ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования **«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ**

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УΤ	ВЕРЖД	ĮАЮ
Пр	оректор	о-директор ИФВТ
		В.В. Лопатин
«	>>	2010 г.

К.Е. Евдокимов

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Методические указания к практическим занятиям для студентов всех специальностей

Издательство Томского политехнического университета 2010

Евлокимов К.Е.

Электромагнитная индукция: Методические указания к выполнению практических заданий для студентов всех специальностей/ К.Е. Евдокимов; Национальный исследовательский Томский политехнический университет. — Томск: Изд-во Томского политехнического университета, 2010. — 12 с.

Физика является одной из тех наук, знание которой необходимо для успешного изучения общенаучных и специальных дисциплин. При изучении курса физики студенты должны прочно усвоить основные законы и теории, овладеть необходимыми навыками решения задач по физике. Единственный способ научиться решать задачи, пытаться решать их самостоятельно. Знание теории закрепляется с использованием ее для решения задач.

Методическое пособие содержит основные формулы, задачи различной степени сложности по разделу «Электромагнитная индукция» курса «Электричество и магнетизм».

Методические указания рассмотрены и рекомендованы к изданию методическим семинаром кафедры теоретической и экспериментальной физики «__» _____ 2010 г.

Зав. кафедрой профессор, доктор физ.-мат. наук

В.Ф. Пичугин

Председатель учебно-методической комиссии

Рецензент

доктор физико-математических наук, доцент $C.И.\ Борисенко$

- © ГОУ ВПО «Национальный исследовательский Томский политехнический университет», 2010
- © Евдокимов К.Е., 2010
- © Оформление. Издательство Томского политехнического университета, 2010

Основные формулы

- Магнитный поток Ф через плоский контур площадью *S*:
- а) в случае однородного поля

$$\Phi = BS \cos \alpha$$
; или $\Phi = B_n S$,

где α — угол между вектором нормали n к плоскости контура и вектором магнитной индукции B; B_n — проекция вектора B на нормаль n ($B_n = B \cos \alpha$);

б) в случае неоднородного поля

$$\Phi = \int_{S} (\mathbf{B} \ d\mathbf{S}) = \int_{S} B_{n} \ dS,$$

где интегрирование ведется во всей поверхности S.

• Потокосцепление, т. е. полный магнитный поток, сцепленный со всеми витками соленоида или тороида,

$$\Psi = N \Phi$$

где Φ — магнитный поток через один виток; N — число витков соленоида или тороида.

• Работа по перемещению замкнутого контура с током в магнитном поле

$$A = I \Delta \Phi$$
,

где $\Delta\Phi$ — изменение магнитного потока, пронизывающего поверхность, ограниченную контуром; I — сила гока в контуре.

• Основной закон электромагнитной индукции (закон Фарадея — Максвелла)

$$\mathcal{E}_{i} = -N\frac{d\Phi}{dt} = -\frac{d\Psi}{dt}$$

где \mathcal{E}_i — электродвижущая сила индукции; N — число витков контура; Ψ — потокосцепление.

Частные случаи применения основного закона электромагнитной индукции:

а) разность потенциалов U на концах проводника длиной l, движущегося со скоростью ${\bf v}$ в однородном магнитном поле,

 $U = B l v \sin \alpha$, где α — угол между направлениями векторов скорости v и магнитной индукции B;

б) электродвижущая сила индукции \mathcal{E}_i возникающая в рамке, содержащей N витков, площадью S, при вращении рамки с угловой скоростью ω в однородном магнитном поле с индукцией B

$$\mathcal{E}_i = B N S \omega \sin \omega t$$
,

где ωt — мгновенное значение угла между вектором \boldsymbol{B} и вектором нормали \boldsymbol{n} к плоскости рамки.

• Количество электричества Q, протекающего в контуре,

$$Q = \Delta \Psi / R$$
,

где R — сопротивление контура; $\Delta \Psi$ — изменение потокосцепления.

• Электродвижущая сила самоиндукции \mathcal{E}_i возникающая в замкнутом контуре при изменении силы тока в нем,

$$m{\mathcal{E}}_i = -Lrac{dI}{dt},$$
 или $\left\langle m{\mathcal{E}}_i
ight
angle = -Lrac{\Delta I}{\Delta t},$

где L — индуктивность контура.

• Потокосцепление контура

$$\Psi = LI$$
,

где L — индуктивность контура.

• Индуктивность соленоида (тороида)

$$L = \mu_0 \mu n^2 V,$$

где n – число витков на единицу длины соленоида, V – объем соленоида.

- Мгновенное значение силы тока I в цепи, обладающей активным сопротивлением R и индуктивностью L:
 - а) после замыкания цепи

$$I = \frac{\mathcal{E}}{r} \left(1 - e^{-(R/L)t} \right)$$

где \mathcal{E} — ЭДС источника тока; t — время, прошедшее после замыкания цепи;

б) после размыкания цепи

$$I = I_0 e^{-(R/L)t}$$

где I_0 — сила тока в цепи при t=0; t — время, прошедшее с момента размыкания цепи.

Примеры решения задач

Пример 1. В одной плоскости с бесконечно длинным прямым проводом, по которому течет ток I=50 A, расположена прямоугольная рамка так, что две большие стороны ее длиной l=65 см параллельны проводу, а расстояние от провода до ближайшей из этих сторон равно ее ширине. Каков магнитный поток Φ , пронизывающий рамку?

Решение. Магнитный поток Φ через поверхность площадью S определяется выражением

$$\Phi = \int_{S} B_n dS.$$

В данном случае вектор магнитной индукции В перпендикулярен плоскости рамки. Поэтому для всех точек рамки B_n =B. Магнитная индукция В, создаваемая бесконечно длинным прямым проводником с током, определяется формулой

$$B = \frac{\mu_0 I}{2\pi x},$$

где x — расстояние от провода до точки, в которой определяется B.

Для вычисления магнитного потока заметим, что так как B зависит от x и элементарный поток Φ будет также зависеть от x, то

$$d\Phi = B(x)dS$$
.

Выделим узкую элементарную площадку длиной l, шириной dx и площадью dS = l dx (рис. 1). В пределах этой площадки магнитную индукцию можно считать постоянной, так как все части площадки равноудалены (на расстояние x) от провода.

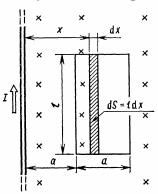


Рис. 1.

Тогда элементарный магнитный поток можно записать в виде

$$d\Phi = \frac{\mu_0 I}{2\pi x} l \ dx.$$

Проинтегрировав полученное выражение в пределах от $x_1=a$ до $x_2=2a$, найдем

$$\Phi = \frac{\mu_0 \ I \ l}{2\pi} \int_a^{2a} \frac{dx}{x} = \frac{\mu_0 \ I \ l}{2\pi} \ln x \bigg|_a^{2a}.$$

Подставив пределы, получим

$$\Phi = \frac{\mu_0 I l}{2\pi} \ln 2. \qquad (1$$

Проверим размерность:

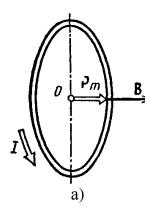
$$\left[\Phi\right] = \frac{\Gamma_H A M}{M} = \Gamma_H A = \frac{B\delta A}{A} = B\delta$$

Произведем вычисления:

$$\Phi = 210^{-7} 500,65 \ln 2 = 4,510^{-6} = 4,5 (B6)$$

Пример 2. Виток, по которому течет ток I=20 A, свободно установится в однородном магнитном поле B=16 мТл. Диаметр d витка равен 10 см. Какую работу нужно совершать, чтобы медленно повернуть виток на угол α = π /2 относительно оси, совпадающей с диаметром?

Решение. При медленном повороте контура в магнитном поле индукционными токами можно пренебречь и считать ток в контуре неизменным. Работа сил поля в этом случае определяется выражением


$$A = I\left(\Phi_2 - \Phi_1\right),\,$$

где Φ_1 и Φ_2 — магнитные потоки, пронизывающие контур в начальном и конечном положениях.

Работа внешних сил противоположна работе сил поля:

$$A_{_{GH}}=I(\Phi_{_{1}}-\Phi_{_{2}}).$$

Так как в начальном положении контур установился свободно, то момент внешних сил, действующий на контур, равен нулю. В этом положении вектор магнитного момента p_m контура сонаправлен с вектором B (рис. 2, а) и магнитный поток максимален (α =0, $\cos \alpha$ =1): $\Phi_1 = B S$, где S — площадь контура. В конечном положении (рис. 2, б) вектор p_m контура перпендикулярен вектору B (α = π /2, $\cos \alpha$ =0):и магнитный поток Φ_2 =0.

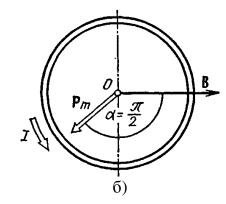


Рис. 2

Тогда работа внешних сил:

$$A_{_{GH}} = I \Phi_{1} = I B S = \frac{\pi}{4} I B d^{2},$$

где $S = nd^2/4$ — площадь контура.

Проверим размерность:

$$[A_{_{GH}}] = A T_{_{I\!\!I}} M^2 = \frac{A H M^2}{A M} = H M = \mathcal{J}_{\mathcal{H}}$$

Произведем вычисления:

$$A_{_{\mathit{BH}}} = \frac{3,14}{4} \ 20 \ 16 \ 10^{-3} (0,1)^2 = 2,5 \ 10^{-3} = 2,5 \ (\text{мДж})$$

Пример 3. В однородном магнитном поле с индукцией B=0,1 Тл равномерно вращается рамка, содержащая N=1000 витков, с частотой v=10 c^{-1} . Площадь S рамки равна 150 см 2 . Определить мгновенное значение ЭДС \mathcal{E}_i , соответствующее углу поворота рамки 30 $^\circ$.

Решение. Мгновенное значение ЭДС индукции \mathcal{E}_i определяется основным уравнением электромагнитной индукции Фарадея — Максвелла:

$$\mathcal{E}_{i} = -d\Psi/dt. \tag{1}$$

Потокосцепление $\Psi = N \Phi$, где N — число витков, пронизываемых магнитным потоком Φ . Подставив выражение Ψ в формулу (1), получим

$$\mathcal{E}_{i} = -N \, d\Phi/dt \tag{2}$$

При вращении рамки магнитный поток Φ , пронизывающий рамку в момент времени t, изменяется по закону $\Phi = B S \cos \omega t$,где B — магнитная индукция; S — площадь рамки; ω — угловая частота. Подставив в формулу (2) выражение Φ и продифференцировав по времени, найдем мгновенное значение ЭДС индукции:

$$\mathcal{E}_{i} = N B S \omega \sin \omega t. \tag{3}$$

Угловая частота со связана с частотой ν вращения соотношением $\omega = 2\pi\nu$. Подставив выражение ω в формулу (3) и заменив ωt на угол α , получим

$$\mathcal{E}_{i} = 2\pi \, \mathbf{v} \, N \, B \, S \sin \alpha \tag{4}$$

Проверим размерность:

$$\left[\mathcal{E}_{i}^{-1}\right] = c^{-1} T_{\pi} M^{2} = \frac{H M^{2}}{A M c} = \frac{\mathcal{A}\mathcal{H}}{K_{\pi}} = B.$$

Произведем вычисления:

$$\mathcal{E}_{i} = 2 \cdot 3.14 \cdot 10 \cdot 1000 \cdot 0.1 \cdot 150 \cdot 10^{-4} \cdot \sin 30^{0} = 47.1 (B)$$

Пример 4. При скорости изменения силы тока $\Delta I/\Delta t$ в соленоиде, равной 50 А/с, на его концах возникает ЭДС самоиндукции \mathcal{E}_i = 0,08 В. Определить индуктивность L соленоида.

Решение. Индуктивность соленоида связана с ЭДС самоиндукции и скоростью изменения силы тока в его обмотке соотношением

$$\mathcal{E}_{i} = -\Delta \Psi / \Delta t = -\Delta (L I) / \Delta t$$
.

Вынесем константу у L за знак приращения, получим

$$\mathcal{E}_{i} = -L \Delta I / \Delta t$$

Знак ЭДС несущественен в этой задаче, поэтому его можно опустить. Тогда индуктивность:

$$L = \frac{\mathcal{E}_i}{\Delta I/\Delta t}.$$

Проверим размерность:

$$[L] = \frac{B}{A/c} = \frac{Bc}{A} = \Gamma_H.$$

Произведем вычисления:

$$L = \frac{0.08}{50} = 1.6 \, 10^{-3} = 1.6 \, (\text{M} \, \text{FH})$$

Пример 5. Обмотка соленоида состоит из одного слоя плотно прилегающих друг к другу витков медного провода диаметром d=0,2 мм. Диаметр d_0 соленоида равен 5 см. По соленоиду течет ток I=1 А. Определить количество электричества Q, протекающее через обмотку, если концы ее замкнуть накоротко. Толщиной изоляции пренебречь.

Решение. Заряд dQ, который протекает по проводнику за время dt при силе тока I, определяется выражением

$$dQ = I dt$$
.

Сила тока I в соленоиде выражается через его сопротивление R и ЭДС индукции:

$$I = \mathcal{E}_i / R$$
.

Тогда $dQ = \left(\mathcal{E}_i/R\right)dt$. С другой стороны, ЭДС индукции можно выразить по закону Фарадея — Максвелла $\mathcal{E}_i = -d\Psi/dt$. Подставляем ЭДС в выражение для dQ:

$$dQ = -d\Psi/R.$$

Интегрируя, получаем:

$$Q = -(\Psi_2 - \Psi_1)/R. \tag{1}$$

Потокосцепление Ψ пропорционально силе тока в соленоиде. Тогда $\Psi_1 = L I$, а $\Psi_2 = 0$, так как в момент времени, соответствующий Ψ_2 , сила тока равна нулю. Следовательно, количество заряда

$$Q = I L/R$$
.

Индуктивность соленоида:

$$L = \mu_0 \ n^2 V = \mu_0 \frac{N^2}{l_0^2} S_0 l_0 = \frac{\mu_0 \ N^2 \ S_0}{l_0} = \frac{\pi \ d_0^2 \mu_0 \ N^2}{4 \ l_0},$$

где μ_0 — магнитная постоянная, $n=N/l_0$ — число витков на единицу длины соленоида, $V=S_0l_0$ — объем соленоида, $S_0=\pi {d_0}^2/4$ — площадь соленоида, l_0 — длина соленоида, d_0 — диаметр соленоида.

Сопротивление обмотки соленоида:

$$R = \rho \frac{l}{S} = \frac{4\rho l}{\pi d^2},$$

где ρ — удельное сопротивление провода; l — длина провода; S — площадь сечения провода; d — диаметр провода. Подставив найденные выражения L и R в формулу для Q, получим

$$Q = I \frac{L}{R} = I \frac{\mu_0 N^2 \pi^2 d_0 d}{16 l_0 l \rho}.$$

Заметим, что длина провода l может быть выражена через диаметр d_0 соленоида соотношением $l=\pi \ d_0 \ N$, а l_0/N — диаметр провода. Тогда выражению для Q можно придать вид

$$Q = \frac{\pi \mu_0}{16 \rho} d d_0 I.$$

Проверим размерность:

$$[Q] = \frac{\Gamma_H M^2 A}{M Q_M M} = \frac{B c A}{Q_M A} = A c = K_{\pi}.$$

Произведем вычисления:

$$Q = \frac{3,14 \cdot 4 \cdot 3,14 \cdot 10^{-7}}{16 \cdot 0,0172} 0,2 \cdot 50 = 1,44 \cdot 10^{-4} = 144 \left(\text{MKKn} \right)$$

Типичные задачи для решения на практическом занятии:

- 1. Рамка площадью 150 см вращается с угловой скоростью 15 рад/с в магнитном поле индукцией 0,8 Тл. Ось вращения находится в плоскости рамки и составляет угол 30 с направлением силовых линий магнитного поля. Найти максимальное значение ЭДС.
- 2. Определить силу тока, при которой в соленоиде длиной 50см и площадью поперечного сечения 2см, если индуктивность его равна 20мк Γ н и объемная плотность энергии магнитного поля внутри соленоида равна 1мДж/м.
- 3. Две катушки имеют взаимную индуктивность 5мГн. В первой катушке сила тока меняется по закону $I = I_0 \sin \omega t$, где $I_0 = 10 A$, $\omega = 2\pi/T$ и T = 0.02 c. Найти зависимость от времени ЭДС, индуцируемой во второй катушке и максимальное значение этой ЭДС.
- 4. Найти магнитную проницаемость сердечника соленоида длиной 50см, сечением 10см, имеющего 400 витков на единицу длины, если при токе в обмотке соленоида 5А магнитный поток в сердечнике равен 1,6мВб.
- 5. Проволочное кольцо радиусом 10см лежит на столе. Определить количество электричества, которое протечет по кольцу при повороте кольца на 180. Сопротивление кольца 10м и вертикальная составляющая магнитного поля Земли равна 50мкТл. Ответ: 3,14мкКл
- 6. Определить среднюю ЭДС самоиндукции, возникающей в катушке, индуктивность которой 0,03мГн, если при замыкании цепи ток в катушке изменяется за 120мкс от 0,6А до 0.

Учебное издание

ЕВДОКИМОВ Кирилл Евгеньевич

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Методические указания к выполнению практических заданий для студентов всех специальностей

Подписано к печати ___.__.11. Формат 60х84/16. Бумага «Классика». Печать RISO. Усл.печ.л. 1,86. Уч.-изд.л. 1,68. Заказ . Тираж 50 экз.

Томский политехнический университет
Система менеджмента качества
Томского политехнического университета сертифицирована
NATIONAL QUALITY ASSURANCE по стандарту ISO 9001:2000

издательство этпу. 634050, г. Томск, пр. Ленина, 30.