Атомная физика

Индивидуальное задание №7

- 1. Выписать возможные термы атомов, содержащих кроме заполненных оболочек два электрона p и d.
- 2. Вычислить с помощью правил Хунда магнитный момент основного состояния атома, в котором незаполненная оболочка имеет электронную конфигурацию а) np^4 , б) nd^2
- 3. Определите угол между спиновым L_S и полным L_J моментами в атоме, находящемся в состоянии 4F с минимально возможным L_J .
- 4. Возбужденный атом имеет электронную конфигурацию $1s^22s^22p3d$ и находится при этом в состоянии с максимально возможным моментом импульса. Найдите магнитный момент атома в этом состоянии.

- 1. Выписать возможные термы атомов, содержащих кроме заполненных оболочек два электрона s и d.
- 2. Вычислить с помощью правил Хунда магнитный момент основного состояния атома, в котором незаполненная оболочка имеет электронную конфигурацию а) np^3 , б) nd^8
- 3. Определите угол между спиновым L_S и полным L_J моментами в атоме, находящемся в состоянии 4F с максимально возможным L_I .
- 4. Определите спиновый момент импульса атома в состоянии D_2 , если максимальное значение проекции магнитного момента в этом состоянии равно четырем магнетонам Бора.

- 1. Выписать возможные термы атомов, содержащих кроме заполненных оболочек два *р*-электрона с разными главными квантовыми числами.
- 2. Вычислить с помощью правил Хунда магнитный момент основного состояния атома, в котором незаполненная оболочка имеет электронную конфигурацию а) np^2 , б) nd^7
- 3. Определите угол между спиновым L_S и орбитальным L_L моментами в атоме, находящемся в состоянии $P_{1/2}$ с минимально возможным L_S
- 4. Найдите магнитный момент атома натрия, валентный электрон которого имеет главное квантовое число n=3. Полный момент импульса атома максимален.

- 1. Выписать возможные термы для электронной конфигурации ns^1 , $n'p^2$ ($n \neq n'$).
- 2. Вычислить с помощью правил Хунда магнитный момент основного состояния атома, в котором незаполненная оболочка имеет электронную конфигурацию а) np^5 , б) nd^6
- 3. Определите угол между спиновым L_S и орбитальным L_L моментами в атоме, находящемся в состоянии $P_{1/2}$ с максимально возможным L_S
- 4. Вычислите множитель Ланде и магнитный момент для атомов с одним валентным электроном в состоянии F.

- 1. Выписать возможные термы для электронной конфигурации np^1 , $n'p^2$ ($n \neq n'$).
- 2. Вычислить с помощью правил Хунда магнитный момент основного состояния атома, в котором незаполненная оболочка имеет электронную конфигурацию а) np^4 , б) nd^5
- 3. Определите угол между орбитальным L_L и полным L_J моментами в атоме, находящемся в состоянии 4P с минимально возможным L_J .
- 4. Возбужденный атом имеет электронную конфигурацию $1s^22s^22p4f$ и находится при этом в состоянии с максимально возможным моментом импульса. Найдите магнитный момент атома в этом состоянии.

- 1. Выписать возможные термы для электронной конфигурации nd^1 , $n'p^2$ ($n \neq n'$).
- 2. Вычислить с помощью правил Хунда магнитный момент основного состояния атома, в котором незаполненная оболочка имеет электронную конфигурацию а) np^3 , б) nd^4
- 3. Определите угол между орбитальным L_L и полным L_J моментами в атоме, находящемся в состоянии 4P с максимально возможным L_I .
- 4. Найдите моменты импульса атомов в состояниях 5F и 7H , если известно, что в этих состояниях магнитные моменты атомов равны нулю.

- 1. Убедиться, что электронные конфигурации p^1 и p^5 имеют одинаковые наборы возможных типов термов.
- 2. Вычислить с помощью правил Хунда магнитный момент основного состояния атома, в котором незаполненная оболочка имеет электронную конфигурацию а) np^2 , б) nd^3
- 3. Определите угол между спиновым L_S и полным L_J моментами в атоме, находящемся в состоянии $D_{3/2}$ с минимально возможным L_S
- 4. Атом находится в состоянии ${}^{1}F$. Найдите соответствующий магнитный момент p_{J} и возможные значения его проекции p_{Jz} на направление внешнего магнитного поля.

- 1. Убедиться, что электронные конфигурации p^2 и p^4 имеют одинаковые наборы возможных типов термов.
- 2. Вычислить с помощью правил Хунда магнитный момент основного состояния атома, в котором незаполненная оболочка имеет электронную конфигурацию а) np^5 , б) nd^2
- 3. Определите угол между спиновым L_S и полным L_J моментами в атоме, находящемся в состоянии $D_{3/2}$ с максимально возможным L_S
- 4. Убедиться, что магнитные моменты атомов в состояниях ${}^4D_{1/2}$ и ${}^6G_{3/2}$ равны нулю. Интерпретировать этот факт на основе векторной модели атома.

- 1. Найти возможные типы термов атома, электронная конфигурация незаполненной оболочки которого np^2
- 2. Вычислить с помощью правил Хунда магнитный момент основного состояния атома, в котором незаполненная оболочка имеет электронную конфигурацию а) np^4 , б) nd^6
- 3. Определите угол между спиновым L_S и полным L_J моментами в атоме, находящемся в состоянии J=3/2 , мультиплетностью 4 и минимально возможным L_L .
- 4. Вычислите множитель Ланде и магнитный момент для атомов с одним валентным электроном в состояниях S и D.

- 1. Найти возможные типы термов атома, электронная конфигурация незаполненной оболочки которого np^3
- 2. Вычислить с помощью правил Хунда магнитный момент основного состояния атома, в котором незаполненная оболочка имеет электронную конфигурацию а) np^5 , б) nd^9
- 3. Определите угол между спиновым L_S и орбитальным L_L моментами в атоме, находящемся в состоянии J=3/2, мультиплетностью 4 и максимально возможным L_L .
- 4. Возбужденный атом имеет электронную конфигурацию $1s^22s^22p3s$ и находится при этом в состоянии с максимально возможным моментом импульса. Найдите магнитный момент атома в этом состоянии.