \frac{1}{2}$$

$$W = \int \omega dV \qquad dV = 4\pi r^2 dr$$

$$W = \int \omega dV = \int_R^{3R} \frac{\varepsilon_0 E^2}{2} dV = \int_R^{3R} \frac{\varepsilon_0 E^2}{2} 4\pi r^2 dr = \int_R^{3R} \frac{4\pi \varepsilon_0 q^2 r^2 dr}{2(4\pi \varepsilon_0)^2 r^4} = \int_R^{3R} \frac{q^2 dr}{8\pi \varepsilon_0 r^2}$$

$$= \frac{q^2}{8\pi \varepsilon_0} \left(\frac{1}{R} - \frac{1}{3R}\right) = \frac{q^2}{12\pi \varepsilon_0 R} = \frac{q^2}{3C}$$

$$= \frac{1}{8\pi\varepsilon_0} \left(\frac{1}{R} - \frac{1}{3R} \right) = \frac{1}{12\pi\varepsilon_0 R} = \frac{1}{3C}$$

$$C = \frac{q}{\varphi} \Rightarrow q = C\varphi$$
 $W = \frac{C\varphi^2}{3}$ $W = 30$ мкДж

Задача 4. Найти объемную плотность энергии ω_0 электрического поля в точке, находящейся: а) на расстоянии x=2 см от поверхности заряженного шара радиусом R=1 см, б) вблизи бесконечно протяженной заряженной плоскости, в) на расстоянии x=2 см от бесконечно длинной заряженной нити. Поверхностная плотность заряда на шаре и плоскости $\sigma=16,7$ мкКл/м², линейная плотность заряда на нити $\tau=167$ нКл/м. Диэлектрическая проницаемость среды $\varepsilon=2$.

Решение:

а) Объемная плотность энергии для шара: $\omega_0 = \frac{\varepsilon \varepsilon_0 E^2}{2}$

Напряженность поля, создаваемого заряженным шаром в точке r: $E = \frac{q}{4\pi\varepsilon\varepsilon_0 r^2}$

B точке
$$x$$
: $E = \frac{q}{4\pi\varepsilon\varepsilon_0(R+x)^2}$

$$q = \sigma S = 4\pi R^2 \sigma$$

$$\omega_0 = \frac{\varepsilon \varepsilon_0}{2} \left(\frac{q}{4\pi \varepsilon \varepsilon_0 (R+x)^2} \right)^2$$

$$\omega_0 = \frac{\varepsilon \varepsilon_0}{2} \left(\frac{4\pi R^2 \sigma}{4\pi \varepsilon \varepsilon_0 (R+x)^2} \right)^2 = \frac{\sigma^2 R^4}{2\varepsilon \varepsilon_0 (R+x)^4}$$

$$\omega_0 = 0.097 \, \text{Дж/м}^3$$

Задача 4. Найти объемную плотность энергии ω_0 электрического поля в точке, находящейся: а) на расстоянии x=2 см от поверхности заряженного шара радиусом R=1 см, б) вблизи бесконечно протяженной заряженной плоскости, в) на расстоянии x=2 см от бесконечно длинной заряженной нити. Поверхностная плотность заряда на шаре и плоскости $\sigma=16,7$ мкКл/м², линейная плотность заряда на нити $\tau=167$ нКл/м. Диэлектрическая проницаемость среды $\varepsilon=2$.

Решение:

б) Объемная плотность энергии для плоскости: $\omega_0 = \frac{\varepsilon \varepsilon_0 E^2}{2}$

Напряженность поля, создаваемого заряженной плоскостью: $E = \frac{\sigma}{2\varepsilon\varepsilon_0}$

$$\omega_0 = \frac{\varepsilon \varepsilon_0}{2} \left(\frac{\sigma}{2\varepsilon \varepsilon_0} \right)^2 = \frac{\sigma^2}{8\varepsilon \varepsilon_0}$$
 $\omega_0 = 1.97 \, \text{Дж/м}^3$

в) Объемная плотность энергии для нити: $\omega_0 = \frac{\varepsilon \varepsilon_0 E^2}{2}$

Напряженность поля, создаваемого заряженной нитью на расстоянии x:

$$E = \frac{\tau}{2\pi\varepsilon\varepsilon_0 x} \qquad \omega_0 = \frac{\varepsilon\varepsilon_0}{2} \left(\frac{\tau}{2\pi\varepsilon\varepsilon_0 x}\right)^2 = \frac{\tau^2}{8\pi^2\varepsilon\varepsilon_0 x^2}$$

$$\omega_0 = 4.99 \cdot 10^{-2} \, \text{Дж/м}^3$$

Задача 5. Плоский воздушный конденсатор состоит из двух круглых пластин радиусом r=10 см каждая. Расстояние d_1 между пластинами равно 1 см. Конденсатор зарядили до разности потенциалов U=1,2 кВ и отключили от источника тока. Какую работу A нужно совершить, чтобы, удаляя пластины друг от друга, увеличить расстояние между ними до $d_2=3,5$ см.

Решение:

$$A = W_2 - W_1 \qquad W = \frac{q^2}{2C}$$

$$A = \frac{q^2}{2C_2} - \frac{q^2}{2C_1} = \frac{q^2}{2} \left(\frac{1}{C_2} - \frac{1}{C_1} \right)$$

Заряд не меняется,
$$q=C_1U$$
 $C_1=\frac{\varepsilon_0 S}{d_1}$ $C_2=\frac{\varepsilon_0 S}{d_2}$ $S=\pi r^2$

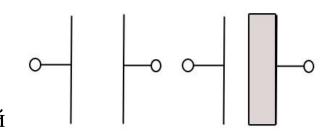
$$A = \frac{C_1^2 U^2}{2} \left(\frac{1}{C_2} - \frac{1}{C_1} \right) = \frac{\varepsilon_0^2 S^2 U^2}{2d_1^2} \left(\frac{d_2}{\varepsilon_0 S} - \frac{d_1}{\varepsilon_0 S} \right) = \frac{\varepsilon_0 S U^2}{2d_1^2} (d_2 - d_1) = \frac{\pi r^2 \varepsilon_0 U^2}{2d_1^2} (d_2 - d_1)$$

A = 50 мкДж

Задача 6. Как изменится ёмкость плоского воздушного конденсатора, если между его обкладками поместить стеклянную пластину ($\varepsilon = 6$), толщина которой равна половине расстояния между обкладками?

Решение:

 C_0 — емкость конденсатора до введения стеклянной пластины.



C — емкость конденсатора после введения стеклянной пластины.

После введения стеклянной пластины конденсатор можно рассматривать как два последовательно соединенных конденсатора.

$$C_0 = \frac{\varepsilon_0 S}{d} \qquad \qquad \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \Rightarrow C = \frac{C_1 C_2}{C_1 + C_2} \qquad \qquad C_1 = \frac{2\varepsilon_0 S}{d}, C_2 = \frac{2\varepsilon\varepsilon_0 S}{d}$$

 C_1 — воздушный конденсатор толщиной d/2, C_2 — конденсатор со стеклянной пластиной толщиной d/2.

$$C = \frac{2\varepsilon\varepsilon_0 S}{d(1+\varepsilon)} = \frac{2\varepsilon C_0}{d(1+\varepsilon)}$$

$$C = 1.7C_0$$

Задача 7. Площадь каждой обкладки плоского конденсатора S=1 м², расстояние между обкладками d=5 мм. Зазор между обкладками заполнен диэлектриком, проницаемость которого изменяется в направлении, перпендикулярном к обкладкам, по линейному закону от значения $\varepsilon_1=2$ вблизи одной обкладки до $\varepsilon_2=5,44$ вблизи другой. Определить емкость C конденсатора.

Решение:

Для нахождения емкости конденсатора разобьём диэлектрик на слои толщиной dx. Получим систему последовательно соединенных конденсаторов. Тогда емкость такой системы: N d

$$\varepsilon(x) = kx + b$$

$$b = \varepsilon_1$$

$$k = \frac{\varepsilon_2 - \varepsilon_1}{d}$$

$$\frac{1}{C} = \sum_{i=1}^{N} \frac{1}{C_i} = \int_{0}^{\pi} \frac{1}{C_i} \qquad C_i = \frac{\varepsilon(x)\varepsilon_0 S}{dx}$$

$$\frac{1}{C} = \frac{1}{\varepsilon_0 S} \int_0^d \frac{dx}{kx + b} = \frac{1}{\varepsilon_0 Sk} \ln(kx + b) \Big|_0^d = \frac{1}{\varepsilon_0 Sk} \ln\left(\frac{kd + b}{b}\right) = \frac{d}{\varepsilon_0 S} \frac{\ln(\varepsilon_2/\varepsilon_1)}{(\varepsilon_2 - \varepsilon_1)}$$

$$C = \frac{\varepsilon_0 S}{d} \frac{(\varepsilon_2 - \varepsilon_1)}{\ln(\varepsilon_2/\varepsilon_1)}$$

$$C = 6.1 \text{ H}\Phi$$

Задача 8. Конденсатор ёмкостью 3 мкФ заряжен до разности потенциалов 300 В, конденсатор ёмкостью 2 мкФ — до 200 В. Оба конденсатора соединены после зарядки параллельно одноименными полюсами. Какая разность потенциалов-установится-на-обкладках-конденсаторов-после-их-соединения?

Решение:

$$C = \frac{q}{U} = \frac{(q_1 + q_2)}{U}$$

С другой стороны $C = C_1 + C_2$.

$$\Rightarrow C_1 + C_2 = \frac{(q_1 + q_2)}{U} \qquad U = \frac{(q_1 + q_2)}{(C_1 + C_2)}$$

$$C_1 = \frac{q_1}{U_1} \qquad q_1 = C_1 U_1$$

$$\Rightarrow U = \frac{(C_1 U_1 + C_2 U_2)}{(C_1 + C_2)}$$

$$C_2 = \frac{q_2}{U_2} \qquad q_2 = C_2 U_2$$

$$U = 260 \text{ B}$$

Задача 9. Два конденсатора электроемкостями C_1 =3 мкФ и C_2 =6 мкФ соединены между собой и присоединены к батарее с ЭДС 120 В. Определить заряды Q_1 и Q_2 конденсаторов и разности потенциалов U_1 и U_2 между их обкладками, если конденсаторы соединены: 1) параллельно; 2) последовательно.

Решение:

1) При параллельном соединении: $U_1 = U_2 = \varepsilon = 120 \text{ B}$

$$Q_1 = C_1 U_1 = 0.72$$
 мКл

2) При последовательном соединении: $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \Rightarrow C = \frac{C_1 C_2}{C_1 + C_2} = 2 \text{ мк}\Phi$

$$Q_1 = Q_2 = Q = C\varepsilon = 0.24$$
 мКл

$$U_1 = \frac{Q_1}{C_1} = 80 \text{ B}$$
 $U_2 = \frac{Q_2}{C_2} = 40 \text{ B}$

Задача 10. Конденсаторы электроемкостями C_1 =2 мкФ, C_2 =2 мкФ, C_3 =3 мкФ, C_4 =1 мкФ соединены так, как указано на рисунке. Разность потенциалов на обкладках четвертого конденсатора U_4 =100 В. Найти заряды и разности потенциалов на обкладках каждого конденсатора, а также общий заряд и разность потенциалов батареи конденсаторов.

Решение:

$$Q_4 = C_4 U_4 = 10^{-4} \text{ Кл}$$

$$Q_2 = Q_3 = C_2 U_2 = C_3 U_3$$
 $U_3 = \frac{C_2 U_2}{C_3}$

$$U_4 = U_2 + U_3 \Rightarrow U_4 = U_2 \left(1 + \frac{C_2}{C_3} \right) \Rightarrow U_2 = \frac{U_4}{\left(1 + \frac{C_2}{C_3} \right)} = 60 \text{ B}$$

$$U_3 = U_4 - U_2 = 40 \text{ B}$$

$$Q_2 = Q_3 = C_2 U_2 = C_3 U_3 = 1.2 \cdot 10^{-4} \ \mathrm{K}$$
л

$$Q_1 = Q_2 + Q_4 = 2.2 \cdot 10^{-4} \text{ K}$$
л

$$Q = Q_1 = 2.2 \cdot 10^{-4} \text{ Кл}$$

$$U_1 = \frac{Q_1}{C_1} = 110 \text{ B}$$

$$U = U_1 + U_4 = 210 \text{ B}$$

