
Standard Template Library

The Standard Template Library (STL) is a software library for the C++ programming language

that influenced many parts of the C++ Standard Library. It provides four components called

algorithms, containers, functional, and iterators.

The STL provides a ready-made set of common classes for C++, such as containers and

associative arrays, that can be used with any built-in type and with any user-defined type that

supports some elementary operations (such as copying and assignment). STL algorithms are

independent of containers, which significantly reduces the complexity of the library.

The STL achieves its results through the use of templates. This approach provides compile-time

polymorphism that is often more efficient than traditional run-time polymorphism. Modern C++

compilers are tuned to minimize any abstraction penalty arising from heavy use of the STL.

The STL was created as the first library of generic algorithms and data structures for C++, with

four ideas in mind: generic programming, abstractness without loss of efficiency, the Von

Neumann computation model, and value semantics.

Containers

The STL contains sequence containers and associative containers. The standard sequence

containers include vector, deque, and list. The standard associative containers are set, multiset,

map, multimap, hash_set, hash_map, hash_multiset and hash_multimap. There are also

container adaptors queue, priority_queue, and stack, that are containers with specific interface,

using other containers as implementation.

pair The pair container is a simple associative container consisting of a 2-tuple of

data elements or objects, called 'first' and 'second', in that fixed order. The

STL 'pair' can be assigned, copied and compared. The array of objects

allocated in a map or hash_map (described below) are of type 'pair' by

default, where all the 'first' elements act as the unique keys, each associated

with their 'second' value objects.

vector a dynamic array, like C array (i.e., capable of random access) with the ability

to resize itself automatically when inserting or erasing an object. Inserting an

element to the back of the vector at the end takes amortized constant time.

Removing the last element takes only constant time, because no resizing

happens. Inserting and erasing at the beginning or in the middle is linear in

time.

A specialization for type bool exists, which optimizes for space by storing

bool values as bits.

list a doubly linked list; elements are not stored in contiguous memory. Opposite

performance from a vector. Slow lookup and access (linear time), but once a

position has been found, quick insertion and deletion (constant time).

slist a singly linked list; elements are not stored in contiguous memory. Opposite

performance from a vector. Slow lookup and access (linear time), but once a

position has been found, quick insertion and deletion (constant time). It has

slightly more efficient insertion, deletion and uses less memory than a doubly

linked list, but can only be iterated forwards. It is implemented in C++

standard library as forward_list.

queue Provides FIFO queue interface in terms of push/pop/front/back operations.

Any sequence supporting operations front(), back(), push_back(), and

pop_front() can be used to instantiate queue (e.g. list and deque).

deque a vector with insertion/erase at the beginning or end in amortized constant

time, however lacking some guarantees on iterator validity after altering the

deque.

priority_queue Provides priority queue interface in terms of push/pop/top operations (the

element with the highest priority is on top).

Any random-access sequence supporting operations front(), push_back(),

and pop_back() can be used to instantiate priority_queue (e.g. vector and

deque). It is implemented using a heap.

Elements should additionally support comparison (to determine which

element has a higher priority and should be popped first).

stack Provides LIFO stack interface in terms of push/pop/top operations (the last-

inserted element is on top).

Any sequence supporting operations back(), push_back(), and pop_back()

can be used to instantiate stack (e.g. vector, list, and deque).

set a mathematical set; inserting/erasing elements in a set does not invalidate

iterators pointing in the set. Provides set operations union, intersection,

difference, symmetric difference and test of inclusion. Type of data must

implement comparison operator < or custom comparator function must be

specified; such comparison operator or comparator function must guarantee

strict weak ordering, otherwise behavior is undefined. Typically implemented

using a self-balancing binary search tree.

multiset same as a set, but allows duplicate elements (mathematical Multiset).

map an associative array; allows mapping from one data item (a key) to another (a

value). Type of key must implement comparison operator < or custom

comparator function must be specified; such comparison operator or

comparator function must guarantee strict weak ordering, otherwise behavior

is undefined. Typically implemented using a self-balancing binary search tree.

multimap same as a map, but allows duplicate keys.

hash_set

hash_multiset

hash_map

hash_multimap

similar to a set, multiset, map, or multimap, respectively, but implemented

using a hash table; keys are not ordered, but a hash function must exist for the

key type. Similar containers are part of C++11 (unordered_set and

unordered_map).

bitset stores series of bits similar to a fixed-sized vector of bools. Implements

bitwise operations and lacks iterators. Not a sequence. Provides random

access.

valarray another C-like array like vector, but is designed for high speed numerics at

the expense of some programming ease and general purpose use. It has many

features that make it ideally suited for use with vector processors in traditional

vector supercomputers and SIMD units in consumer-level scalar processors,

and also ease vector mathematics programming even in scalar computers.

