
Journal of Molecular Spectroscopy208,236–248 (2001)
doi:10.1006/jmsp.2001.8397, available online at http://www.idealibrary.com on

Isotopic Effects in XH3 (C3v) Molecules: The Lowest Vibrational
Bands of PH2D Reinvestigated

O. N. Ulenikov,∗ E. S. Bekhtereva,∗ G. A. Onopenko,∗ E. A. Sinitsin,∗ H. Bürger,† and W. Jerzembeck†
∗Laboratory of Molecular Spectroscopy, Physics Department, Tomsk State University, Tomsk 634050, Russia; and†Anorganische Chemie,

Fachbereich 9, Universität–Gesamthochschule, D-42097 Wuppertal, Germany

E-mail: Ulenikov@phys.tsu.ru

Received March 27, 2001; in revised form June 1, 2001

We have derived, forM XmY3 (C3v symmetry) molecules which satisfy the conditions of a small ratio of atomic masses
mH/mX and of equilibrium anglesY–X–Y close toπ/2, simple isotopic relations for rotation–vibration parametersα

β

λ for the
case where one light atomY (=H) is replaced by a heavier one (=D). The usefulness and predictive power of such relations for
the assignment and in the fit were tested by analyzing novel high resolution Fourier transform spectra of the PH2D molecule. The
region of the three lowest-lying vibrational–rotational bandsν4, ν6, andν3 was studied. The accurate analysis was made possible
with the help of recently obtained (O. N. Ulenikov, H. B¨urger, W. Jerzembeck, G. A. Onopenko, E. S. Bekhtereva, and O. L.
Petrunina,J. Mol. Struct., in press) precise rotational energies of the ground vibrational state of PH2D. This improvement, in
conjunction with better resolution and higher sensitivity, enabled us to assign transitions with higher values of quantum numbers
J andKc and to obtain more accurate rotation–vibration energies of upper states than previously. These energies, fitted with a
Watson-type Hamiltonian inA reduction and IIIl representation, lead to a physically meaningful set of spectroscopic parameters
which reproduce the experimental energies with a precision close to experimental uncertainty. Agreement between predicted
and fitted Coriolis and vibrotational constants is noted; apparent limitations are caused by significant deviation of PH3 and PH2D
from the idealized local mode case model.C© 2001 Academic Press

Key Words:vibration–rotation spectra; PH2D molecule; spectroscopic parameters.
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1. INTRODUCTION

In recent contributions (1, 2) we derived and discussed se
of simple isotopic relations which connect spectroscopic
rameters of near-local-mode moleculesXH2 (C2v) and their
substitutedXD2 (C2v) and XHD (Ci ) species. The prediction
derived by relations show impressively high predictive pow
when compared with the results of analysis of experime
vibration–rotation spectra of the D2Se and HDSe molecules
In continuation of this work, the present contribution is devo
to the analysis of the analogous problem relatingXH3 (C3v) and
XH2D (Cs) molecules. HereXH3 is an axially symmetric, 4-
atomic molecule which we call a “near-local-mode molecu
if it satisfies the conditions

(a) the ratio of atomic massesmH/MX is small;
(b) the equilibrium angle H–X–H is close toπ/2;
(c) the X–H stretching frequencies are very close

each other and considerably larger than the bending freq
cies.

In the present study, the PH2D molecule is used as a test ca
for the derived theoretical results. The study of high-resolu
vibration–rotation spectra of the PH3 molecule and its isotopic
species is a project of general interest. On the one hand, p
phine plays an important role in astrophysics and planetol
23
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(see, e.g., Refs. (3–5), and references therein), which genera
large interest in laboratory spectroscopic investigations of
molecule. On the other hand, the phosphine molecule is on
the lightest and simplest symmetric top molecules. Hence s
troscopic effects and peculiarities inherent to symmetric t
should be particularly pronounced in its spectra. Moreover
our opinion PH3 and its different isotopic species can be co
sidered as test cases to examine the validity and accurac
different theoretical approaches, in particular those commo
used for modeling isotopic substitution effects inXH3 molecules
which satisfy the above mentioned conditions (a)–(c).

Extensive studies of PH3 spectra have been performed
the infrared region (see (6–8) and references cited therein). T
the contrary, there are only two contributions devoted to
analysis of infrared spectra of the PH2D species: the bandsν2(a′),
ν3(a′), ν4(a′), andν6(a′′) [ν3a, ν4a, ν2, andν4b in the notation of
Refs. (9, 10)] have been investigated, and an interaction mo
involving Coriolis resonances betweenν3, ν4 andν6 has been
established (10). As was mentioned in our earlier work (11), we
have recorded high-resolution spectra of the PH2D molecule in
the wide spectral region from 20 to 5000 cm−1. Having analyzed
the far infrared, pure rotational part of the recorded spectr
we felt that a reanalysis of the lowest vibrational bands due
the bending modesν3, ν4, andν6 would be appropriate in spite
of the fine previous work (10) for several reasons.
6
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First, the ground state rotational energies obtained in (11) are
significantly more accurate than those obtained in Refs. (9, 10),
because of the large body of more accurate data, and this
relevance also for the excited states.

Second, the higher resolution (2.3× 10−3 cm−1, 1/maximum
optical path difference) than in (9, 10) (5× 10−3 cm−1) and the
higher signal:noise ratio of our experimental data in compari
with those of Refs. (9, 10) enabled us to assign weaker line
This gave us the possibility of observing transitions with high
values of the quantum numbersJ and Kc (Ka in the notation
of Refs. (9) and (10)). Thereof, we were able to deduce mo
precise and extensive information on the rotational structure
spectroscopic parameters of the states (001000), (000100)
(000001) in the notation (ν1ν2ν3ν4ν5ν6).

Third, and most importantly, we use the present data on PH2D
as a test case for the relations deduced for isotopic substitu
XH3 → XH2D. This will be elaborated in Section 2 of th
present contribution.

Sections 3 and 4 are devoted to a short description of the
perimental details and the used Hamiltonian model. The ass
ment of experimental transitions and the results of the reana
will be discussed in Section 5.

2. ISOTOPIC SUBSTITUTION XH3→XH2D IN AN XH3

MOLECULE WITH C3V SYMMETRY

From a general physical point it is obvious that a numb
of relations must exist between different isotopic species
molecules when they physically only differ from each other
the atomic masses. As was discussed in Ref. (12), the possibility
of deriving such isotopic relations is mathematically based
the fact that exact connections exist between transformation
efficientsl Nαµ andl ′Kγ λ of a “mother” and a “daughter” species
respectively:

l ′Nβλ =
∑
αµ

Ke
αβ(mN/m′N)1/2l Nαµβλµ. [1]

HeremN andm′N are the masses of theNth atom before and
after isotopic substitution, respectively. The coefficientsβλµ are
the elements of the matrix which is inverse to the matrixαλµ.
The matrixαλµ performs the transformation from the norm
vibrational coordinates of a “mother” molecule to those o
“daughter” species. The matrix elementsαλµ are determined by
(see, for details, Ref. (12))∑

ν

αλναµν = Aλµ =
∑
Nα

mN

m′N
l Nαλl Nαµ, [2]

∑
ν

AλνWνανµ = αλµW′µ [3]

and lead to the secular equation

det{AW −W ′} = 0,
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whereA is the matrix with the elementsAλν ; W andW′ are the
diagonal matrices with the elementsWλν = ω2

λδλν andW′λν =
ω′2δλν , respectively; andωλ andω′λ are the harmonic frequencie
of a parent and substituted species, respectively.

The parametersKe
αβ can be found from the normalizatio

conditions ∑
α

Ke
αβKe

αγ =
∑
α

Ke
βαKe

γα = δβγ [4]

and ∑
β

Je
αβKe

βγ = I ′eγ γKe
αγ , [5]

where I ′eγ γ denotes the equilibrium moments of inertia of t
substituted molecule. The termsJe

αβ are determined by the for
mulae

Je
αβ =

∑
γ δκ

εαγ κεβδκ j e
γ δ [6]

and

j e
γ δ = j e

δγ =
∑

N

m′Nr e
Nγ r e

Nδ −
∑

K m′K r e
Kγ

∑
L m′Lr e

Lδ∑
N m′N

. [7]

Here r e
Nα are the Cartesian coordinates defining the eq

librium positions of the nuclei of the “mother” species in t
molecule-fixed axis system. The valuesKe

αγ can be also con
sidered as the eigenvectors of the “inertia tensor”Je

αβ with the
eigenvaluesI ′eγ γ .

Further use of Eq. [1] in customary formulae of conventio
vibration–rotation theory (see, e.g., (13, 14)) allows one, in prin-
ciple, to establish connections with other spectroscopic par
eters of different isotopic species. It should be mentioned, h
ever, that Eq. [1], in the general case, is very complicated,
the values occurring in the right-hand side of Eq. [1] may
determinable only numerically and in consequence, isotopic
lations may also be obtained only numerically. The main rea
for this limitation is the complicated form of the transformati
coefficientsl Nαµ of the “mother” species.

As was shown (15), the transformation coefficientsl Nαµ of
the “mother” species have a very simple form, which for con
nience is reproduced again in Table 1, when anXH3 molecule
(with C3v symmetry) possesses some special properties, na

(a) the ratio of the atomic massesmH/mX is small;
(b) the equilibrium angles H–X–H are close toπ/2;
(c) there are no interactions between stretching and b

ing motions in the quadratic part of intramolecular poten
function, i.e., parametersfrr , frr ′ , fαα, and fαβ are nonzero, bu
frα = frβ = 0.

In case these approximations are valid one can expect
analogous simple relations can also be derived for a “daugh
by Academic Press
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TABLE 1
Values of l Nαλs Parameters of an XY3 Molecule

in the Local Mode Limita

a All parametersl4αλs are equal to zero.

species on the basis of the general expression [1]. Here we
sider the case in which only one H atom is substituted by
atom (atom 1 in Fig. 1). In this case, making use of the con
tions (a)–(c) as defined above in the general formulae [2]–
yields the following simple nonzero values of theKe andβλµ
αβ
FIG. 1. (a) Orientation of the coordinate axis in the “mother” XH3 molecule. (b) Orientation of the coordinate axis in the “daughter” XH2D molecule after
rotation. (c) Orientation of the coordinate axis which corresponds to the IIIl representation in the XH2D molecule.
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coefficients:

Ke
xx = 1/

√
3 Ke

xz = −
√

2/3 Ke
zx =

√
2/3

Ke
zz= 1/

√
3 Ke

yy = 1; [8]

β11 =
√

2/3 β21 =
√

2/3 β131 = −1/
√

3 β231 = 2/
√

3

β32 = 1/
√

3 β42 = 2
√

2/3β341 = −
√

2/3 β441 = 2/3

β532 = 1 β642 = 2/
√

3. [9]

From the above discussion it is clear that theKe
αγ coefficients can

be also considered as the elements of the matrix which des
a rotation of the molecular fixed coordinate axis under isoto
substitutionXH3→ XH2D. In this case, it may be interestin
to discuss the accuracy of the used local mode approxima
This can be made, for example, by comparing the value of
angleχ under rotation of the intramolecular coordinate a
both in the local mode model, and in the “realistic” case (i
mH/M 6= 0; αe 6= 90◦). In this present case, as can seen fr
the above discussion, the rotation is performed about they axis.
Figure 2 shows the dependence of the value of the angleχ on the
values of the massM (mH = 1) and the equilibrium interbond
angleαe. Here, pointA corresponds to the local mode mod
(mH/M close to zero;αe = 90◦); point B corresponds the ac
tual PH3 molecule (mH/MP = 1/31;αe = 93.45◦ (16)). As the
calculations show, the differences in theKe

αγ values between the
local mode model and the “realistic” one may achieve value
20–25% for the substitution PH3→ PH2D. At the same time,
Fig. 2 shows that the values of such differences are decr
ing rapidly with increasing massM and/or decreasing value o
(αe− 90◦). For example, for the AsH3→ AsH2D substitution,
the above mentioned differences in theKe

αγ values are as sma
as 4–6%.

Using relations [8], [9] and the values of the transformat
coefficientsl Nαµ of the “mother” moleculeXH3 as reported
in Table 1 in the general formula [1], one can obtain witho
difficulties very simple relations for thel ′Kβλ transformation
y Academic Press
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FIG. 2. The dependence of the value of the angleχ (in radians) on the
value of the massM (in u) of the X nucleus and the value of the equilibrium
interbond angleαe (in radians) is shown. Here the angleχ is the angle of rotation
of the molecular fixed coordinate axis underXH3→ XH2D substitution. Point
A corresponds to the local mode model (mH /M close to zero;αe= 90◦); point
B corresponds the PH3 molecule (mH /MP = 1/31;αe = 93.45◦ (13)).

coefficients for theXH2D species. It should be mentioned tha
the relations Eq. [8] determine the rotation of the molecu
coordinate axis from the configuration shown in Fig. 1a to t
configuration illustrated in Fig. 1b. At the same time, as w
discussed in (11), the coordinate axes for the PH2D molecule
should be oriented as shown in Fig. 1c. This means that
indicesβ appearing in the transformation coefficientsl ′Kβλ de-
termined as described above should be relabelled in accord
with the axis in Fig. 1c. The coefficientsl ′Kαλ eventually obtained
are presented in Table 2.

These coefficients are the basis to derive simple express
for different rovibrational parameters, such as Coriolis coe
cientsζ ′αλµ and rotation–vibration coefficientsa′αβλ . These Cori-
olis coefficientsζ ′αλµ and ro-vibrational parametersaαβλ , respec-
tively, are given in

ζ ′x1,4 = −ζ ′x2,4 = −ζ ′x3,4 = ζ ′x5,6 = −ζ ′z1,6 = ζ ′z2,6 = −ζ ′z3,6

= ζ ′z4,5 = −1/
√

3, ζ
′y
3,5 = −1, ζ

′y
4,6 = 1/3; [10]

axx
1 = ayy

1 /2= azz
1 = axx

2 /2= azz
2 /2= −axx

3 = azz
3

= −axz
5 = −azx

5 =
√

2mHr 2
e,

ayz
4 = azy

4 = axy
6 = ayx

6 = −2
√

2mHr 2
e/
√

3. [11]
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In turn, we have used Eqs. [10] and [11] to calcula
rotational–vibrational spectroscopic parametersα

′β
λ of PH2D.

In this case, the same above-mentioned approximation
the intramolecular potential function as for the “mothe
molecule PH3 (15) was used, too, for PH2D. We have derived
simple isotopic relations for the rotation–vibration paramete
of the bending modes:

α′x3 = α′z3 =
8

9

B2
e

θω
(θ2− 1+ 2c);

α′x4 = α′z6 =
4

27
√

3

B2
e

θω
(42θ2− 23+ 9c/2)

+ 16

27
√

3

B2
e

θω

(
4+ 9θ2

4− 3θ2
+ 2+ 9θ2

2− 3θ2

)
;

α′x6 = α′z4 =
28

9
√

3

B2
e

θω
(2θ2− 1+ 3c/14) [12]

+ 16

27
√

3

B2
e

θω

(
4+ 9θ2

4− 3θ2

)
;

α
′y
3 = 4

B2
e

θω

(
3− θ2

1− θ2

)
θ2;

α
′y
4 = α′y6 =

4

3
√

3

B2
e

θω
(3θ2− 4+ 9c/4);

Column 2 of Table 3 reports the calculated values for the be
ing vibrationsν3, ν4, andν6. The Coriolis interaction parameters
Aζ , Bζ , andCζ were calculated using the relations of Eq. [10
and the rotational constantsA, B, andC from Ref. (11). TheBe

value was taken asBe = h/(8π2c)(2mHr 2
e)−1 = 4.2276 cm−1,

with re = 1.412Å taken from Ref. (17); the frequencyω is (ω1+
ω3)/2= 2324 cm−1. The empirical parameterθ = (θ1+ θ2)/
2= 0.444 cm−1 was estimated from the three quartic centrifug

TABLE 2
Values of Nonzero l Nαλ Parameters of an XH2D

Molecule in the Local Model Limita

aAll parametersl4αλ are equal to zero.
Academic Press
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TABLE 3
Some Coriolis Interactions and Vibration–

Rotation Parameters of the PH2D Molecule (in
cm−1)

a Predicted on the basis of derived isotopic relations.
b Obtained from the fit of experimental data.

distortion coefficients of the PH3 molecule in the ground vibra
tional state, Ref. (8), with the formulae

DJ = B3
e

3ω2

(
9+ θ−2

2 + 2θ−2
4

)
, DJ K = 2B3

e

ω2

(
1− θ−2

2

)
,

DK = B3
e

3ω2

(−7+ 9θ−2
2 − 2θ−2

4

)
, [13]

taken from Ref. (15). Parameterc in Eq. [12] can be deter-
mined, on the one hand, from an experimental value of one o
α
β

λ rotation–vibration constants of the “mother” molecule P3
or, on the other hand, can be taken as an empirical param
of the PH2D molecule. In the present analysis it was set to 0.31

The parameters given in column 2 of Table 3 were used as
starting values for fitting the experimental rovibrational energ
of the (001000), (000100), and (000001) vibrational states of
PH2D molecule.

3. EXPERIMENTAL SECTION

The synthesis of phosphine enriched to 60% PHD2, 25%
PH2D, 10% PD3, and 5% PH3 (sample A) has been describe
(11). Moreover, a sample composed of 5% PH2D, 10% PHD2,
and 85% PD3 (sample B) was available for comparison and ide
1 In the first step of the analysis, values of the rotational parameters w
roughly estimated from the fit of the energy levels with the quantum numb
J = 0 and 1. Theαβλ parameters obtained from just that fit were used to estima
the coefficient of thec value.

the
ribed
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tification of lines belonging to other isotopomers than PH2D by
means of relative intensities of lines.

Spectra were recorded at room temperature with a Bru
120 HR interferometer adjusted to a resolution of 2.3×
10−3 cm−1 (1/maximum optical path difference) in the regio
600–1160 cm−1. A Globar source, a KBr/Ge beam splitter, an
an MCT 600 detector were employed, and a 8.5µm low-pass
filter was inserted. A 28-cm glass cell fitted with KBr window
was used, with pressures ranging from 100 to 550 Pa. Betw
150 and 400 scans were collected for the different spectra.
ibration was done with CO2 lines (18); wavenumber precision
of unblended, medium intensity lines is about 1× 10−4 cm−1.
It was ensured that wavenumbers of different spectra were c
patible with each other within one precision interval. Two po
tions of the spectrum are illustrated in Figs. 3 and 4, and so
assignments are given.

4. HAMILTONIAN MODEL AND WAVE FUNCTIONS

4.1. Rovibrational Hamiltonian

As was discussed in (11), the PH2D molecule is an asymmet
ric top very close to the prolate symmetric top limit, and IIl

representation of the rotational Watson-type Hamiltonian inA
reduction is very efficient. This is taken as

Hii = Ei +
[

Ai − 1

2
(Bi + Ci )

]
J2

z +
1

2
(Bi + Ci )J2

+ 1

2
(Bi − Ci )J2

xy−1i
K J4

z −1i
J K J2

z J2

−1i
J J4− δi

K

[
J2

z , J2
xy

]− 2δi
J J2J2

xy+ Hi
K J6

z

+ Hi
K J J4

z J2+ Hi
J K J2

z J4+ Hi
J J6+ [J2

xy, h
i
K J4

z

+ hi
J K J2J2

z + hi
J J4

]+ Li
K J8

z + Li
K K J J6

z J2

+ Li
J K J4

z J4+ Li
K J J J2

z J6+ Li
J J8+ [J2

xy, l
i
K J6

z

+ l i
K J J2J4

z + l i
J K J4J2

z + l i
J J6

]+ · · · , [14]

where the conditionBy> Bx > Bz is fulfilled, J2
xy= J2

x − J2
y ,

andJ2 = J2
x + J2

y + J2
z . The PH2D molecule has Cs symmetry.

Its three lowest vibrational bands,ν4,ν6, andν3, have A′, A′′, and
A′ symmetries, respectively, and interact strongly with ea
other. On this reason, a Hamiltonian was used which has the f

H v.−r. =
∑
i, j

|i 〉〈 j |Hi j , [15]

wherei = 4, 3, 6, and|4〉 = (000100),|3〉 = (001000), and|6〉 =
(000001). The diagonal partsHii have the form of Eq. [14].
Interactions between the states (000100) and (001000) on
one hand and the state (000001) on the other hand are desc
by theHi 6 (i = 3 or 4) operators

Hi 6 = H6i+ = Hi 6 + Hi 6, [16]
Cz Cy

y Academic Press
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where

Hi 6
Cz
= 2(Aζ z)i 6i Jz+ Ci 6

zKi J 3
z ++Ci 6

z Ji JzJ2+ Ci 6
zK Ki J 5

z

+Ci 6
z J Ki J 3

z J2+ Ci 6
z J Ji JzJ4+ Ci 6

zK K Ki J 7
z + · · ·

+Ci 6
xy[ Jx, Jy]+Ci 6

xyK

[
[ Jx, Jy]+, J2

z

]
+

+Ci 6
xy J[ Jx, Jy]+J2+ Ci 6

xyK K

[
[ Jx, Jy]+, J4

z

]
+

+Ci 6
xy J K

[
[ Jx, Jy]+, J2

z J2
]
+ +Ci 6

xy J J[ Jx, Jy]+J4+ · · ·
[17]

and

Hi 6
Cy
= 2(Bζ y)i 6i Jy + Ci 6

yK

[
i Jy, J2

z

]
+ + Ci 6

y Ji Jy J2

+Ci 6
yK K

[
i Jy, J4

z

]
+ + Ci 6

y J K

[
i Jy, J2

z J2
]
+ + Ci 6

y J Ji Jy J4

+Ci 6
yK K K

[
i Jy, J6

z

]
+ + Ci 6

yK K J

[
i Jy, J4

z J2
]
+ · · ·

+Ci 6
xz[ Jx, Jz]+ + Ci 6

xzK

[
[ Jx, Jz]+, J2

z

]
+

+C0i 6
xz J[ Jx, Jz]+J2+ Ci 6

xzK K

[
[ Jx, Jz]+, J4

z

]
+

+Ci 6
xz J K

[
[ Jx, Jz]+, J2

z J2
]
+ + Ci 6

xz J J[ Jx, Jz]+J4+ · · · .
[18]

In turn, the resonance interaction operatorH43 = H34+ has the
form

H43 = H43
F + H43

Cx
, [19]

where

H43
F = F43+ F43

K J2
z + F43

J J2+ F43
K K J4

z + F43
J K J2

z J2

+ F43
J J J4+ F43

K K K J6
z + F43

K J J J2
z J4+ · · ·

+ F43
xy J2

xy+ F43
xyK

[
J2

xy, J2
z

]
+ + F43

xy JJ2
xyJ2

+ F43
xyK K

[
J2

xy, J4
z

]
+ + F43

xy J K

[
J2

xy, J2
z J2

]
+ + · · · . [20]

and

H43
Cx
= 2(Bζ x)43i Jx + C43

x K

[
i Jx, J2

z

]
+ + C43

x Ji Jx J2+ · · ·
+C43

yz[ Jy, Jz]+ + C43
yzK

[
[ Jy, Jz]+, J2

z

]
+

+C43
yz J[ Jy, Jz]+J2+ C43

yzK K

[
[ Jy, Jz]+, J4

z

]
+ + · · · .

[21]

4.2. Rotational Wave Functions

In order to make the Hamiltonian matrix real, we have defin
the wave functions as follows.
Copyright C© 2001 by
ed

1. Symmetric rotational wave functions:

|J K, A′〉 = i J

√
2
{|J K〉 + (−1)J |J − K 〉}

for K = 2, 4, 6,. . . ;

|J K, A′〉 = i J+1

√
2
{|J K〉 + (−1)J |J − K 〉}

for K = 1, 3, 5,. . . ;

|J0, A′〉 = i J |J0〉

for J even.
2. Antisymmetric rotational wave functions:

|J K, A′′〉 = i J−1

√
2
{|J K〉 − (−1)J |J − K 〉}

for K = 2, 4, 6,. . . ;

|J K, A′′〉 = i J

√
2
{|J K〉 − (−1)J |J − K 〉}

for K = 1, 3, 5,. . . ;

|J0, A′′〉 = i (J − 1)|J0〉

for J odd.
These functions were employed to set up the Hamilton

matrix which was then used to fit the experimental data.

5. ASSIGNMENT AND RESULTS

While theν3 andν4 bands should be associated both witha-
andc-type transitions, theν6 band is expected to revealb-type
structure. Indeed, all three types of transitions were observe
the bending triad band. In this case, the comparison of the
lot” transitions, (J ′K ′a = J ′K ′c)← (J Ka = J Kc), (K ′c, Kc = 0
and/or 1), for all three bands shows that the strengths of
a- andc-type transitions are not much different from each ot
in the ν3 band. The same can be seen in theν4 band. At the
same time, transitions of theν3 band are slightly weaker (abou
15–20%) than corresponding transitions of theν4 band. As to
theν6 band, the strengths of its “pilot” transitions are compa
ble with those of the corresponding “pilot” transitions of theν4

band.
Assignments were made using the ground state combina

differences method, with ground state rotational energies ta
from Ref. (11). For convenience, the ground state rotational
rameters are included in Table 4 and given in column 2.
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ara-
TABLE 4
Rotational and Centrifugal Distortion Parameters for the Ground and the Bending Vibrational

States of PH2D (in cm−1)a

Note.Excited state parameters without confidence intervals given were fixed to the values of corresponding p
meters of the ground vibrational state.
a Values in parentheses are 1σ statistical confidence intervals.

t
er
n

present body of assignments comprised

ν4, Jmax= 22, K max
c = 17, n = 2560

ν3, Jmax= 21, K max
c = 15, n = 1590

ν6, Jmax= 20, K max
c = 14, n = 1350.

FIG. 3. Part of the PH2D spectrum in the region of theQ-branch of theν3

band. Lines of PH2D are denoted by a dot, and theirJ ′K ′a K ′c–J ′′K ′′a K ′′c assignmen
is given. Unassigned lines belong to other isotopic species (PHD2, PD3, PH3).
Copyright C© 2001 b
FIG. 4. Trace A: Spectrum of a mixture of PHD2 and PH2D. Lines belong-
ing to PH2D are assigned by full dots for theR branch of theν4 band and by
open circles for theP branch of theν6 band. Unassigned lines belong to oth
isotopic species (PHD2, PD3, PH3). Trace B: Spectrum of a sample richer i
PD3 and poorer in PH2D and PH3 shown for comparison.
y Academic Press



ISOTOPIC EFFECTS IN PHD 243
2

TABLE 5
Some Assigned Transitions in the Q-Branch of the ν4 Band of the PH2D Molecule

a This work.
b Ref. (10).
ies,
sitiv-

en-

ts
c-

s not
nd,
Av-
ions
(

In accordance with the IIIl representation of the rotationa
Hamiltonian, rotational energies for givenJ increase with
Kc.

The superiority of the present study to that of Ref.(10) can
be underlined by some statistical data. OurJmax values, 22, 21,
and 20, exceed those of (10), which were 20, 20, and 18, re-
spectively, forν4, ν3, andν6. The number ofν4 and ν6 band
transitions, 2560 and 1350, respectively, is substantially larg
than that in (10), 1579 and 1116. The 1590 transitions assign
for the ν3 band seem to be less than the 1739 transitions
signed≤1235 cm−1 in (10). However, our spectrum was only
exploited up to 1160 cm−1 and the 1739 transitions should be
compared with the 1357 assignments≤1160 cm−1 in Ref. (10).
Copyright C© 2001 b
l

er
ed
as-

Thanks to the significantly improved ground state energ
the higher precision of the present data, and the greater sen
ity of the actual spectrum, averaged experimental upper state
ergies were determined with an accuracy of 0.23× 10−3 cm−1,
which may be compared with the RMS of Ref. (10), ca.
0.43× 10−3 cm−1. Two details of the spectra, with assignmen
of PH2D lines, are illustrated in Figs. 3 and 4. Table 5 reprodu
ing a small part of the studied spectrum in the region of theν4

band center illustrates, on the one hand, that some weak line
found in (10) were assigned in our study and, on the other ha
that line positions are reproduced 3–4 times more accurately.
eraged upper state energies obtained from different transit
reaching the same state are reported in Table 6, columns 2ν4),
y Academic Press



244 ULENIKOV ET AL.
TABLE 6
Experimental Rovibrational Term Values for the (000100), (001000), and (000001) Vibrational States of the PH2D Molecule (in cm−1)a

a In Table 6,1 is the experimental uncertainty of the energy value, equal to one standard deviation in units of 10−5 cm−1; δ is the differenceEexp.− Ecalc.,
−5 −1
also in units of 10 cm ; 1 is not quoted when the energy value was obtained from only one transition.

Copyright C© 2001 by Academic Press
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TABLE 6—Continued
Copyright C© 2001 by Academic Press
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6

TABLE 7
Parameters of Resonance Interactions for the (000100), (001000), and (000001)

Vibrational States of the PH2D Molecule (in cm−1)

a See footnote to Table 4.
h
g
n

tter

ach.
ts of

var-
the
ere
any
5 (ν3), and 8 (ν6) together with their experimental uncertain
ties1 (columns 3, 6, and 9, respectively). It should be said t
really the number of assigned transitions was a little bit lar
than it is mentioned above. However, we used in the fit o
the upper energies determined from the doubtlessly assig
lines.

It has been noted in the previous study (10) of theν3, ν4, and
ν triad that, owing to correlation effects, the fit was unstab
Copyright C© 2001 b
-
at
er
ly
ned

le,

rotational and Coriolis constants drastically changing, the la
also being dependent on the chosen reduction (10). In order to
circumvent correlation problems we chose a different appro
Based on the experience that centrifugal distortion constan
excited states should be close to the ground state values we
ied in the first step of our data fit only the band centers and
rotational constants. The centrifugal distortion constants w
constrained to their ground state values. At the same time m
y Academic Press
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FIG. 5. Diagram of the dependence of the value1J = EJ Ka = 6 Kc= J−6–
EJ Ka = 7 Kc= J−6 on the value of the quantum numberJ. Trace I corresponds to
the vibrational state (v4 = 1). In this case, (a) shows in more detail the part of t
general diagram; (b) concerns high values of the quantum numberJ. The unusual
behavior of trace I is caused by the presence of strong resonance interactio
the states [J Ka = 6 Kc = J − 6](v6 = 1) and [J Ka = 7 Kc = J − 6](v4 = 1)
with different states [J Ka Kc](v4 = 1). For comparison, diagram II shows th
usual behavior of the value1J = EJ Ka=6 Kc=J−6–EJ Ka=7 Kc=J−6 versus the
value of the quantum numberJ for the ground vibrational state.

interaction parameters were refined. This was compuls
because resonance interactions are numerous and strong
such resonance interaction is illustrated in Fig. 5 where for thev4

= 1 (trace I) and the ground state (trace II) the energy differe
1J = EJ Ka=6Kc=J−6–EJ Ka=7Kc=J−6 is displayed for differentJ.

One more strong resonance interaction that became detec
thanks to the superior resolution of the present spectra is
splitting of the energy cluster [J = 18Ka = 18Kc = 1]/[ J =
18Ka = 18Kc = 0] of the vibrational statev3 = 1. Table 6 il-
lustrates that the clusters [J Ka = J Kc = 1]/[ J Ka = J Kc =
0] (v3 = 1), both with the smaller and larger quantum num
bersJ, are unsplit while theJ= 18 cluster is split because o
its strong interaction with the [J = 18Ka = 13Kc = 5]/[ J =
18Ka = 13Kc = 6] (v6 = 1) states. The corresponding doubl
Copyright C© 2001 b
e

ns of

ory
One

ce

able
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-
f

t

at 1113.41342 and 1113.42220 cm−1 is found in theQbranch of
theν3 band, and both transition wavenumbers are correctly p
dicted by our model. This doublet was not resolved in Ref. (10).

In the final step the centrifugal distortion constants1K ,1J K ,
and1J were also refined while all other centrifugal distortio
constants up to octic terms were constrained to their ground s
values. The excited state molecular parameters for the triad
reported in Table 4 and the interaction constants are give
Table 7. Altogether 21 molecular parameters and 50 interac
constants, in total 71 parameters, were refined. This may be c
pared with 36+ 24= 60 and 35+ 20= 55 parameters in set
1 and 2 of Ref. (10). The larger number of parameters needed
the present study is required, above all, by the higher quan
numbers of the probed energy levels and the higher precisio
the data. This latter criterium can be assessed by theδ values
given in columns 4, 7, and 10 of Table 6, which quote the d
ferences in units of 10−5 cm−1 between experimental energie
and those calculated with the parameters of Tables 4 and 7

The Coriolis interaction constants and the rotation
vibrational constantsα′βλ (β = x, y, zandλ= 3, 4, and 6) shown
in column 3 of Table 3 may be compared with the predictio
outlined in Section 2. Most of them are in reasonable agreem
This agreement is particularly noteworthy in view of the fact th
PH3 is not a “true local mode” molecule, the equilibrium inte
bond angle being near 93.5◦ rather than 90◦, and themH/MP

ratio is close to 1/31.
A further criterion for the physical significance of our model

the closeness of the final, refined excited state quartic centrif
distortion constants1K ,1J K , and1J with regard to those of the
ground state. While our1 difference values are on average 1.9
in absolute value and do not exceed 3.9%, the average/maxi
D differences in Ref. (10) are much larger both in Model 1 an
Model 2: 9.5/23.2 and 18.9/27.2%, respectively. The average
absolute values of theD constants are about the same in Ref. (10)
as the1 values in the present study in spite of the differe
representation used. Also the excited stated1 andd2 values in
Model 2 (10) differ substantially from the ground state value

6. CONCLUSION

For M XmY3, C3v symmetry molecules satisfying the abov
mentioned local mode conditions, isotopic relations for
rotation–vibrationαβλ , and quartic centrifugal distortion param
eters were derived for the case where one of the light atomY
is replaced (here H by D). Our results were successfully te
for the assignment and the fit of a new high-resolution Fou
transform spectrum of PH2D in the region of the three lowes
vibrational–rotational bandsν4, ν6, andν3. The analysis benefit
ted from the precise, improved rotational energies of the gro
vibrational state. This fact, on the one hand, and the higher r
lution and higher sensitivity than in an earlier contribution (10)
on the other hand, enabled us to assign transitions with hig
values of quantum numberJ and to achieve higher accurac
in the values of rotation–vibration energies in the upper sta
y Academic Press
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a

t
o
o
n

u

S.

a,”

s,”
than in the earlier study. The fit of the obtained upper state
ergies in the framework of Watson’s A-reduced Hamiltoni
in III l representation leads to a physically meaningful set
71 spectroscopic parameters which reproduce the 881 obse
“experimental” energies with accuracies close to the experim
tal precision. It is to be expected that our approach to predic
parameters of isotopically substituted “daughter” species fr
those of the “mother” molecule will likewise be successful f
other vibrations of PH2D. Supposedly this method will be eve
more powerful if the target molecules fulfill local mode cond
tions better than PH3 and PH2D, as is the case for H2Se and
HDSe, which were studied earlier (1, 2).
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