ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

№	Тип диф. уравнения	Вид уравнения	Признак уравнения	Метод решения уравнения	Результат применения метода
1	Уравнения с разделенными переменными	M(x)dx + N(y)dy = 0	Функция при dx зависит только от x , функция при dy зависит только от y .	Проинтегрировать каждое слагаемое в уравнении.	Общий интеграл $\int M(x)dx + \int N(y)dy = c$
2	Уравнения с разделяющимися переменными	$M_1(x)N_1(y)dx + M_2(x)N_2(y)dy = 0$ или $y' = f_1(x)f_2(y); \qquad (y' = \frac{dy}{dx}).$	Функции при дифференциалах распадаются на произведения функций, зависящих только от одной из переменных.	Разделить уравнение на произведение $N_1(y) M_2(x) \neq 0 \ .$	Уравнение с разделенными переменными и общий интеграл: $\int \frac{M_1(x)}{M_2(x)} dx + \int \frac{N_2(y)}{N_1(y)} dy = c$
3	Однородные уравнения	$M(x,y)dx + N(x,y)dy = 0$ или $y' = f(\frac{y}{x}).$	Уравнение не изменяет своего вида при замене <i>x</i> и <i>y</i> на <i>tx</i> и <i>ty</i> .	Сделать замену переменной $y=tx$, $y'=t'x+t$.	Уравнение с разделяющимися переменными относительно x и t : $t^{\prime}x=f(t)-t\;.$
4	Линейные уравнения	y' + p(x)y = q(x) $x' + p(y)x = q(y)$	Искомая функция и её производная входят в уравнение в первой степени и между собой не перемножаются.	Метод Бернулли $y = uv$ $y' = u'v + uv'$	Система двух ДУ с
5	Уравнения Бернулли	$y' + p(x)y = q(x)y^m$ или $x' + p(y)x = q(y)x^m$.	Левая часть уравнения — такая же, как у линейного уравнения, а правая отличается на сомножитель: аргумент в степени <i>m</i> .	Метод Бернулли $y = uv$; $y' = u'v + uv'$	Система двух ДУ с $ pазделяющимися переменными $ $ \begin{cases} v' + p(x)v = 0, \\ u'v = q(x)u^mv^m. \end{cases} $

№	Тип дифф. уравнения	Вид уравнения	Признак уравнения	Метод решения уравнения	Результат применения метода
6	Уравнения в полных дифференциалах	M(x,y)dx + N(x,y)dy = 0	Условие полного дифференциала $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} .$	$\begin{cases} u = \int M(x, y) dx + \varphi(y) = c, \\ (\int M(x, y) dx)_y' + \varphi'(y) = N(x, y) \end{cases}$	Общий интеграл.

ТВТ©ТПУВМ02

Дифференциальные уравнения высших порядков

№	Тип уравнения	Вид уравнения	Признак уравнения	Метод решения уравнения
			Ур-ние записано явно	
	Допускает	$y^{(n)} = f(x)$	относительно старшей	Последовательное понижение порядка производной
1	понижение		производной;	п-кратным интегрированием
	порядка		в правой части ур-ния ф-	$\int \int $
			ция зависит только от x .	$y = \iiint f(x) dx dx dx + c_1 \frac{x^{n-1}}{(n-1)!} + c_2 \frac{x^{n-2}}{(n-2)!} + + c_n$
				n n
	Допускает		Уравнение не содержит	
2	понижение	$F(x, y^{(k)}, y^{(k+1)},, y^{(n)}) = 0$	явно искомой функции у и	Понижение порядка уравнения на k единиц заменой переменной
	порядка		её первых производных до	$y^{(k)} = p(x), y^{(k+1)} = p'(x),, y^{(n)} = p^{(n-k)}(x).$
			порядка k-1 включительно	
	Допускает		Уравнение не содержит	Понижение порядка уравнения на единицу заменой переменной
3	понижение	$F(y, y',, y^{(n)}) = 0$	явно независимой	dp = dp +
	порядка		переменной х	$y' = p(y), y'' = p\frac{dp}{dy}, y''' = p(\frac{dp}{dy})^2 + p^2\frac{d^2p}{dy^2}$ и так далее.

ТВТ©ТПУВМ02

Линейные дифференциальные уравнения высшего порядка с постоянными коэффициентами

Однородное $a_0 y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + + a_{n-1} y' + a_n y = 0$, $a_i - const$	Неоднородные $a_0 y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + + a_{n-1} y' + a_n y = f(x), a_i - const$
Характеристическое уравнение $a_0 k^n + a_1 k^{n-1} + + a_{n-1} k + a_n = 0$, где	$y_{oбщ.p.л.н.y} = y_{oбщ.p.л.o.y.} + \widetilde{y}_{частн.p.л.н.y}$
k_1, k_2,k_n –корни характеристического уравнения, $y = e^{kx}$ –решение	

Случаи решения ДУ $y'' + py' + qy = 0$,	Частные решения	Общее решение	Свободный член $f(x)$ ЛНДУ	Частное решение \widetilde{y}
$k^2 + pk + q = 0 - \text{xap.y.}$				
$D > 0, k_1, k_2$ — различные	$y_1 = e^{k_1 x}, \ y_2 = e^{k_2 x}$	$y = c_1 e^{k_1 x} + c_2 e^{k_2 x}$	$1. f(x) = P_n(x)e^{\alpha x}$	a) $\widetilde{y} = e^{\alpha x} (A_0 x^n + A_1 x^{n-1} + + A_n)$
действительные корни			а) α – не корень хар.у.	6) $\tilde{y} = x^r e^{\alpha x} (A_0 x^n + A_1 x^{n-1} + + A_n)$
			б) α – корень хар.у.	
			кратности <i>r</i>	
$D = 0$, $k = k_1 = k_2 -$	$y_1 = e^{kx}, \ y_2 = xe^{kx}$	$y = c_1 e^{kx} + c_2 x e^{kx}$	2.	a) $\widetilde{y} = e^{\alpha x} \left(\widetilde{P}(x) \cos \beta x + \widetilde{Q}(x) \sin \beta x \right)$
корни кратные			$f(x) = e^{\alpha x} (P_t(x) \cos \beta x + Q_s(x) \sin \beta x)$	$\delta) \ \widetilde{y} = x^r e^{\alpha x} \left(\widetilde{P}(x) \cos \beta x + \widetilde{Q}(x) \sin \beta x \right),$
			а) $\alpha \pm \beta i$ – не корень хар.у.	где $\widetilde{P}(x)$, $\widetilde{Q}(x)$ — многочлены
			б) $\alpha \pm \beta i$ – корень хар.у.	степени $m = \max(l, s)$
			кратности <i>r</i>	
$D < 0, k_{1,2} = \alpha \pm \beta i -$	$y_1 = e^{\alpha x} \cos \beta x,$	$y = e^{\alpha x} \left(c_1 \cos \beta x + c_2 \sin \beta x \right)$		
корни комплексные	$y_2 = e^{\alpha x} \sin \beta x$			

Метод Лагранжа

$$y'' + py' + qy = f(x),$$

2) $y = c_1(x)y_1 + c_2(x)y_2$ - ОР ЛНДУ

1)
$$y'' + py' + qy = 0$$
 - ОР ЛОДУ, $\Rightarrow \begin{cases} c_1'y_1 + c_2'y_2 = 0, \\ c_1'y_1' + c_2'y_2' = f(x) \end{cases}$ Решая систему, найдём $c_1'(x)$ и $c_2'(x)$. Далее находим $c_1(x)$, $c_2(x)$ и общее

линейного неоднородного уравнения y(x).