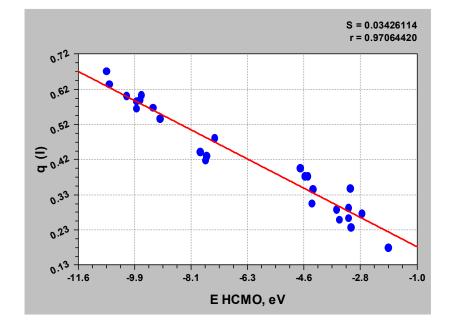
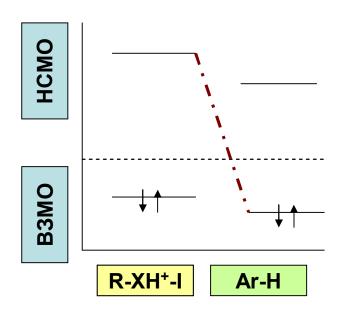

Теоретическое изучение реакций электрофильного иодирования ароматических углеводородов в газовой фазе и растворах методом DFT B3LYP/6-311G*


Проведение комплекса неэмпирических квантовохимических вычислений в высоких базисах для определе количественных параметров реакционной способности субстратов и реагентов, механизмов электрофильного иодирования в сопоставлении с хлорированием

Теоретическое изучение электронного строения и реакционной способности иодирующих агентов


ICI, HOI, MeOI, CH₃COOI,

CF₃COOI, CF₃SO₂OI, HOSO₂OI,

CF₃SO₂OI HOSO₂OI NISAC CF₃COOI DIH CH₃COOI NIS TIG HOI CH₃OI I-CI

 H_2O^+I $CH_3OH^+I \sim CF_3SO_2^+HOI$ $IOSO_2OH_2^+$ CF_3CO^+HOI CH_3CO^+HOI ICI^+H $NISAC_-H^+$ NIS_-H^+ $TIG_-H^+ \sim DIH_-H^+$

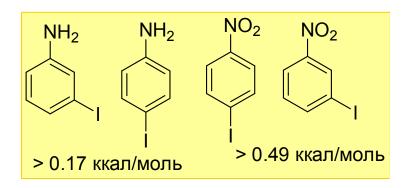
Теоретическое изучение электронного строения и реакционной способности иодирующих агентов

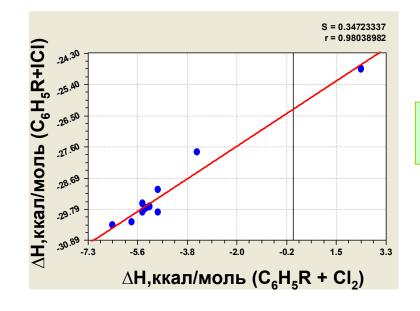
$$RX-I \longrightarrow RX^- + I^+$$
 $CH_3COOI \to CH_3COO^- + I^+ \Delta G \ 27.13 \ ккал/моль $RX-I \longrightarrow RX^- + I^+$ $CH_3COOI \to CH_3COO^- + I^+ \Delta G \ 209.5 \ ккал/моль$$

В нейтральных средах реагенты RX-I не могут быть источником I⁺, а потому сами являются истинными иодирующими реагентами

$$RX-I \longrightarrow RX^{\bullet} + I^{\bullet}$$
 $RXI + I_2 \longrightarrow RX^{-} + I_3^{+}$ $\Delta Gs = 32 - 80$ ккал/моль $2I^{\bullet} \longrightarrow I_2$ $RXH^{+}I + I_2 \longrightarrow RXH + I_3^{+}$ $\Delta Gs = -26 - (14)$ ккал/моль

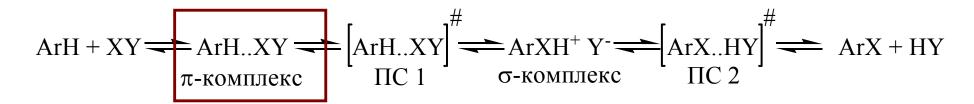
Истинными иодирующими реагентами в кислотных средах являются протонированные формы RXIH⁺ и I₃⁺

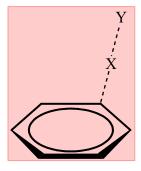

Благодаря термодинамически вероятным процессам образования I₃⁺ и иодного обмена реагентов X-I с гидроксилсодержащими растворителями, реакционная способность большинства иодирующих агентов должна определяться не единственной структурой, а набором существующих в растворах электрофильных иодирующих частиц, соотношение которых должно зависеть от концентрации реагента и природы используемого растворителя


Термодинамические характеристики иодирования и хлорирования

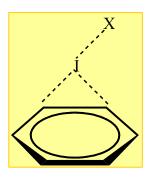
$$C_6H_5R + X-Y \longrightarrow IC_6H_4R + HX \qquad C_6H_5R + XH^+-Y \longrightarrow IC_6H_4R + XH_2^+$$

R = H, Me, t-Bu, OH, NH_2 , NO_2 X-Y = CI_2 , ICI

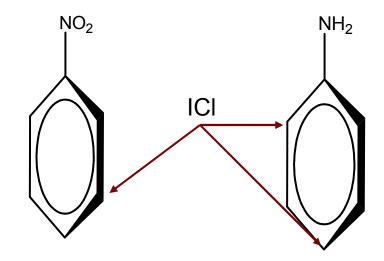

- 1. Природа субстратов влияет на термодинамику иодирования малым и нерегулярным образом.
- 2. Реакции иодирования изученных бензолов не подчиняются термодинамическому контролю

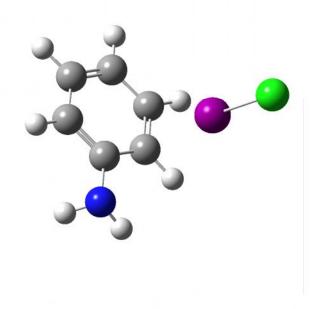

3. Отсутствуют специфические отличия между иодированием и хлорированием в газовой фазе

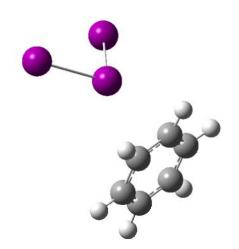

Строение и устойчивость т-комплексов



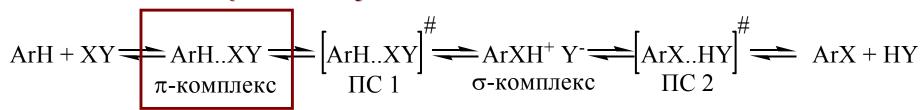
 $XY = I_2$, CI_2 , ICI, HOI, MeOI, CF_3COOI , NIS, I_3 ⁺

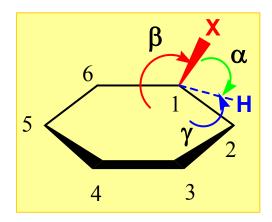

$$XY = I^+, IOH_2^+, CI^+$$




IOH, IOMe

π-Комплексы являются истинными интермедиатами галогенирования,т.е. лежат на маршруте реакции




Молекулярная модель π-комплекса анилина и I-CI с ориентацией в о-положение

Молекулярная модель π -комплекса бензола и I_3^+

Строение и устойчивость σ -комплексов

σ-комплекс (A) в большей мере похож на продукты, чем комплекс (Б), т.е. имеет более «поздний» характер

наиболее устойчивыми оказались σ-комплексы, отвечающие правилам электрофильного замещения

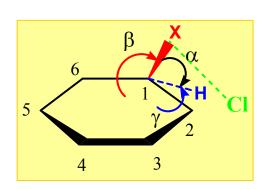
$$RC_6H_5X^+$$
 $X=CI(A)$, I (B)

R= Me, t-Bu, NH₂, OH, NO₂; X=CI, I

$$RC_6H_5 + Cl_2 \longrightarrow RC_6H_5^+Cl + Cl^- \qquad RC_6H_5 + ICl \longrightarrow RC_6H_5^+I + Cl^-$$

$$\Delta G_{s}^{\sigma}$$
 = 5.46-(-33.87),ккал/моль

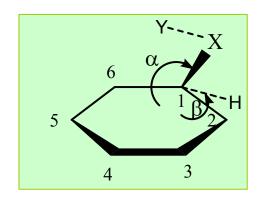
$$\Delta G_{s}^{\sigma}$$
 = 24.99 – (-19.39),ккал/моль

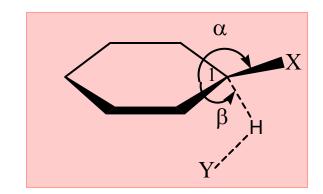

В целом σ -комплексы $RC_6H_5CI^+$ более устойчивы, чем их иодсодержащие аналоги $RC_6H_5I^+$, что соответствует большим относительным скоростям электрофильного хлорирования аренов

Переходные состояния и поверхности свободных энергий

$$ArH + XY$$
 — $ArH..XY$ — $ArH..XY$ — $ArXH^+Y^-$ — $ArX.HY$ — $ArX + HY$ π -комплекс $\PiC \ 1$ σ -комплекс $\PiC \ 2$

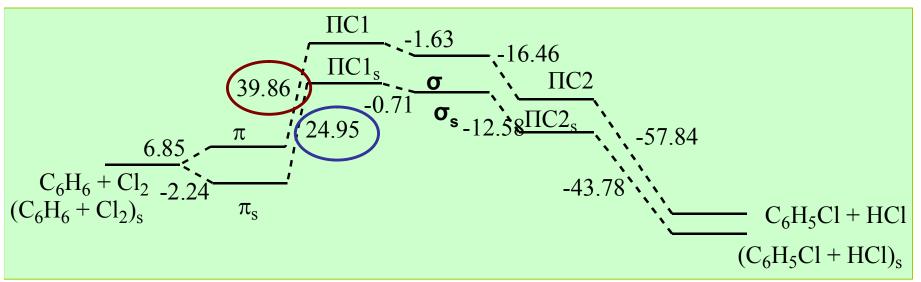
$$C_6H_6 + Cl_2 \longrightarrow C_6H_6^+Cl....Cl^ C_6H_6 + ICl \longrightarrow C_6H_6^+I....Cl^-$$

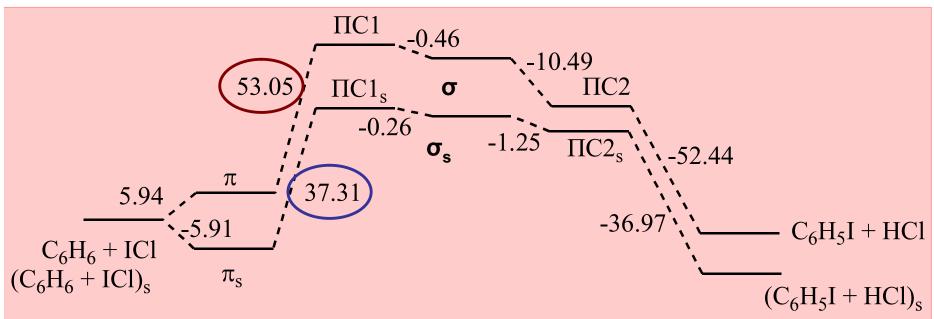

 ΔH^{σ} = 37.13; ΔG^{σ} = 45.08; ΔG^{σ}_{solv} = 24.24 ккал/мол

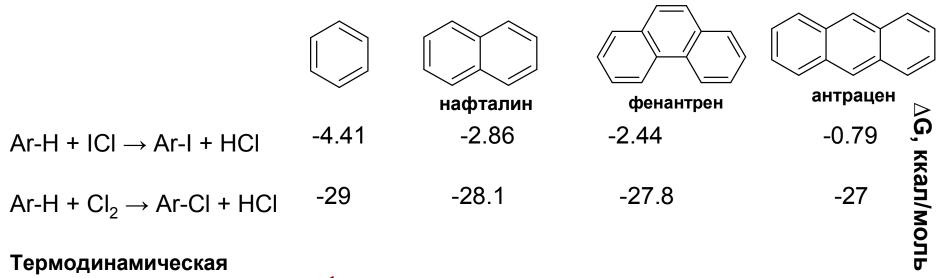


 ΔH^{σ} = 49.57; ΔG^{σ} = 58.52; ΔG^{σ}_{solv} = 36.51ккал/мол

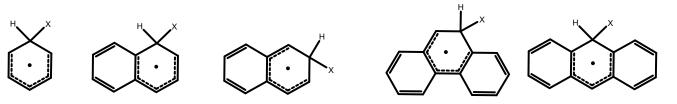
X=CI, I


Электрофилы: Cl₂, ICI




ПС1 ПС2

Профиль поверхности свободных энергий реакции бензола с Cl₂ и ICI



Теоретический анализ реакций галогенирования полициклических аренов

вероятность иодирования

Снижение ΔH^{σ} , ΔG^{σ}

Повышенная кинетическая активность фенантрена и антрацена должна бы проявляться при иодировании без аномалий

Теоретический анализ реакций галогенирования полициклических аренов

Turner D. E. et.al. J. Org. Chem. 1994, 59, 24, 7335.

Антрацен* $ICI \rightarrow$ Антрацен·+ + ICI·- ΔH =101.52; ΔG =86.28; ΔG_s =7.43 ккал/моль

Фенантрен* $ICI \rightarrow \Phi$ енантрен·+ + ICI- ΔH = 102.85; ΔG = 97.78; ΔG s= 18.49 ккал/моль

Реакции иодирования высокодонорных полициклических аренов в значительной мере контролируются термодинамическими факторами. Хлорирование антрацена и фенантрена ICI с наибольшей вероятностью протекает через стадии электрофильного иодирования-дегидроиодирования