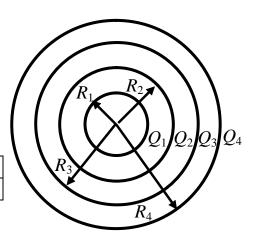

Вариант 1

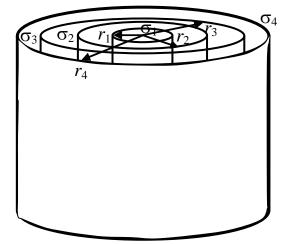
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
10	10	0	-10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.


σ_1	$(HK\pi/M^2)$	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K \pi / M^2)$
	10	10	0	-10

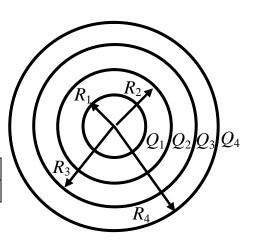
3. Пластина толщиной d=2 *см* имеет электрический заряд, распределенный так, что его объемная плотность зависит от координаты x по закону $\rho = \rho_0 \left[1 - \cos(\frac{\pi x}{d}) \right]$, где $\rho_0 = 10$ $\mu K \pi / M^3$, x — измеряется от середины


пластины в поперечном направлении. Определить напряженность поля на краю пластины. Построить график зависимости напряженности поля от координаты x.

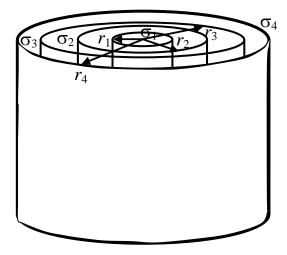
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

- I	1	- r · · r · r	-
Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
20	10	-10	0

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



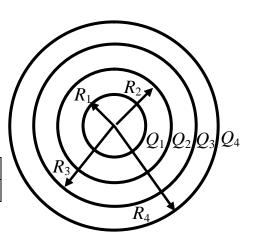
σ_1 , $(\mu K \pi / M^2)$	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> π/m^2)	σ_4 ,(<i>нКл/м</i> ²)
20	10	-10	0


3. Пространство вблизи прямой длинной нити заполнено отрицательным зарядом с объемной плотностью $\rho = \frac{b}{r}e^{-\frac{r}{R}}$, где R=0,1 мм - радиус нити , b=-4,3 мкKл/м 2 , r - расстояние от оси нити. Сама нить заряжена положительным зарядом с линейной плотностью $\tau=1$ μK л/м. Определить напряженность поля на расстоянии r=2R от оси нити. Построить график зависимости напряженности поля от r.

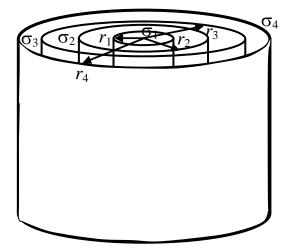
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
20	0	-10	-10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.


σ1,($μΚπ/m2$)	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K \pi / m^2)$
20	0	-10	-10

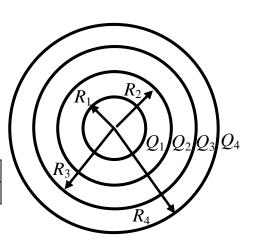
3. Шар, имеющий положительный заряд Q=1 $nK\pi$, окружен симметрично отрицательным зарядом с объемной плотностью $\rho = \rho_0 \frac{b}{r^2} e^{-\frac{r}{R}}$, где b=-34,6 $nK\pi/m$, nK=1 $nK\pi/m$, $nK\pi/m$, nK=1 $nK\pi/m$, $nK\pi$


Вариант 4

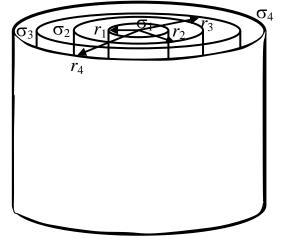
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
0	-10	10	10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



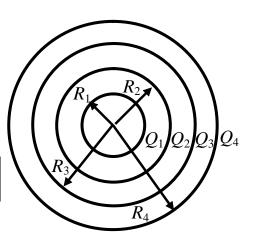
σ_1 , $(\mu K \pi / M^2)$	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> π/m^2)	σ_4 , $(\mu K \pi / m^2)$
0	-10	10	10


3. Пространство вблизи тонкой бесконечной плоской незаряженной пластины имеет заря, распределенный симметрично пластине с объемной плотностью $\rho = \rho_0 e^{-\frac{|x|}{b}}$, где b=1 c_M , |x| - расстояние от пластины. Определить напряженность поля на расстоянии b от пластины. Построить график напряженности поля от x.

1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 c, R_2 =20 c, R_3 =30 c, R_4 =40 c. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,($\mu K \pi$)	Q_2 ,(н $K_{\mathcal{I}}$)	Q_3 , (HK_{I})	Q_4 ,(н K_{I})
10	-20	0	10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



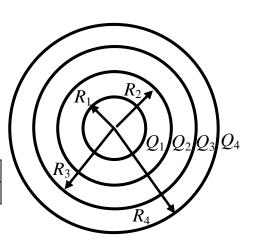
$σ_1$,($μΚπ/μ^2$)	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> π/m^2)	σ_4 , $(\mu K_{\pi}/M^2)$
10	-20	0	10

3. Согласно выводам квантовой механики при локализации электрона внутри сферы радиусом $R=1\cdot 10^{-10}$ M его электрический заряд можно считать распределенным по объему с плотностью $\rho=\frac{-e}{2\pi R r^2}\sin^2(\frac{\pi r}{R})$, где $e=1,6\cdot 10^{-19}$ $K\pi$ — элементарный заряд, r — расстояние от центра сферы. Определить напряженность электрического поля на расстоянии $r=\frac{R}{2}$ от центра сферы. Построить график напряженности от расстояния r.

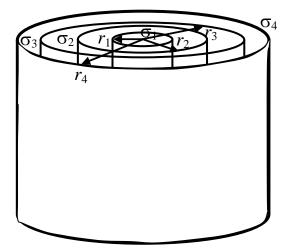
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
10	20	-10	0

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.


σ1,($μΚπ/m2$)	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K_{\Lambda}/M^2)$
10	20	-10	0

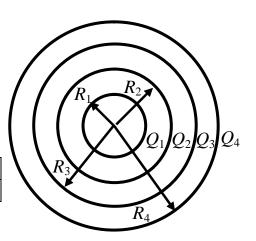
3. Пространство между двумя коаксиальными длинными цилиндрами заполнено зарядом с объемной плотностью, изменяющейся по закону $\rho = \frac{b}{r^2}$, где $b = 10 \ \text{нКл/м}$. Радиусы цилиндров $R_1 = 1 \ \text{см}$, $R_2 = 2 \ \text{см}$. Определить напряженность поля посередине между цилиндрами. Построить график зависимости напряженности от расстояния от оси цилиндров.


Вариант 7

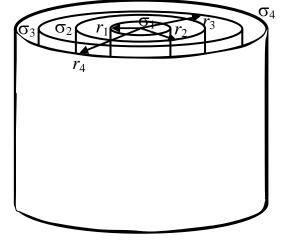
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 c_M , R_2 =20 c_M , R_3 =30 c_M , R_4 =40 c_M . Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K_{I})	Q_2 ,(н K_{π})	Q_3 ,(н K_{π})	Q_4 ,(н $K\pi$)
10	-10	0	10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.


$σ_1$,($μΚπ/μ^2$)	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K \pi / m^2)$
10	-10	0	10

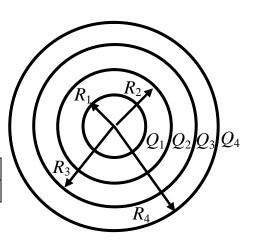
3. Бесконечная пластина толщиной d=4 c_M имеет заряд, объемная плотность которого изменяется по закону $\rho=\rho_0\cos(\frac{2\pi|x|}{d})$, где $\rho_0=10$ nK_D/M^3 , |x| - расстояние от центра пластины в поперечном направлении. Определить напряженность поля на поверхности пластины и построить график зависимости напряженности от координаты x/


Вариант 8

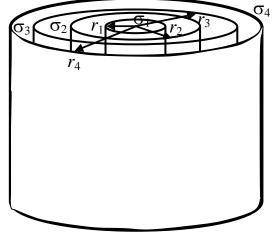
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
-10	0	10	10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров $R_1 = 10 \, cM$, $R_2 = 20$ СM, $R_3 = 30$ R_4 =40 *см*. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.


σ1,($μΚπ/m2$)	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K \pi / m^2)$
-10	0	10	10

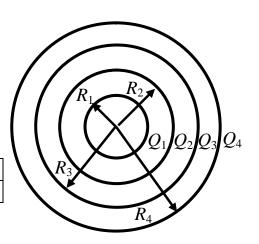
3. Шар заряжен так, что его объемная плотность меняется с расстоянием r от центра по закону $\rho = \rho_0 \sin(\frac{\pi r^3}{R^3})$, где $\rho_0 = 10 \ \text{нКл/м}^3$, $R = 10 \ \text{см}$. Определить напряженность поля на поверхности шара и построить график напряженности от r.


Вариант 9

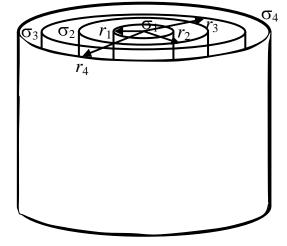
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
-10	20	-10	0

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



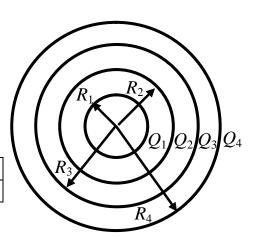
σ1,($μΚπ/m2$)	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K_{\Lambda}/M^2)$
-10	20	-10	0


3. Длинный цилиндр радиусом R=10 *см* заряжен так, что плотность электрического заряда меняется с расстоянием r от оси по закону $\rho = \rho_0 \frac{R}{r}$, где $\rho_0 = 10 \ \text{нКл/м}^3$. Определить напряженность поля в точке, находящейся на расстоянии b=2R от оси. Построить график напряженности поля в зависимости от расстояния r.

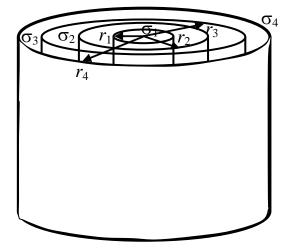
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q ₃ ,(нКл)	Q_4 ,(н K л)
-10	10	0	-10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



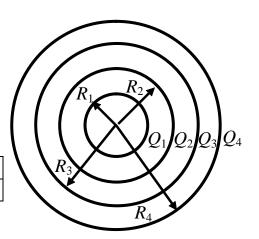
σ1,($μΚπ/м2$)	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> π/m^2)	σ_4 , $(\mu K_{\pi}/M^2)$
-10	10	0	-10


3. Длинный цилиндр радиусом R=10 *см* заряжен так, что плотность электрического заряда меняется с расстоянием r от оси по закону $\rho = \rho_0 \cos(\frac{\pi r^2}{2R^2})$, где $\rho_0 = 10$ $\mu K n/m^3$. Определить напряженность поля в точке, находящейся на расстоянии $b = \frac{R}{\sqrt{2}}$ от оси. Построить график напряженности поля в зависимости от расстояния r.

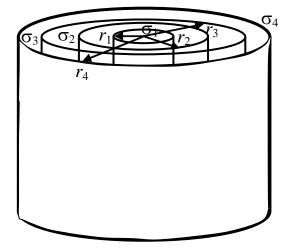
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K_{Λ})	Q_4 ,(н K л)
0	10	-20	10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



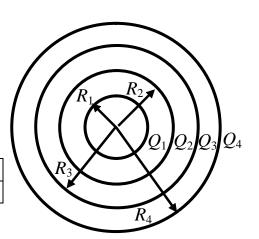
σ1,($μΚπ/m2$)	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> π/m^2)	σ_4 ,(н K л/ M^2)
0	10	-20	10


3. Бесконечная пластина толщиной d=5 *см* имеет заряд, объемная плотность которого меняется по закону $\rho = \rho_0 \frac{d}{2|x|+d}$, где $\rho_0=1$ $m\kappa K n/m^3$. Определить напряженность поля в точке, расположенной на расстоянии x=d от середины пластины и построить график напряженности от расстояния x.

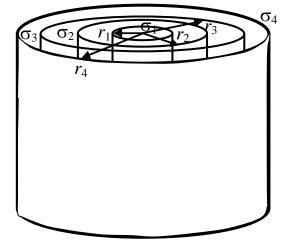
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q ₃ ,(нКл)	Q_4 ,(н K л)
20	0	-20	10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



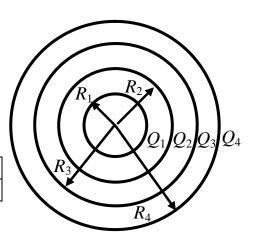
σ1,($μΚπ/m2$)	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K \pi / M^2)$
20	0	-20	10


3. Тонкая пластина равномерно заряжена так, что на единицу площади приходится заряд $\sigma = 1 \ \mu K n/m^2$. Среда вблизи пластины имеет заряд другого знака с объемной плотностью, зависящей от расстояния x до пластины по закону $\rho = \rho_0 \exp(-\frac{r^2}{R^2})$, где $\rho_0 = -100 \ \mu K n/m^3$, а $R = 10 \ cm$. Определить напряженность поля на расстоянии R от нити. Построить график напряженности от расстояния до нити.

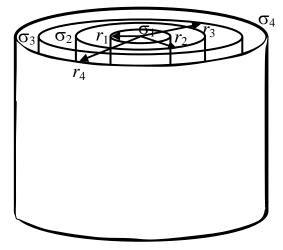
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q ₃ ,(нКл)	Q_4 ,(н K л)
-20	10	-10	0

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



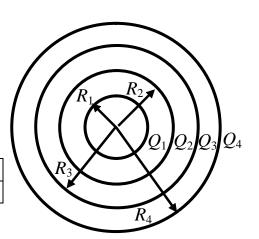
σ1,($μΚπ/m2$)	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K \pi / M^2)$
-20	10	-10	0


3. Шар имеет электрический заряд, объемная плотность которого зависит от расстояния r до центра шара по закону $\rho = \frac{\beta}{r}$, где $\beta = 1 \frac{R}{r} \frac{R}{r}$. Радиус шара R = 10 см. Определить напряженность поля на поверхности шара, построить график напряженности поля от расстояния до центра шара.

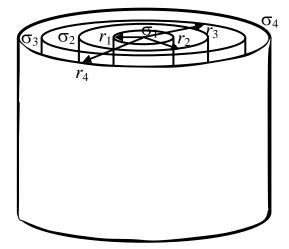
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
20	20	0	-20

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



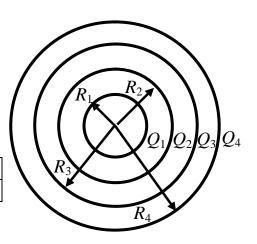
σ1,($μΚπ/м2$)	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> π/m^2)	σ_4 , $(\mu K \pi / M^2)$
20	20	0	-20


3. Бесконечная пластина толщиной d=10 *см* имеет заряд, объемная плотность которого меняется по закону $\rho=2\rho_0\frac{|x|}{d}$, где $\rho_0=10$ $\mu K\pi/m^3$, |x| - расстояние от центра платины в поперечном направлении. Определить напряженность поля на поверхности пластины и построить график напряженности поля от x.

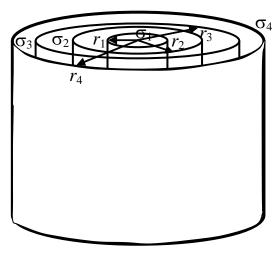
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q ₂ ,(нКл)	Q ₃ ,(нКл)	Q_4 ,(н K л)
20	20	-20	0

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



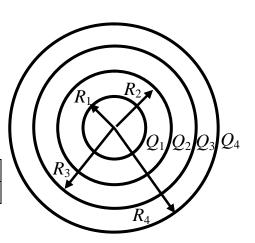
$σ_1$,($μΚπ/μ^2$)	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> π/m^2)	σ_4 , $(\mu K_{\pi}/M^2)$
20	20	-20	0


3. Шар радиусом R=10 *см* имеет положительный заряд, объемная плотность которого зависит только от расстояния r до его центра по закону $\rho = \rho_0 (1 - \frac{r}{R})$, где $\rho_0 = 10 \ \text{нКл/м}^3$. Определить напряженность поля на поверхности шара и построить график напряженности от расстояния до центра шара.

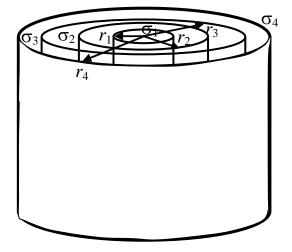
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
10	0	20	-20

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.


$σ_1$,($μΚπ/m^2$)	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K_{\Lambda}/M^2)$
10	0	20	-20

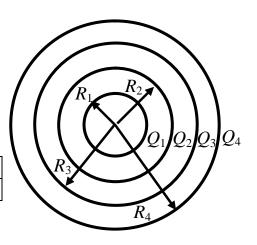
3. Шар, имеющий радиус R=10 см, заряжен так, что объемная плотность заряда изменяется по закону $\rho = \beta r$, где $\beta = 1$ мкKл/м⁴. Определить напряженность поля на поверхности шара. Построить график напряженности от расстояния до центра шара.


Вариант 17

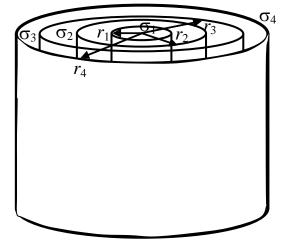
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K_{π})	Q_2 ,(н K л)	Q_3 ,(н K_{I})	Q_4 ,(н K л)
-30	30	0	-30

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.


σ1,($μΚπ/m2$)	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> η/ M^2)	σ_4 , $(\mu K_{\pi}/m^2)$
-30	30	0	-30

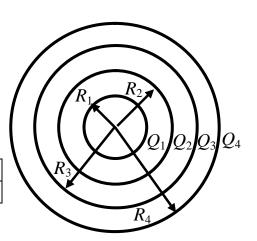
3. Длинная нить имеет положительный заряд с линейной плотностью заряда $\tau=10~\mu K n/m$. Радиус нити R=1~mm. Среда, окружающая нить, имеет объемную плотность положительного заряда, изменяющегося в зависимости от расстояния от оси нити по закону $\rho=\frac{b}{2\pi r}$, где $b=10~m\kappa K n/m^2$.


Определить напряженность поля в точке, находящейся на расстоянии r=11R от оси нити. Построить график напряженности поля от расстояния до оси нити.

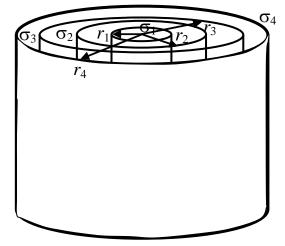
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
-30	0	30	30

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cM, R_2 =20 cM, R_3 =30 cM, R_4 =40 cM. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



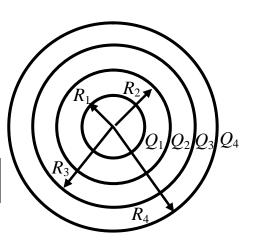
σ1,($μΚπ/м2$)	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> π/m^2)	σ_4 , $(\mu K \pi / m^2)$
-30	0	30	30


3. Большая плоская пластина толщиной d=4 cm имеет положительный заряд, равномерно распределенный по объему с объемной плотностью $\rho=10$ nKn/m^3 . Определить напряженность поля в точке, находящейся внутри пластины на расстоянии b=1 cm от поверхности. Построить график напряженности поля от расстояния до центра пластины.

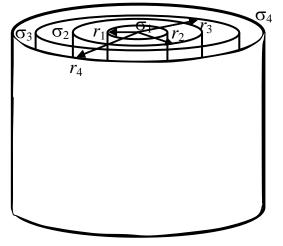
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

I	Q_1 ,($\mu K \pi$)	Q_2 ,(н K_{π})	Q_3 , (HK_{π})	Q_4 , $(нK\pi)$
	-20	30	0	-20

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cм, R_2 =20 cм, R_3 =30 cм, R_4 =40 cм. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



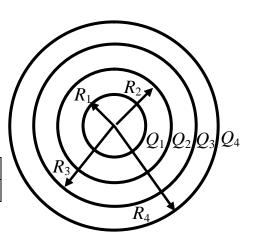
σ_1 , $(\mu K \pi / M^2)$	σ_2 ,(н K л/ M^2)	σ_3 ,($\mu K \pi / M^2$)	σ_4 , $(\mu K \pi / M^2)$
-20	30	0	-20


3. Длинный цилиндр радиусом R=20 cm несет заряд, распределенный по объему, объемная плотность которого зависит только от расстояния r от оси цилиндра по закону $\rho = \rho_0 \frac{r}{R}$, где ρ_0 =10 μ K π /m3. Определить напряженность поля в точке, находящейся на расстоянии $r = \frac{R}{2}$ от оси цилиндра. Построить график напряженности поля от расстояния до оси цилиндра.

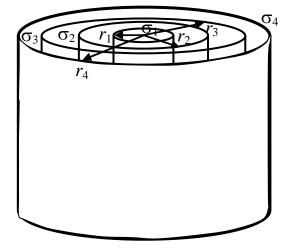
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q ₃ ,(нКл)	Q_4 ,(н K л)
-10	10	0	-10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cм, R_2 =20 cм, R_3 =30 cм, R_4 =40 cм. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.


σ_1 , $(\mu K \pi/m^2)$	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K_{\pi}/m^2)$
-10	10	0	-10

3. Шар радиусом R=10~M имеет положительный заряд, объемная плотность которого зависит только от расстояния r до его центра по закону $\rho = \rho_0 (1 - \frac{r}{R})$, где $\rho_0 = 10~HKn/M^3$. Определить напряженность поля в точке r=5~M и построить график напряженности от расстояния до центра шара.

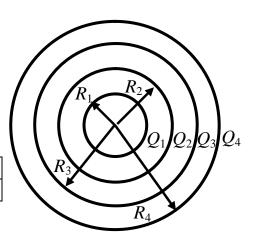

Вариант 21

1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

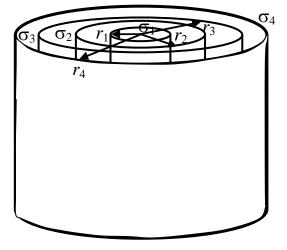
Q_1 ,(н K_{π})	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
0	30	-20	30

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 c_M , R_2 =20 c_M , R_3 =30 c_M , R_4 =40 c_M . Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.

σ1,($μΚπ/м2$)	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K \pi / M^2)$
0	30	-20	-10


3. Шар радиусом $10 \, m$ имеет заряд $Q=10 \, nK$ л, однородно распределенный по объему. Шар окружает среда, имеющая объемную плотность электрического заряда, зависящую от расстояния r от центра шара по за-

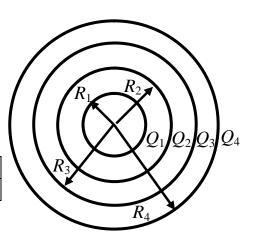
кону
$$\rho = \frac{Q}{2\pi R^2 r}$$
. Найти напряженность электрического поля в точке, на-


ходящейся на расстоянии r=2R от центра шара. Постройте график напряженности поля от расстояния от центра шара.

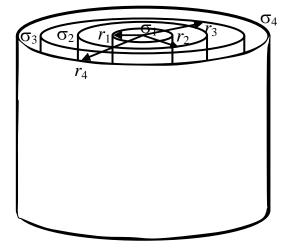
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

	1	- r · · r · r	
Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
30	0	-20	10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



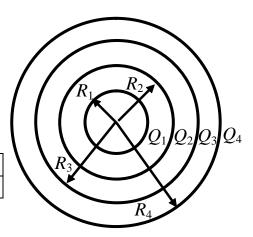
σ1,($μΚπ/м2$)	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> π/m^2)	σ_4 , $(\mu K \pi / m^2)$
30	0	-20	10


3. Некоторая система имеет сферически симметричный заряд объемной плотностью $\rho = \rho_0 \, e^{-\alpha r^3}$, где $\rho_0 = 1 \, \mu K \pi / m^3$, $\alpha = 10 \, m^{-3}$, r —расстояние от центра данной системы. Определить напряженность электрического поля в точке, находящейся на расстоянии $1 \, m$ от центра. Постройте график зависимости напряженности от расстояния от центра системы.

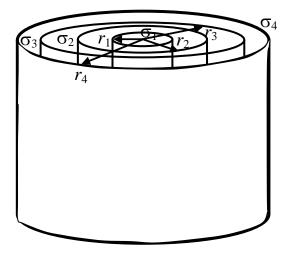
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
-30	10	-10	20

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



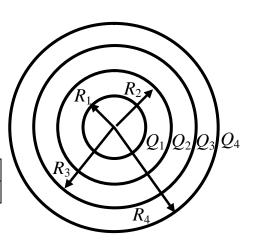
$σ_1$,($μΚπ/μ^2$)	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> π/m^2)	σ_4 , $(\mu K_{\pi}/M^2)$
-30	10	-10	20


3. Пространство между двумя концентрическими сферами, радиусы которых R_1 =10 c_M и R_2 =20 c_M , заряжено с объемной плотностью $\rho = \frac{b}{r^2}$, где b=1 $HK_{\pi/M}$, r —расстояние от центра сфер. Постройте график напряженности электрического поля от расстояния от центра сфер.

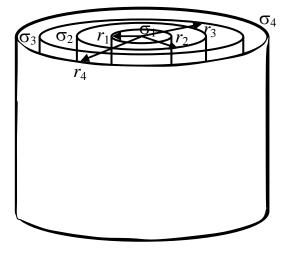
1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q ₂ ,(нКл)	Q ₃ ,(нКл)	Q_4 ,(н K л)
-10	30	20	-10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 cm, R_2 =20 cm, R_3 =30 cm, R_4 =40 cm. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.



σ_1 , $(\mu K \pi / m^2)$	σ_2 ,(н K л/ M^2)	$σ_3$,($μKπ/m^2$)	σ_4 , $(\mu K_{\pi}/M^2)$
-10	30	20	-10


3. Рассматривая атомное ядро урана как равномерно заряженный по объему шар, постройте график зависимость напряженности электрического поля от расстояния от центра ядра. Радиус ядра урана $R=1\cdot 10^{-14}$ м, заряд ядра $Q=92e=147,2\cdot 10^{-19}$ Kn ($e=1,6\cdot 10^{-19}$ Kn- элементарный заряд).

1. На рисунке приведена система заряженных концентрических сфер. Радиусы сфер R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Величины зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до центра сфер.

Q_1 ,(н K л)	Q_2 ,(н K л)	Q_3 ,(н K л)	Q_4 ,(н K л)
-30	30	-20	-10

2. На рисунке приведена система заряженных коаксиальных длинных цилиндров. Радиусы цилиндров R_1 =10 см, R_2 =20 см, R_3 =30 см, R_4 =40 см. Поверхностные плотности зарядов указаны в таблице. Построить график зависимости напряженности электростатического поля от расстояния до оси цилиндров.

σ1,($μΚπ/м2$)	σ_2 ,(н K л/ M^2)	σ_3 ,(<i>μΚ</i> π/m^2)	σ_4 , $(\mu K \pi / M^2)$
-30	30	-20	-10

3. В соответствии с выводами квантовой теории атом водорода можно смоделировать в виде положительного ядра (протона, размерами которого в данной задаче можно пренебречь) и «облака» отрицательного заряда электрона. Объемная плотность электронного «облака» изменяет-

ся с расстоянием от ядра по закону $\rho = -\frac{e}{\pi R^3}e^{-\frac{2r}{R}}$, где r – расстояние от

центра ядра, $R = 0.53 \cdot 10^{-10} \, M$ — радиус первой боровской орбиты электрона в атоме водорода, $e = 1.6 \cdot 10^{-19} \, K$ л — элементарный заряд. Найти напряженность электрического поля на расстоянии R от ядра.