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The paper presents the implementation of diffraction and spectral analysis methods allowing 1 um
resolution enhancement of optical instruments intended for measurements of such round wire materials
as cables, wires, cords, etc. with diameters exceeding the wavelength (~0.5 mm and large). The
transformation function suggested allows detecting geometrical boundaries of object's shadows that are
used to calculate its diameter independently from its location in the gaging zone. The real-time detection
algorithm is described for diffraction extreme values in the analog video signal produced by the charge-
coupled device sensors. A method of additional improvement of resolution is shown on the basis of

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A range of advantages in relation to other optical measuring
methods is achieved when the diameter of round wire materials is
measured with the help of the laser beam divergence technique
[1,2]. Particularly, the lack of catadioptric optical system and
movable optical components essentially simplifies the optical
system and design of a primary measuring transducer. Design
and production of two-dimensional diameter measuring instru-
ments based on this method, is a promising trend in cable
instrument engineering due to their reliability, relative ease of
fabrication, and objective adjustment.

The laser beam divergence technique for diameter measurement
used for long wire materials is based on detection of shadow
boundaries of the object by means of multielement linear photo-
detectors placed in two orthogonal measuring channels. Fig. 1
shows a schematic layout of the optical two-dimensional primary
measuring transducer which implements this measurement tech-
nique. Traces of laser beams emitted by point radiation sources LAZ;
and LAZ, are shown by dashed lines. These laser beams are directed
tangentially to the work piece edges and form light-shadow
boundaries tf, t1s u tf, t;s on the respective multielement photo-
detectors CCD; and CCD». This technique and functions of primary
measuring data transformation are described in detail in works
[3] and [4].
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In practical application, an accurate detection of geometrical
boundaries of rising and falling edges of a work piece shadows
using a multielement photodetector is rather complicated. This is
because the slew rate and the shape of boundaries depend on a
local lighting of photodetector and a position of the work piece in a
plane orthogonal to the photodetector surface. Scratches, dust, dirt
and other during-operation defects of optical glass of measuring
instruments affect the accuracy of shadow boundary determination.
Even though these defects will be taken into account or effectively
eliminated, the accuracy of optical instruments is restricted by
diffraction effects occurring at the work piece boundaries that
results in a blurring effect of a shadow.

In the patent [5], the principle of the shadow boundary determi-
nation is described on the basis of the extreme value distribution
from the edge of the opaque object. It is a well-known technique that
was investigated in the works [6] and [7]. The principle of the
shadow boundary determination is widely used in science and
technology [8-16]. In particular, it is applied to enhance the accuracy
of geometry measurements of various wire materials. In order to
improve a resolution of optical transducers based on a laser beam
divergence measurement technique, the analysis of the Fresnel
diffraction pattern of large-scale objects was carried out by instru-
ments produced by Sikora and Zumbach Companies. However, in the
above mentioned literature, the transformation function allowing
the accurate mathematical calculation of the boundary position in
measuring wire materials with diameters exceeding the wavelength
is not described. This fact restricts the application of Fresnel diffrac-
tion by optical transducers based on this technique. In addition to the
transformation function, the authors present research into the object
movements within the gaging zone affecting the diffraction pattern
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that is very important for the industrial development of measuring
devices.

2. Boundary detection method

As shown in Fig. 2, the principle of Fresnel diffraction occurs
on the boundary of opaque cylindrical objects. Partially the
light penetrates into the shadow region while in the illuminated
region it forms the system of diffraction minima and maxima, the
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I

Fig. 1. Laser beam divergence technique for diameter measurement; LAZ; and LAZ,
are point radiation sources; CCD; and CCD, are multielement photodetectors for
the 1st and the 2nd measuring channels, respectively; the quantities t1f, t;s and tof,
t>s are the shadow boundaries of a work piece under evaluation.
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Fig. 2. Fresnel diffraction at the boundary of opaque cylinder: I, is the initial
illumination; L is the distance between the point source and the multielement
photodetector; y is the distance between the point source and opaque cylinder.
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Fig. 3. Diffraction extremum distribution in the vicinity of geometrical boundary:
X, is the geometrical boundary of shadow; My, M;, M, are the minima of the first,
second and third orders, respectively; mo, m; are the minima of the first and second
orders, respectively.

difference between them monotonically decreases, and the inten-
sity of light goes to the initial illumination Io. The distance L
between the point source and the multielement photodetector
depends on the structural properties of the optical transducer and
is constant. The distance y may vary depending on the position of
the work piece under control.

Fig. 3 allows the study of diffraction extremum distribution in
the vicinity of geometrical boundary. In case the shadow boundary
is projected orthogonally to the photodetector plane, the distance
X; from the point X, to its respective maximum M; and the distance
x; from the same point X, to its respective minimum m; are defined
by formulas

ALLL=y)/,. 3 ALLL—y)(,. 7
X,‘=\/2y<4l+2>, Xi=\/2y<4l+2>, (1)

where i is the number of the respective maximum or minimum
starting from zero; 4 is the wavelength of the point source (Fig. 3).

A position of the boundary X, on the multielement photode-
tector is the original value for the calculation of diameter using
method presented in [3]. Having determined the distance between
the first two maxima (interval MoM;) or minima (interval mgm;)
shown in Fig. 3, the boundary X, can be found. Since factor
v/AL(L—Y)/2y in Eq. (1) is fixed for all extreme values, distribution
of these values will then be defined by factors /4i+3/2 and
\/4i+7/2 for maxima and minima, respectively. Thus, the distance
between the extreme values can change proportionally depending
on parameters of L and y, however, correlation between them is
being constant. In particular, the interval XMy correlates with the
interval MgM; with fixed coefficient 1.093, while a correlation
between intervals X;mg and mgm; equals 2.154. Thus, the formulas
below can be derived to find coordinates of geometrical bound-
aries of rising and falling edges:

Xpe = 1.093(Mo — My)+Mo = 2.154(mg —my ) +mg
Xst = Mo —1.093(M1 —Mp) = mg — 2.154(m; —my), 2)

where X and X;; are positions of geometrical boundaries of rising
and falling edges; Mo, M;, mg, m; are the extreme values of
diffraction distribution.

3. Experimental
3.1. Measurement setup

The test installation was designed to conduct the experiment.
The block diagram of the test installation is shown in Fig. 4, and its
implementation in Fig. 5.

The angle measurement was provided by the mechanical dial
with 1’ angle-error detection. In the centre of the mechanical dial
a board with the multielement photodetector was fixed. The
cylindrical object ~4 mm diameter was also mounted in the centre
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next to the board. The linear CCD (charge-coupled device) NEC
uPD8871 was used as a multielement photodetector. It has 3 rows
of 10,680 pixels and 4 pm x 4 um photocell size. CCD scanning rate
and exposure time were 1kHz and about 50 ms, respectively.
Diode laser HLDH-808-B20001 with parameters of 808 nm wave-
length, 0.2 W optical power, and 42° beam divergence angle, was
fixed on a hanger mounted to the dial. A driving pulse generation
for the board with the multielement photodetector and laser
emitter was performed by the Terasic DEO Board based on FPGA
Cyclone III. FPGA Cyclone 1III is used to accurately CCD clock and
control with 20 MHz frequency observing all intervals in compli-
ance with its datasheet.

Extremum positions for the diffraction pattern were registered
by LeCroy WaveSurfer 64Xs Digital Oscilloscope. The test installa-
tion was supplied from the power source.

3.2. Experimental results

3.2.1. Estimation of relationships obtained

Fig. 6 shows the oscillogram of the work piece scanned by
a laser beam. All the notations used in this figure are taken
from Fig. 3.

Laser control

video signal

Fig. 4. Block diagram of the test installation.

Fig. 7 shows the experimental dependence between coeffi-
cients kys and k;,, (experimentally equal to 2 and 1.1, respectively)
and the work piece movement within the gaging zone normal to
the multielement photodetector. As shown in Fig. 6, their values
are found to be in good agreement with theoretical results. These
values are constant within the wide range of the work piece
movements that is true for Eq. (2) in case when the diffraction
pattern is formed by an incident rim ray normal to the surface of
multielement photodetector.

However, in real instruments a work piece can move not only
along the axis normal to the photodetector plane but also in any
other direction. This results in the fact that rim rays incident at an
angle « different from 90°, and the geometry of the optical system
including parameters L and y, is transformed to parameters L’ and y'.
Diffraction extremum distributionis also transformed from X;, M;, m;
to Xy, My, m; states depending on the incident angle «, where X is
the geometrical boundary of shadow; M and m are maxima and
minima of the i-th order as shown in Fig. 8.

To validate Eq. (2) in case of oblique incidence of rim rays, it is
necessary to clarify the manner in which distances between the
principle extreme values of the diffraction pattern correlate
depending on the angle of incidence. Distances between the first
and the second order and between the second and the third order
maxima of diffraction pattern were taken as test distances that
correspond to intervals MoM; and M;M, shown in Fig. 3.
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Fig. 6. Oscillogram of the work piece with diffraction effects occurred at the
boundaries.

Fig. 5. Test installation: 1—mechanical dial; 2—multielement photodetector; 3—cylindrical object; 4—diode laser; 5—Terasic DEO Board; 6—LeCroy WaveSurfer 64Xs Digital

Oscilloscope; 7—power source.
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Diagrams shown in Fig. 9a, demonstrates the empirical relation
between intervals MoM; and M;M, and the incident angle «. Zero
corresponds to a normal incidence of a rim ray. As it was assumed,
distances between the extreme values increase with the increase
of beam deflection from the normal to the photodetector plane. As
shown in Fig. 9b, the dependence diagram determines a propor-
tionality of a distance change between these extreme values. This
diagram demonstrates how the coefficient k(a)affects the correla-
tion of MoM;/M;M, depending on the angle of incidence. Fig. 9b
shows that coefficient k(«) (experimentally equal to 1.35) keeps
constant under a wide range of incident angle that proves a
proportional change of distances between the extreme values of
diffraction pattern. This allows Eq. (2) to be used for an accurate
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Fig. 7. Dependence between scale coefficients of diffraction and the work piece
movements within the gaging zone: ky(y) and k,(y) are the coefficients for the first
two maxima, respectively.
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Fig. 8. Formation of diffraction pattern on the multielement photodetector at the
angle of incidence a.
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detection of the geometrical boundary of the work piece shadow
in a wide range of its movements.

3.2.2. Measuring method for geometrical boundary

Thus, the main problem of a preliminary digital signal proces-
sing is the calculation of minima (m;, my) and maxima (M;, M;) of
rising and falling edges so as to further calculate the real boundary
of shadow (X or X;). To solve this problem, an algorithm shown in
Fig. 10 is designed to implement on a field programmable logic
device (FPLD).

The derivative sign change detector 1 receives serial data on
voltage in CCD cells and clock pulses for cell counts. When the
derivative signs changes, the detector transmits a control signal to
FIFO buffers 4 and 5. FIFO buffers receive a cell number and a
control signal from the derivative sign change detector 1, and then
output the latter four cell numbers received. The rising edge
detector 2 receives serial data on CCD cell voltage and transmits
a control signal to the latch 7 in detecting the rising edge. The
falling edge detector 3 receives serial data on CCD cell voltage and
transmits a control signal to the cell counter 6 in detecting the
falling edge. Cell counter 6 receives a control signal from the

Y 4
1 -, | 3
\ 4 \ 4 \ 4
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Y
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A 4 \ 4
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Y \ 4
Rising edge Falling edge
extremum extremum

Fig. 10. Algorithm scheme for detecting minima of rising and falling edges:
1—derivative sign change detector; 2—rising edge detector; 3—falling edge detec-
tor; 4, 5—FIFO buffers; 6—cell counter; 7, 8—latches.
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Fig. 9. Diffraction extreme values depending on the rim ray angle of incidence: a) MoM; and M;M, relation depending on the angle of incidence a; b) coefficient k and

incident angle « dependence.
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derivative sign change detector 1 and increments internal regis-
ter's value starting from zero at each change of a signal. Once the
internal register achieves value 4, the cell counter will transmit
a control signal to latches 7 and 8 from FIFO buffers 4 and 5,
respectively. These latches receive four cell numbers each. Register
and state reset (except for latches) are carried out upon achieving
the upper value of the cell counter or by a start-of-frame signal.
Operating results of the detector are shown in Fig. 11. This
figure shows a backward time shift of the detector output so as to
illustrate a consistency of extremum determination. Data obtained
assist in determination of real positions of geometrical boundaries
X and X, which are then loaded to microprocessor for processing.

3.2.3. Diameter adjustment using spectral analysis

In constructive proposals of the suggested method of diameter
measurement the CCD signal pickup takes about 1 ms. This time
interval is defined by CCD maximum clock frequency. Theoretically,
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Fig. 11. Detector operating results.
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Fig. 12. Initial data sampling for one of the shadow boundaries.
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Fig. 13. Data sampling for one of the shadow boundaries after neglecting misses.
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Fig. 15. Spectrum of difference between rising and falling edges.
Table 1.

Rising and falling edges detection error dependently on laser brightness variation
using a standard amplitude and the suggested diffraction detector.

1 Amplitude detector Diffraction detector
Rising and falling  Detection Rising and falling  Detection
edges (pixel) error (pm) edges (pixel) error (pm)
0951, 1875.2 -104 1876.7 -04
Io 1877.8 0 1876.8 0
1.05-1, 1880.7 +11.6 1877.0 +0.8

a work piece can move in the gaging zone due to its vibrations
during this interval, and an additional gaging error may occur.
However, it can be corrected using a frequency analysis method.

The suggested measuring instrument produces up to 500 frames
per second (fs=500Hz) for each measuring channel allowing
registering oscillation frequency up to 250 Hz.

Let us consider a mechanism of this correction using Figs. 12-15.
Fig. 12 contains data sampling for shadow boundaries. It is obvious
that these data are incorrect, therefore misses were preliminary
neglected as shown in Fig. 13.

The signal is then transformed into the Fourier series. A direct
Fourier transform can be written as

N1 2ai
Xe= Y xpe~ Tk, 3)
n=20
At the same time, the oscillation amplitude at frequency f =f2—5§
equals to 2IXkl/N, k=0...N [17].

A spectrum of measured values is shown in Fig. 14. In addition to
a constant component this spectrum includes oscillations at 35 Hz
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Fig. 16. Instrument prototype and wire gauges. a) Industrial measuring instrument prototype. b) Wire gauges.

frequency. This is either because of vibrations of the work piece
occurred within the gaging zone or periodic change of its diameter.

Let us consider the spectrum of difference between rising and
falling edges to study the origins of these oscillations (Fig. 15).

Since this spectrum has no large-amplitude oscillations except for
their constant component it follows that non-zero oscillations
occurred within the rising and falling edges are induced by vibration.
With knowledge of the amplitude and frequency of this vibration
and CCD scanning rate, it is possible to correct the diameter:

dD:tva: (D/fcl)(Af)’ (4)

where t; is the diameter scanning time; V,, is the linear velocity of the
work piece; D is the measured diameter in CCD cells; f; is CCD clock
frequency; A and f are amplitude and frequency of maximum and
non-zero oscillations respectively. dD is subtracted from the calcu-
lated diameter since vibration affects the accuracy of diameter
measurement.

3.3. Discussion

Techniques suggested in this work were tested at various inten-
sities of laser radiation similar to a real operation of a measuring
instrument. Results of investigation are shown in Table 1 as com-
pared to those obtained for a classical amplitude detector which
detects shadow position by the slew rate and the shape of bound-
aries on the CCD picture.

The detection error for the shadow boundary as shown in Fig. 6,
comes to 10 pm at laser brightness variation 4+ 5% from a certain
initial value I,. During operation, this error can increase multiple
times due to contamination of optical elements, detection errors of
rising and falling edges being summed up for the diameter calcula-
tion. In suggested technique of the boundary detection (by diffrac-
tion pattern extreme values) the error is around 1 um at the similar
flare brightness. This provides high metrological characteristics of
measuring instruments regardless of the optic emitter drift char-
acteristics and purity of optics instruments.

Suggested techniques were approved on many opaque cylind-
rical objects with diameters ranging from 0.5 to 40 mm and made
of different materials such as polypropylene, polyethylene, poly-
vinylchloride, rubber, metals, etc. Semiconductor diodes 808 nm
length and 0.2-0.5 W energy were used in this study. As a rule,
they possess different beam divergence along different symmetry
planes, in particular ©// ~ 8 =11°, ® L ~39-+48°. In the laser beam
divergence technique for diameter measurement, only semiplane
®_L is used to provide a flare of the entire gaging zone. Therefore,
other laser positions and, consequently, differences in the light
beam polarization are not presented in this paper.

Depending on a configuration of the optical system, suggested
techniques provide resolution for a single diameter measurement
within 2-3 um range allowing for optical magnification of a laser-
beam-divergence optical transducer (Fig. 1). Further mathematical

processing of obtained data in conformance with methodology
described in works [3,4] as well as the dataset statistical analysis
allows obtaining the general resolution up to 1 um and lower for
the optical system.

Estimation of feasibility of the suggested techniques was
carried out with the industrial measuring instrument prototype
which was designed by the authors (Fig. 16a). Wire gages (from 0.5
to 20 mm) certified at the State Metrological Agency with accuracy
of 0.5 um have been used (Fig. 15b). Dimensions of this prototype
are 240 mm length; 175 mm height; 57 mm width. Maximum
diameter to be measured is 20 mm.

Accuracy of measurement comes to 1 pm. Harmonic interfer-
ence with frequency up to 250 Hz are eliminated. Scanning rate
achieves 1 kHz for each measuring channel. It should be noted that
object to be measured include such wire materials as cables, cords,
polymer tubes, and other products obtained by the extruding
technique. The roughness of their surface achieves, as a rule,
several dozens and hundreds micrometers, therefore they cannot
be referred to a class of polished or reflective surfaces. In measur-
ing cylindrical objects having a high specular reflection factor,
effects described in works [18,19] should be taken into account.

4. Conclusions

The paper investigates a method of measurement of various
kinds of round work piece diameters allowing to accurately
resolute the diffraction pattern and detect positions of extreme
values to calculate positions of geometrical shadow boundaries. A
formula was obtained to accurately determine geometrical posi-
tion of the work piece shadow without analyzing rising and falling
edges of a work piece shadows. Algorithm of physical implemen-
tation of the given method in electronic computers was suggested.
A frequency analysis algorithm was suggested for additional correc-
tion of diameter measurement. Application of the suggested meth-
ods and algorithms together with the conversion function described
in works [3,4] allows designing instruments for measuring the
diameter by laser in non-contact way with high accuracy.
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