Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/authorsrights

Synthesis of acyl derivatives of salicin, salirepin, and arbutin

Elena V. Stepanova*, Maxim L. Belyanin, Victor D. Filimonov
Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russia

ARTICLE INFO

Article history:

Received 15 October 2013
Received in revised form 9 February 2014
Accepted 10 February 2014
Available online 20 February 2014

Keywords:

Phenolic acyl glycosides
Populoside
Salirepin derivatives
Salicin derivatives
Benzoylarbutin

Abstract

The total synthesis of two natural phenolglycosides of the family Salicaceae, namely: populoside and 2-(β-D-glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) cinnamoate and nine not found yet in plants acyl derivatives of phenoglycosides: 2-(β-D-glucopyranosyloxy)-benzylcinnamoate, 2-(β-D-glucopyranosyloxy)-benzyl (4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-benzyl (3-meth-oxy-4-hydroxy) benzoate, 2-(β-D-glucopyranosyloxy)-5-hydroxy benzyl (3,4-dihydroxy) cinnamoate, 2-(β-D-glucopyranosyloxy)-5-hydroxy benzylcinnamoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) benzoate, 2-(β-D-glucopyranosyloxy)-5-benzoyloxy benzylbenzoate and 4-(β-D-glucopyranosyloxy)-phenylbenzoate, starting from readily available phenols and glucose was developed for the first time.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The existence of phenolic glycosides in plants has been known for many years. The first, Salicin, was isolated in 1828 from willow bark. ${ }^{1}$ Since then, many glycosides of different structures were isolated and identified. ${ }^{2}$ These substances are of great interest for medicinal use because of their diverse biological activities. Plants of the family Salicaceae with large phenolglycoside content are widely used in traditional medicines all over the world and helpful for cure of pox, variola, pulmonary disease, ${ }^{3}$ arthritis, ${ }^{4}$ and other diseases. Most of phenolglycosides have anti-inflammatory activity ${ }^{5}$ and antioxidant activity. ${ }^{6,7}$

The structure of Salicaceae phenolglycosides includes salicin (glucoside of salicylic alcohol) or salirepin (glucoside of gentisinic alcohol) acylated by different benzoic or cinnamic acids. It is not absolutely clear yet, but biological effects of phenolglycosides are more likely caused by the aglycon and especially by the nature of phenolic acid.

The presence of several phenolic acids in hydrolyzed methanol extracts from different species of Salix was established, ${ }^{8}$ namely, p-hydroxybenzoic, vanillic, cinnanic, p-coumaric, ferulic, and caffeic acids. Obviously, such acids exist as free or as parts of glycosides. ${ }^{9}$

Indeed, it is known, that caffeic acid has anti-inflammatory and analgesic activity. ${ }^{10}$ It has been found to be pharmacologically active as an antioxidant, antimutagenic, anticarcinogenic agent, and as a lipoxygenase inhibitor ${ }^{11}$ and forms transitional metal

[^0]ion-caffeic acid complexes. ${ }^{12}$ Ferulic acid has antioxidant, antimicrobial, anti-inflammatory, anti-thrombosis, and anti-cancer activities. ${ }^{13}$ para-Hydroxybenzoic acid, basic component of parabenes, shows antimicrobial activity, ${ }^{14}$ antifungal, antimutagenic, antisickling, and estrogenic activity. ${ }^{15}$ Vanillic acid has hepatoprotective effect ${ }^{16,17}$ and exerts protective effects on cardiotoxic organisms. ${ }^{18}$

Thus, the structure of glycosides containing different combinations of salicin or salirepin moiety and one or more phenolic acids is the most predictable (Fig. 1). For confirmation of this, new phenolglycoside, consisting of salirepin and caffeic acid (19) was recently isolated. ${ }^{6}$

We previously reported the synthesis of some natural phenolglycosides of the family Salicaceae, containing cinnamic acids, namely, populosides A, B, and $\mathrm{C} .{ }^{19}$ We suggested a simple synthetic pathway for phenolglycosides of different structures. Thus, it would be reasonable to obtain glycosides of expected structure if they were not isolated from natural sources yet to make easier further phytochemical or biological investigations.

2. Results and discussion

The initial glycoside 1 was easily obtained by bromination of tetra-O-acetyl-o-cresylglycoside, which, in turn, was obtained by glycosylation of o-cresole. ${ }^{20}$ Glycosides 2, 3, and 4 were obtained according to the method described previously. ${ }^{19}$ Acylation of $\mathbf{1}$ was carried out by phenolic acids with sodium hydrocarbonate in DMF 21 medium (Scheme 1). Acyl-glycosides 5-6 were obtained in good yields.

Acylation of compound 2, 3, and 4 was carried out by acyl chloride of proper acid with pyridine to produce glycosides 7-14.

Figure 1. Structure of synthesized phenolglycosides 15-24, 27.

$\mathrm{R}=\mathrm{OAc}, \mathrm{R}_{1}=\mathrm{OH}$,
$\mathrm{R}=\mathrm{H} \mathrm{R}_{1}=3$,4-diacetoxycinnamoyl, 5 (78\%)
$\mathrm{R}=\mathrm{H} \mathrm{R}_{1}=3$,4-dihydroxycinnamoyl,15 (50\%)
$\mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=\mathrm{OH}, 3$ $\mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=$ cinnamoy 16 (65%)
$\mathrm{R}=\mathrm{OCOPh}, \mathrm{R}_{1}=\mathrm{OH}, 4$
$\mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=$ cinnamoyl 16 (40\%)
$\mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=$ 4-hydroxybenzoyl, 17 (80%)
$\mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=3$-methoxy-4-hydroxybenzoyl, 18 (35\%)
$\mathrm{R}=\mathrm{OHR}_{1}=3$,4-dihydroxycinnamoyl, 19 (30\%)
$\mathrm{R}=\mathrm{OH} \mathrm{R}_{1}=$ cinnamoyl, 20 (34\%)
$\mathrm{R}=\mathrm{OH}, \mathrm{R}_{1}=4$-hydrxybenzoyl 21 (55\%)
$\mathrm{R}=\mathrm{OH}, \mathrm{R}_{1}=3$-methoxy-4-hydroxybenzoyl, 22 (36\%)
) $\mathrm{R}=\mathrm{OH} \mathrm{R} \mathrm{R}_{1}=$ 4-hydroxy-3-methoxycinnamoyl, 23 (48\%)
$\mathrm{R}=\mathrm{OCOPh}, \mathrm{R}_{1}=$ benzoyl, $24(60 \%)$

Scheme 1. Synthesis of 2-acyl phenolglycosides. Reagents and conditions: (a) acyl chloride of proper acid (3,4-acetoxy cinnamoyl chloride, cinnamoyl chloride, 4-acetoxy-3methoxy cinnamoyl chloride, 4-acetoxybenzoyl chloride, 3-methoxy-4-acetoxy chloride, benzoylchloride), pyridine, $\mathrm{CHCl}_{3}, 24 \mathrm{~h}, 20^{\circ} \mathrm{C}$; (b) proper acid (3,4 -acetoxy cinnamic acid, cinnamic acid, 4-acetoxybenzoic acid, 3-methoxy-4-acetoxybenzoic acid), $\mathrm{NaHCO}_{3}, \mathrm{DMF}, \mathrm{RT}, 24 \mathrm{~h} ;(\mathrm{c}) 36 \% \mathrm{HCl}, \mathrm{CHCl}, \mathrm{EtOH}(1: 1: 3), 8-13 \mathrm{~h}, 30{ }^{\circ} \mathrm{C}$.

Scheme 2. Synthesis of benzoyl-arbutin. Reagents and conditions: (d) acetobromoglucose, quinoline, $\operatorname{Ag}_{2} \mathrm{O}, \mathrm{RT}, 1 \mathrm{~h}$; (c) as in the Scheme 1 .

For the selective cleavage of acetyl groups in the presence of other acyl groups we applied the system, suggested previously: $\mathrm{HCl}-\mathrm{EtOH}$ (96\%)-chloroform in a molar ratio of HCl-glycoside $54: 1$. The reaction at $30^{\circ} \mathrm{C}$ for $8-13 \mathrm{~h}$ resulted in successful acetyl group cleavage without significant cleavage of labile phenacyl groups and without breaking the glycosidic bond. All resulted glycosides 15-24 had β-configuration of anomeric center and trans-configuration of double bond esters of cinnamic acids $(J=15.9-16.2 \mathrm{~Hz})$. Physicochemical data for populoside 15, and glycoside 19 matched those reported. ${ }^{6,22,23}$

Glycoside 24, 5-benzoylsalireposide, is isomeric to natural compound, 3^{\prime}-benzoylsalireposide, found in Symplocos racemosa. ${ }^{24}$ Natural compound showed strong inhibitory activity against snake venom phosphodiesterase I. Thus, substance $\mathbf{2 4}$ has potentially the same biological activity.

We also obtained benzoyl-arbutin 27 (Scheme 2), from acetate 26. Substance 26 is well-known intermediate product for production of arbutin ${ }^{25}$ and forms by glycosylation of monobenzoylhydroquinone 25. Arbutin is natural phenolglycoside that nowadays
is used in cosmetic industry. ${ }^{26}$ Several attempts of 6'-O-benzoylarbutin synthesis were taken both by chemical ${ }^{27,28}$ and enzymatic ${ }^{29}$ means, but obtaining arbutin with aglycon benzoyl group $\mathbf{2 6}$ has not been previously reported.

In conclusion, we performed the first total synthesis of two known natural phenolglycosides, namely, populoside 15 and caffeoyl salirepin 19. The resulted substances are identical to natural samples according to their physico-chemical properties. We also synthesized nine phenolglycosides of expected structure 15-17, 19-23, 26 that could be found in Salicaceae and have biological activity.

3. Experimental

3.1. General experimental procedures

Melting points, which are uncorrected, were determined using MP50 Melting point system (Mettler toledo). UV spectroscopic data were obtained with SF-102 spectrophotometer. IR spectra were recorded with IR Fourier spectrophotometer Spectrum BX II using

KBr disks. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker-300 spectrometer at 300 and 75.5 MHz , respectively, in $\mathrm{CDCl}_{3}, \mathrm{DMSO}-d_{6}$, and MeOD- d_{4} with TMS as an internal standard and $\mathrm{Cr}(a c a c)_{3}$ as a relaxant. The chemical shifts are given in $\delta(\mathrm{ppm})$ and the spin-spin coupling constants (J) in hertz. Elemental analysis was performed on a EuroEA-3000 CHNS-O elemental analyzer. GC-MS analysis was performed using Aligent 7890A/5975C GC/MSD instrument, electron energy 70 eV . The ion source temperature was $230^{\circ} \mathrm{C}$, with the quadrupole temperature $150^{\circ} \mathrm{C}$ and evaporator temperature $315^{\circ} \mathrm{C}$, employing a $30.000 \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m} \mathrm{HP}-5 \mathrm{MS}$ fusedsilica capillary column. Helium was used as carrier gas at a constant flow of $1 \mathrm{~mL} / \mathrm{min}$ and an inlet temperature of $315^{\circ} \mathrm{C}$. The column temperature was initially held at $150^{\circ} \mathrm{C}$ for 2 min and then the temperature was raised to $315^{\circ} \mathrm{C}$ at a rate of $20^{\circ} \mathrm{C} / \mathrm{min}$, followed by isothermal period of 25 min . The total run time was 35.25 min . TLC was performed using plates Silica gel 60 F254 Merck and Sorbfil-UV 254 using benzene-ethanol 9:1 (method A) or chloroform-methanol 4:1 (B) mixtures as eluents. HPLC analysis was carried out with the liquid chromatographer Agilent Compact LC with column 150×4.6 Exlips Plus C-18 ($5 \mu \mathrm{~m}$). Analysis was performed using 0.1% trifluoroacetic acid in $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN}$ as mobile phase, at gradient elution (from 0% to $100 \% \mathrm{CH}_{3} \mathrm{CN}$ in 20 min) at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. Probe volume was $20 \mu \mathrm{~L}$. UV detection was performed at 220 nm . Accurate mass measurement was performed on an Agilent 1200 series LC system coupled with an Agilent 6210 TOF mass spectrometer. Silica gel MN Kieselgel $600.04-0.063 \mathrm{~mm}$ was used for column chromatography. Commercially available solvents were used after drying with CaCl_{2}.

3.2. 2-(2,3,4,6-tetra-O-acetyl- β-d-glucopyranosyloxy)-benzyl bromide (1)

The compound $\mathbf{1}$ was obtained according to ${ }^{20}$ by gylcosylation of o-cresole and further radical bromination of 2-(2,3,4,6-tetra-O-acetyl- β-d-glucopyranosyloxy)-toluene. Total yield 16% from 0 -cresole, mp $150-151^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}: 277$. IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): 2960, 1750, 1603, 1490, 1380, 1240, 1210, 1040, 108, 755. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta: 1.98,2.01,2.04(\mathrm{~s}, 4 \times 3 \mathrm{H}, \mathrm{Ac}), 4.07(\mathrm{~m}, 1 \mathrm{H}$, H-5'), 4.21-4.30 (m, 2H, H-6'b, H-7b), 4.49-4.58 (m, 2H, C-6'a, C-7a), 4.99 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), 5.12 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 5.41 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 5.56 (d, 1H, J = $7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 7.06 (m, 2H, H-2, H-4), 7.32 (m, 1H, $\mathrm{H}-3$), 7.42 (d, $1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-5$). ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75.5 \mathrm{MHz}$) $\delta: 20.4\left(4 \times \mathrm{CH}_{3}, \mathrm{Ac}\right), 28.9\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 61.8\left(\mathrm{CH}_{2}, \mathrm{C}-6^{\prime}\right), 68.0(\mathrm{CH}, \mathrm{C}-$ 4^{\prime}), 70.2 (CH, C-2'), 70.9 (CH, C-3'), 71.8 (CH, C-5'), 97.0 (CH, C-1'), 114.9 (CH, C-2), 122.9 (CH, C-4), 126.5 (C, C-3), 130.2 (CH, C-6), 131.2 (CH, C-5), 154.1 (C, C-1), 169.0, 169.2, 169.4, 169.9 ($4 \times$ C, Ac).

3.3. 2-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranozyloxy)-5-acetyloxy benzyl alcohol (2), 2-(2,3,4,6-tetra- O-acetyl- β-d-gluco-pyranozyloxy)-benzyl alcohol (3) and 2-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranozyloxy)-5-benzoyloxy benzyl alcohol (4)

The compounds 2,3 , and 4 were obtained according to the method described earlier. ${ }^{19}$

3.4. Alkylation of glycoside 1. General method

A mixture of $0.150 \mathrm{~g}(0.29 \mathrm{mmol})$ of glycoside $\mathbf{1}, 0.35 \mathrm{mmol}$ of proper acid, 0.35 mmol of sodium bicarbonate, and 1 mL of DMF was stirred at room temperature for $24-48 \mathrm{~h}$. After reaction was complete (HPLC control), the reaction mixture was poured into 5 mL of water and stirred until obtained glycoside precipitated, filtered and recrystallized from ethanol. If glycoside did not precipitate, it was extracted twice with CHCl_{3}. CHCl_{3} layer was washed with satd $\mathrm{Na}_{2} \mathrm{CO}_{3}$, water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was recrystallized from ethanol.
3.4.1. 2-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyloxy)-benzyl (3,4-diacetoxy) cinnamoate (populoside hexaacetate) (5)

The compound 5 was obtained from 3,4-diacetoxy cinnamic acid. Yield $78 \%, \mathrm{mp} 93-94^{\circ} \mathrm{C}$, lit. ${ }^{22} 93-95^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$: 279. IR (KBr, $v_{\text {max }} / \mathrm{cm}^{-1}$): 2960, 1760, 1640, 1380, 1240, 1040, 907, 760. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 2.04,2.06,2.09,2.12,2.30$ $(\mathrm{s}, 6 \times 3 \mathrm{H}, \mathrm{Ac}), 3.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right)$, 4.25 (dd, $1 \mathrm{H}, J=5.0,12.3 \mathrm{~Hz}, \mathrm{H}^{\prime} 6^{\prime} \mathrm{a}$), 5.08 (m, 1H, H-1'), $5.15-5.22$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-3^{\prime}$), 5.26-5.32 (m, 3H, H-2', 2H-7), 6.35 (d, 1H, $J=15.9 \mathrm{~Hz}, \mathrm{H}-9), 7.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}$, H-15), 7.26 (m, 2H, H-3, H-5), 7.36 (m, 2H, H-12, H-16), 7.62 (d, $1 \mathrm{H}, J=16.2 \mathrm{~Hz}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta: 20.7$ $\left(6 \times \mathrm{CH}_{3}, \mathrm{Ac}\right), 61.2\left(\mathrm{CH}_{2}, \mathrm{C} 6^{\prime}\right), 61.9\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 68.3\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right)$, 71.0 (CH, C-2'), 72.0 (CH, C-3'), 72.6 (CH, C-5'), 99.3 (CH, C-1'), 115.9 (CH, C-2), 119.0 (CH, H-9), 122.8 (CH, C-15), 123.6 (CH, C-4), 124.0 (CH, C-12), 126.2 (CH, C-6), 126.5 (CH,C-16), 129.5 ($2 \times$ CH, C-3, C-5), 133.2 (C, C-11), 142.4 (C, C-13), 143.2 (CH, C-10), 143.5 (C, C-14), 154.5 (C, C-1), 166.3 (C=O, C-8), 168.1, 169.4, 170.3 ($6 \times \mathrm{C}=\mathrm{O}, \mathrm{Ac}$).

3.4.2. 2-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyloxy)benzylcinnamoate (6)

The compound $\mathbf{6}$ was obtained from cinnamic acid. Yield 65%, $\mathrm{mp} 116-118{ }^{\circ} \mathrm{C}$. UV $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}: 278$. IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): $1750,1640,1500,1370,1210,1030,907 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta: 2.03,2.04,2.06,2.09(\mathrm{~s}, 4 \times 3 \mathrm{H}, \mathrm{Ac}), 3.85(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-5^{\prime}$), 4.16 (d, $\left.1 \mathrm{H}, J=12.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.25(\mathrm{dd}, 1 \mathrm{H}, J=5.0$, $12.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}$), 5.09 (d, $1 \mathrm{H}, \mathrm{J}=7.2, \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 5.14-5.20 (m, 2 H , H-4', H-3'), 5.27-5.30 (m, 3H, H-2', 2H-7), 6.45 (d, 1H, $J=15.3 \mathrm{~Hz}$, H-9), 6.94 (m, 2H, H-2, H-4), 7.29 (m, 1H, H-5), 7.36 (m, 4H, H-3, H-13, H-14, H-15), 7.50 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-16$), 7.69 (d, 1 H , $J=15.9 \mathrm{~Hz}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta: 20.3\left(4 \times \mathrm{CH}_{3}\right.$, Ac), $60.7\left(\mathrm{CH}_{2}, \mathrm{Cb}^{\prime}\right), 61.6\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 68.0\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 70.7(\mathrm{CH}$, C-2'), 71.7 (CH, C-3'), 72.3 (CH, C-5'), 99.1 (CH, C-1'), 115.6 (CH, $\mathrm{C}-2), 117.6$ (CH, H-9), 123.3 (CH, C-4), 126.1 (C, C-6), 127.8 ($2 \times \mathrm{CH}, \mathrm{C}-12, \mathrm{C}-16$), 128.6 ($2 \times \mathrm{CH}, \mathrm{C}-13, \mathrm{C}-15$), 129.2 (CH,C-3), 129.8 (CH, C-5), 130.1 (CH, C-14), 134.0 (C, C-11), 144.8 (CH, C-10), 154.2 (C, C-1), 166.3 ($\mathrm{C}=\mathrm{O}, \mathrm{C}-8$), 169.0, 169.9, 170.2 $(4 \times \mathrm{C}=\mathrm{O}, \mathrm{Ac})$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{12}$: $\mathrm{C}, 61.64 ; \mathrm{H}, 5.52$. Found: C, 61.48; H, 5.50.

3.5. Acylation of glycoside 2,3 , and 4 . General method

To a solution of glycoside $\mathbf{2 , 3}$, or $\mathbf{4}(0.2 \mathrm{mmol})$ in $1 \mathrm{~mL} \mathrm{CHCl}_{3}$, 0.22 mmol of acyl chloride and 0.26 mmol of pyridine were added. The reaction mixture was kept at room temperature for 24 h and diluted with 20 mL CHCl 3 . The solution was washed with 0.1 M $\mathrm{H}_{2} \mathrm{SO}_{4}$, satd $\mathrm{Na}_{2} \mathrm{CO}_{3}$, water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was recrystallized from ethanol.

3.5.1. 2-(2,3,4,6-Tetra- O-acetyl- β-d-glucopyranosyloxy)-benzyl (4-acetoxy) benzoate (7)

The compound 7 was obtained from 4-acetoxy benzoic acid and glycoside 3. Yield $53 \%, \mathrm{mp} 135-137^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}: 235$. IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right): 1740,1730,1600,1370,1210,1040,910,750 .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 2.03,2.04,2.05,2.07,2.31(\mathrm{~s}, 5 \times 3 \mathrm{H}, \mathrm{Ac})$, 3.84-3.88 (m, 1H, H-5'), 4.16 (dd, 1H, J=2.1, 12,3 Hz, H-6'b), 4.25 (dd, $1 \mathrm{H}, J=5.1,12.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}$), 5.11 (d, $1 \mathrm{H}, J=7.2 \mathrm{~Hz} \mathrm{H}-1^{\prime}$), 5.15 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 5.25-5.44 (m, 2H, H-2', H-3'), 5.30 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$), 7.11 (m, 2H, H-2, H-4), 7.16 (d, 2H, J=8.4 Hz, H-11, H-13), 7.29 (m, 1H, H-3), $7.40(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-5), 8.09(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}$, $\mathrm{H}-10, \mathrm{H}-14) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta: 20.6,21.2\left(5 \times \mathrm{CH}_{3}\right.$, $\mathrm{Ac}), 61.5\left(\mathrm{CH}_{2}, \mathrm{C} 6^{\prime}\right), 61.9\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 68.4\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 71.1(\mathrm{CH}$, C-2'), 72.1 (CH, C-3'), 72.7 (CH, C-5'), 99.4 (CH, C-1'), 116.0 (CH, C-2), 121.7 ($2 \times \mathrm{CH}, \mathrm{C}-11, \mathrm{C}-13$), 123.6 (CH, C-4), 126.4 (C, C-6), 127.7 (C, C-9), 129.3 (C, C-3), 129.4 (C, C-5), 131.3 ($2 \times$ CH, C-10, C-14), 154.4 (C, C-1), 154.5 (C, C-12), 165.4 ($\mathrm{C}=0, \mathrm{C}-8$), 168.8,
169.4, 170.2, 170.5 ($5 \times \mathrm{C}=\mathrm{O}$, Ac). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{14}$: C 58.44; H, 5.23. Found: C, 58.31; H, 5.39.

3.5.2. 2-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyloxy)-benzyl (3-methoxy-4-acetoxy) benzoate (8)

The compound 8 was obtained from 3-methoxy-4-acetoxy benzoic acid and glycoside 3. Yield 66%, mp 122-124 ${ }^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}$ (EtOH)/nm: 242, 291. IR (KBr, $v_{\max } / \mathrm{cm}^{-1}$): 2950, 1740, 1600, 1370, 1240, 1050, 1040, 910, $750 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$: 2.03, 2.05, 2.07, 2.34 ($\mathrm{s}, 5 \times 3 \mathrm{H}, \mathrm{Ac}$), 3.88 (m, 1H, H-5'), 3.88 (s , $3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.16 (dd, $\left.1 \mathrm{H}, J=2.1,12,0 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.26$ (dd, 1 H , $J=5.1,12.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{G}^{\prime} \mathrm{a}$), 5.09 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz} \mathrm{H}-1^{\prime}$), 5.14 ($\mathrm{m}, 1 \mathrm{H}$, H-4'), 5.25-5.44 (m, 2H, H-2', H-3'), 5.30 (m, 2H, H-7), 7.08 (m, $3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-13$), 7.26 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), 7.39 (d, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-$ 5), 7.68 (s, 1H, H-10), 7.68 (dd, $1 \mathrm{H}, J=1.2,9.0 \mathrm{~Hz}, \mathrm{H}-14$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta: 20.6\left(5 \times \mathrm{CH}_{3}, \mathrm{Ac}\right), 56.2\left(\mathrm{OCH}_{3}\right), 61.6\left(\mathrm{CH}_{2}\right.$, $\left.\mathrm{C}^{\prime}\right), 61.9\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 68.3$ ($\left.\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 71.0\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right), 72.1(\mathrm{CH}, \mathrm{C}-$ 3^{\prime}), 72.7 (CH, C-5'), 99.5 (CH, C-1'), 113.6 (CH, C-10), 115.9 (CH, C-2), 122.7 (CH, C-4), 122.8 (CH, C-13), 123.7 (CH, C-14), 126.4 (CH, C-6), 128.9 (C, C-9), 129.3 (C, C-5), 129.4 (CH, C-3), 143.7 (C, C-12), 151.1 (C, C-11), 154.5 (C, C-1), 165.6 (C=O, C-8), 168.5, 169.3, 169.4, 170.2, 170.6 ($5 \times \mathrm{C}=\mathrm{O}, \mathrm{Ac}$). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{15}$: C, 57.58; H, 5.30. Found: C, 57.40; H, 5.55.

3.5.3. 2-(2,3,4,6-Tetra-0-acetyl- β-d-glucopyranosyloxy)-5acetoxy benzyl (3,4-diacetoxy) cinnamoate (9)

The compound 9 was obtained from 3,4-diacetoxy cinnamoyl chloride and glycoside 4. Yield $85 \%, \mathrm{mp} 131-132^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}$ (EtOH)/nm: 280. IR (KBr, $v_{\text {max }} / \mathrm{cm}^{-1}$): 1750, 1640, 1500, 1370, $1210,1030,905 .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 2.02,2.03,2.06$, 2.10, 2.27, 2.28, 2.29 (s, $7 \times 3 \mathrm{H}, \mathrm{Ac}$), 3.82 (m, 1H, H-5'), 4.15 (dd, $1 \mathrm{H}, J=9.9,1.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{b}^{\prime} \mathrm{a}$), 4.24 (dd, $1 \mathrm{H}, J=5.3,12.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}$), 5.02 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{1}^{\prime}$), 5.12 (m, 1H, H-4'), 5.17 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$), 5.27 (m , $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}\right), 6.39$ (d, 1H, $J=15.9 \mathrm{~Hz}, \mathrm{H}-9$), 6.97 (dd, $1 \mathrm{H}, \mathrm{J}=2.5$, $8.7 \mathrm{~Hz}, \mathrm{H}-3$), 7.09 (d, 1H, J=7.2 Hz, H-2), 7.10 (s, 1H, H-5), 7.19 (d, 1H, J=8.4 Hz, H-15), 7.36 (s, 1H, H-12), 7.38 (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}$, $\mathrm{H}-16$), 7.62 (d, $1 \mathrm{H}, \mathrm{J}=16.2 \mathrm{~Hz}, \mathrm{H}-10$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}$) $\delta: 20.6\left(6 \times \mathrm{CH}_{3}, \mathrm{Ac}\right), 21.0\left(\mathrm{CH}_{3}, \mathrm{Ac}\right), 60.6\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 61.8\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ 6^{\prime}), 68.1 (CH, C-4'), 70.9 (CH, C-2'), 72.0 (CH, C-3'), 72.5 (CH, C5^{\prime}), 99.7 (CH, C-1'), 117.1 ($\mathrm{CH}=\mathrm{CH}, \mathrm{C}-9$), 118.7 (CH, C-2), 122.1 ($2 \times \mathrm{CH}, \mathrm{C}-3, \mathrm{C}-5$), 122.7 (CH, C-15), 123.9 (CH, C-12), 126.5 (CH, C-16), 127.8 (C, C-6), 133.1 (C, C-11), 142.4 (C, C-13), 143.4 (C, C14), 145.5 ($\mathrm{CH}=\mathrm{CH}, \mathrm{C}-10$), 146.3 (C, C-4), 151.8 (C, C-1), 166.0 ($\mathrm{C}=0, \mathrm{C}-8$), 168.0, 169.3, 169.6, 170.2, $170.5(7 \times \mathrm{C}, \mathrm{Ac})$. HRESIMS Calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 781.19504$. Found $[\mathrm{M}+\mathrm{Na}]^{+} 781.19502$.

3.5.4. 2-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyloxy)-5acetoxy benzylcinnamoate (10)

The compound 10 was obtained from cinnamoyl chloride and glycoside 4. Yield $40 \%, \operatorname{mp} 74-76{ }^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$: 278 . IR ($\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}$): 1750, 1640, 1500, 1370, 1210, 1190, 1030, 905. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 2.035,2.04,2.07,2.12,2.28$ (s, $5 \times 3 \mathrm{H}, \mathrm{Ac}), 3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.16$ (dd, $1 \mathrm{H}, J=2.4,12.3 \mathrm{~Hz}, \mathrm{H}-$ $\left.6^{\prime} \mathrm{b}\right), 4.25$ (dd, $1 \mathrm{H}, J=5.4,12.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}$), 5.01 (d, $1 \mathrm{H}, J=7.2, \mathrm{~Hz}$, H-1'), 5.15-5.21 (m, 2H, H-4', H-3'), 5.25 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{z}^{\prime}$), 5.29 (m, $2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{H}-7$), 6.45 (d, $1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{H}-9$), 6.99 (dd, $1 \mathrm{H}, J=2.7$, $8.7 \mathrm{~Hz}, \mathrm{H}-3$), 7.10 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), 7.13 (m, 1H, H-2), 7.37 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-$ 13, H-14, H-15), 7.52 (m, 2H, H-12,H-16), 7.70 (d, 1H, $J=16.2 \mathrm{~Hz}$, $\mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta: 20.4,20.9\left(5 \times \mathrm{CH}_{3}, \mathrm{Ac}\right)$, $60.3\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right), 61.6\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 68.0\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 70.7\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right)$, 71.8 (CH, C-3'), 72.4 (CH, C-5'), 99.6 (CH, C-1'), 117.0 (CH, C-2), 117.4 (CH, H-9), 121.9 ($2 \times$ CH, C-3, C-5), 127.7 (C, C-6), 127.9 ($2 \times \mathrm{CH}, \mathrm{C}-12, \mathrm{C}-16$), 128.7 ($2 \times \mathrm{CH}, \mathrm{C}-13, \mathrm{C}-15$), $130.2(\mathrm{CH}, \mathrm{C}-14)$, 134.0 (CH, C-11), 145.1 (C, C-4), 146.1 (CH, C-10), 151.6 (CH, C1), 166.2 ($\mathrm{C}=0, \mathrm{C}-8$), 169.1, 169.3, 169.9, 170.3 ($5 \times \mathrm{C}=0, \mathrm{Ac}$). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{14}$: C, 59.81; H, 5.33. Found: C, 59.76; H, 5.47.

3.5.5. 2-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyloxy)-5acetoxy benzyl (4-acetoxy) benzoate (11)

The compound 11 was obtained from 4-acetoxy benzoyl chloride and glycoside 4. Yield $52 \%, \mathrm{mp} 93-94{ }^{\circ} \mathrm{C}$. UV $\lambda_{\max }(\mathrm{EtOH}) /$ $\mathrm{nm}: 232,274$. IR (KBr, $v_{\text {max }} / \mathrm{cm}^{-1}$): 1750, 1640, 1600, 1500, 1370, 1210, 1190, 1030, $906 .{ }^{1}{ }^{1} \mathrm{HMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 2.03,2.04$, 2.07, 2.10, 2.28, $2.32(\mathrm{~s}, 6 \times 3 \mathrm{H}, \mathrm{Ac}), 3.81-3.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.16$ (dd, $1 \mathrm{H}, J=2.1,12,3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}$), 4.25 (dd, $1 \mathrm{H}, J=5.1,12.3 \mathrm{~Hz}, \mathrm{H}-$ $6^{\prime} \mathrm{a}$), 5.02 (d, $1 \mathrm{H}, J=7.2 \mathrm{~Hz} \mathrm{H}-1^{\prime}$), 5.14 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), $5.20-5.41$ (m, 2H, H-2', H-3'), 5.28 (m, 2H, H-7), 7.02 (dd, $1 \mathrm{H}, \mathrm{J}=2.7,8.7 \mathrm{~Hz}$, $\mathrm{H}-3), 7.08 .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta: 20.5,21.1\left(6 \times \mathrm{CH}_{3}, \mathrm{Ac}\right)$, $60.9\left(\mathrm{CH}_{2}, \mathrm{C} 6^{\prime}\right), 61.7\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 68.1\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 70.9\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right)$, 72.0 (CH, C-3'), 72.5 (CH, C-5'), 99.7 (CH, C-1'), 117.1 (CH, C-2), $121.6(2 \times \mathrm{CH}, \mathrm{C}-11, \mathrm{C}-13), 121.8$ (CH, C-3), 122.1 (CH, C-5), 127.5 (C, C-9), 127.8 (C, C-6), 131.2 ($2 \times$ CH, C-10, C-14), 146.2 (C, C-4), 151.5 (C, C-1), 154.3 (C, C-12), 165.0 (C=O, C-8), 168.7, 169.2, 169.5, 170.1, $170.5(6 \times \mathrm{C}=\mathrm{O}, \mathrm{Ac})$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{O}_{16}$: C, 56.97; H, 5.08. Found: C, 56.81; H, 5.01.
3.5.6. 2-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyloxy)-5acetoxy benzyl (3-methoxy-4-acetoxy) benzoate (12)

The compound 12 was obtained from 3-methoxy-4-acetoxy benzoyl chloride and glycoside 4. Yield 70%, mp $156-159^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}: 241,285$. IR ($\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}$): 1760, 1740, 1610, 1380, 1220, 1050, 910, $760 .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta: 2.03$, 2.05, 2.08, 2.28, 2.33 ($\mathrm{s}, 6 \times 3 \mathrm{H}, \mathrm{Ac}$), $3.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.89(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.16 (dd, $\left.1 \mathrm{H}, \mathrm{J}=2.1,12,3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.25$ (dd, 1 H , $J=5.1,12.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}$), 5.04 (d, $1 \mathrm{H}, J=7.2 \mathrm{~Hz} \mathrm{H}-\mathrm{H}^{\prime}$), 5.14 ($\mathrm{m}, 1 \mathrm{H}$, H-4'), 5.24-5.42 (m, 2H, H-2', H-3'), 5.29 (m, 2H, H-7), 6.99 (dd, $1 \mathrm{H}, J=2.7,8.7 \mathrm{~Hz}, \mathrm{H}-3$), 7.10 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-5, \mathrm{H}-13$), 7.68 (m, $2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-14) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta: 20.5,21.0$ $\left(6 \times \mathrm{CH}_{3}, \mathrm{Ac}\right), 56.1\left(\mathrm{OCH}_{3}\right), 61.0\left(\mathrm{CH}_{2}, \mathrm{Cb}^{\prime}\right), 61.8\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 68.1$ (CH, C-4'), 70.9 (CH, C-2'), 72.0 (CH, C-3'), 72.5 (CH, C-5'), 99.7 (CH, C-1'), 113.5 (CH, C-10), 117.0 (CH, C-2), 121.8 (CH, C-3), 122.0 (CH, C-5), 122.6 (CH, C-13), 122.8 (CH, C-14), 127.8 (C, C-9), 128.5 (C, C-6), 144.7 (CH, C-12), 145.2 (C, C-4), 151.0 (C, C-11), 151.8 (C, C-1), 165.30 (C=O, C-8), 168.4, 169.1, 169.2, 169.5, 170.0, $170.4(6 \times \mathrm{C}=\mathrm{O}, \mathrm{Ac})$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{17}: \mathrm{C}$, 56.25; H, 5.15. Found: C, 56.12; H, 5.34.

3.5.7. 2-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyloxy)-5-

 acetoxy benzyl (3-methoxy-4-acetoxy) cinnamoate (13)The compound 13 was obtained from 3-metoxy-4-acetoxy cinnamoyl chloride and glycoside 4. Yield 60%, mp 157-158 ${ }^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}: 323,304$. IR ($\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}$): 3970, 1760, 1640, $1605,1380,1220,1190,1175,180,1045,980,908,850,825,600$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 2.02,2.03,2.06,2.10,2.27,2.30(\mathrm{~s}$, $6 \times 3 \mathrm{H}, \mathrm{Ac}), 3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.15(\mathrm{dd}, 1 \mathrm{H}$, $J=10.2,1.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{G}^{\prime} \mathrm{a}$), 4.24 (dd, $\left.1 \mathrm{H}, J=5.1,12.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 5.02$ (d, 1H, J = 7.2 Hz, H-1'), 5.12-5.34 (m, 5H, H-2', H-3', H-4', H-7), 6.39 (d, 1H, J = $16.2 \mathrm{~Hz}, \mathrm{H}-9$), 6.97-7.05 (m, 2H, H-2, H-15), 7.09 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-12, \mathrm{H}-16$), $7.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta: 20.6\left(5 \times \mathrm{CH}_{3}, \mathrm{Ac}\right)$, $21.0\left(\mathrm{CH}_{3}, \mathrm{Ac}\right), 55.8$ $\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 60.5\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 61.8\left(\mathrm{CH}_{2}, \mathrm{C}-6^{\prime}\right), 68.1\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right)$, 70.9 (CH, C-2'), 72.0 (CH, C-3'), 72.5 (CH, C-5'), 99.7 (CH, C-1'), 111.2 (CH, C-12), 117.1 (CH=CH, C-9), 117.7 (CH, C-2), 121.3 (CH, C-16), 122.1 ($2 \times \mathrm{CH}, \mathrm{C}-3, \mathrm{C}-5$), 123.1 (CH, C-15), 127.8 (C, C-6), 133.1 (C, C-11), 141.4 (C, C-14), 144.6 ($\mathrm{CH}=\mathrm{CH}, \mathrm{C}-10$), 146.2 (C, C-4), 151.3 (C, C-1), 151.8 (C, C-13), 166.2 (C=O, C-8), 168.6, 169.3, 169.5, $170.1\left(6 \times \mathrm{C}\right.$, Ac). HRESIMS Calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ 753.20012, Found $[\mathrm{M}+\mathrm{Na}]^{+} 753.20007$.

3.5.8. 2-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyloxy)-5benzoyloxy benzylbenzoate (14)

The compound 14 was obtained from benzoyl chloride and glycoside 5. Yield $77 \%, \mathrm{mp} 134-135^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}$ (EtOH)/nm: 230, 276,

IR (KBr, $v_{\max } / \mathrm{cm}^{-1}$): $2940,1720,1505,1500,1380,1260,1250$, 1195, 1080, 1060, 1000, 915, 900, 810, 700. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 300 MHz) $\delta: 2.04,2.05,2.08,2.09$ (s, $4 \times 3 \mathrm{H}, \mathrm{Ac}$), $3,84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 5^{\prime}), 4.17 (d, $\left.1 \mathrm{H}, J=10.8, \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.27$ (dd, $1 \mathrm{H}, J=5.1,12.0, \mathrm{~Hz}$, H-6'b), 5.09 (d, 1H, J = 7.2, Hz, H-1'), 5.16 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 5.28-5.45 (m, 4H, H-2', H-3', H-7), 7.12-7.21 (m, 2H, H-3, H-5), 7.29 (m, 1H, H-2), 7.41-7.58 (m, 5H, H-11, H-12, H-13, H-18, H-20), 7.607.65 (m, 1H, H-19), 8.06 (d, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-10, \mathrm{H}-14$), 8.16 (d, $2 \mathrm{H}, \mathrm{J}=7.8, \mathrm{~Hz}, \mathrm{H}-17, \mathrm{H}-21$). ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta: 20.5$ $\left(4 \times \mathrm{CH}_{3}, \mathrm{Ac}\right), 60.9\left(\mathrm{CH}_{2}, \mathrm{C}-6^{\prime}\right), 61.8\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 68.2\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right)$, 70.9 (CH, C-2'), 72.1 (CH, C-3'), 72.6 (CH, C-5'), 99.9 (CH, C-1'), 117.4 (CH, C-2), 122.0 (CH, C-5), 122.3 (CH, C-3), 128.1 (C, C, C6), 128.4 ($2 \times$ CH, C-11, C-13), 128.6 ($2 \times$ CH, C-18, C-20), 129.2 (CH, C-9), 129.7 ($2 \times$ CH, C-17, C-21), 129,9 (CH, C-10), 130.1 ($2 \times \mathrm{CH}, \mathrm{C}-14, \mathrm{C}-16$), 133.1 (CH, C-12), 133.7 (C, C-19), 146.6 (C, C-4), 151.9 (C, C-1), 165.2 ($\mathrm{C}=0, \mathrm{C}-15$), 166.0 ($\mathrm{C}=0, \mathrm{C}-8$), 169.3, 170.1, $170,5(4 \times \mathrm{C}=\mathrm{O}, \mathrm{Ac})$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{O}_{14}: \mathrm{C}, 61.94$; H, 5.05. Found: C, 61.75; H, 5.13.

3.6. Selective acetyl group cleavage. General method

To glycoside (3-12) $(0.15 \mathrm{mmol})$ in a mixture of 96%-ethanol and CHCl_{3} in proportion $1.5-0.5 \mathrm{~mL}$ was added $0.5 \mathrm{~mL} 36 \% \mathrm{HCl}$. The reaction mixture was stirred and then kept at $30^{\circ} \mathrm{C}$ temperature for $8-13 \mathrm{~h}$. After appropriate time (HPLC control), all solvents were evaporated at low temperature using vacuum and residue was subjected to column chromatography applying gradient elution with chloroform and chloroform-ethanol mixture (from ratio 15:1 to 4:1). Analytical samples were purified by recrystallization from ethanol or water.

3.6.1. 2-(β-d-Glucopyranosyloxy)-benzyl (3,4-dihydroxy) cinnamoate (populoside) (15)

Crystallization from acetone gave pale yellow crystals, yield 50%, mp $178-179^{\circ} \mathrm{C}$, lit. $.^{22} 186-188^{\circ} \mathrm{C}$, lit. $.^{7} 169-170^{\circ} \mathrm{C}$, lit. ${ }^{6,17}$ $168-169{ }^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}: 311$. IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): 3450 , 2920, 1680, 1600, 1370, 1280, 1160, 1090, 1050, 910, 760. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta: 3.17$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 3.26-3.47 (DMSO) ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$), 4.48 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{b}$), 3.68 (d, 1 H , $\left.J=11.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{G}^{\prime} \mathrm{a}\right), 4.84$ (m, 1H, H-1'), 5.22 (m, 2H, H-7), 6.32 (d, $1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{H}-9), 6.75$ (d, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-15$), $7.00(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-12$), 7.14 (d, $1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-16$), 7.28 (m, 2H, H-3, $\mathrm{H}-5$), $7.50(\mathrm{~d}, \quad 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $75.5 \mathrm{MHz}) \delta: 60.9\left(2 \times \mathrm{CH}_{2}, \mathrm{Cb}^{\prime}, \mathrm{C}-7\right), 69.8\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 73.2(\mathrm{CH}$, C-2'), 76.5 (CH, C-3'), 77.1 (CH, C-5'), 101.1 (CH, C-1'), 114.0 (CH, C-12), 114.9 (CH, C-2), 115.0 (CH, C-9), 115.9 (CH, C-15), 121.5 (CH, C-4), 122.0 (CH, C-16), 125.1 (CH, C-6), 125.7 (CH,C-11), 128.2 (CH, C-3), $129.0(\mathrm{CH}, \mathrm{C}-5), 145.5(2 \times \mathrm{C}, \mathrm{C}-10, \mathrm{C}-13), 148.2$ (C, C-14), 155.1 (C, C-1), 166.4 ($\mathrm{C}=\mathrm{O}, \mathrm{C}-8$). The data are in agreement with literature. ${ }^{6,7}$

3.6.2. 2-(β-D-Glucopyranosyloxy)-benzylcinnamoate (16)

Crystallization from water gave colorless crystals, yield 40%, mp $110-112{ }^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}: 278$. IR ($\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}$): 3380 , 2920, 1700, 1640, 1500, 1240, 1080, 1050, 770, 750. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta: 3.17$ (m, 1H, H-4'), $3.26-3.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 2^{\prime}, H-3'), 3.43-3.50 (m, 2H, H-6'b, H-5'), 3.69 (d, 1H, J = 10.8 Hz , H-6'a), 4.83 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathbf{1}^{\prime}$) $5.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$), 6.69 ($\mathrm{d}, 1 \mathrm{H}$, $J=16.2 \mathrm{~Hz}, \quad \mathrm{H}-9), 7.01(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-4), 7.16(\mathrm{~d}, 1 \mathrm{H}$, $J=7.8 \mathrm{~Hz}, \mathrm{H}-2), 7.29(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-5), 7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 7.42 (m, 3H, H-13, H-14, H-15), 7.68 (d, $1 \mathrm{H}, \mathrm{J}=16.2 \mathrm{~Hz}, \mathrm{H}-10$), $7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-16) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 75.5 \mathrm{MHz}\right) \delta: 60.5$ $\left(\mathrm{CH}_{2}, \mathrm{C} 6^{\prime}\right), 60.9\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 69.5\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 73.0\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right), 76.3$ (CH, C-3'), 76.9 (CH, C-5'), 100.9 (CH, C-1'), 114.8 (CH, C-2), 117.8 (CH, H-9), 121.7 (CH, C-4), 124.9 (C, C-6), 128.3 ($2 \times$ CH, C-12, C-16), 128.8 ($3 \times \mathrm{CH}, \mathrm{C}-3, \mathrm{C}-13, \mathrm{C}-15$), 129.2 (CH,C-5), 130.5 (CH,

C-14), 134.9 (C, C-11), 144.5 (CH, C-10), 155.0 (C, C-1), 166.0 ($\mathrm{C}=\mathrm{O}, \mathrm{C}-8$). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{8}$: $\mathrm{C}, 63.45$; $\mathrm{H}, 5.81$. Found: C , 63.37; H, 5.95.

3.6.3. 2-(β-d-Glucopyranosyloxy)-benzyl (4-hydroxy) benzoate (17)

Crystallization from water gave colorless crystals, yield 80%, mp $165-170^{\circ} \mathrm{C}$. UV $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}: 259$. IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): 3420 , 1700, 1610, 1460, 1380, 1280, 1240, 1100, 770, 750. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6}, 300 \mathrm{MHz}\right) \delta: 3.18$ (m, 1H, H-4'), 3.27-3.48 (DMSO) (m, 4H, H-2', H-3', H-5', H-6'a), 3.68 (m, 1H, H-6'b), 4.86 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-$ 1^{\prime}), 5.35 (m, 2H, H-7), 6.84 (d, 2H, J = $8.4 \mathrm{~Hz}, \mathrm{H}-11, \mathrm{H}-13$), 7.01 (t, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-4), 7.16$ (d, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-2$), $7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3), 7.35 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-5$), 7.85 (d, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-10, \mathrm{H}-$ 14). ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75.5 \mathrm{MHz}\right) \delta: 60.7\left(\mathrm{CH}_{2}, \mathrm{C6}^{\prime}\right), 61.0(\mathrm{CH} 2$, C-7), 69.7 ($\mathrm{CH}, \mathrm{C}-4^{\prime}$), 73.4 ($\mathrm{CH}, \mathrm{C}-2^{\prime}$), 76.5 (CH, C-3'), 77.1 (CH, C5^{\prime}), 101.0 (CH, C- 1^{\prime}), $115.0(2 \times \mathrm{CH}, \mathrm{C}-11, \mathrm{C}-13), 121.7$ (CH, C-2), 120.3 (C, C-9), 121.9 (CH, C-4), 125.4 (C, C-6), 128.3 (CH, C-3), 129.1 (CH, C-5), 131.6 ($2 \times$ CH, C-10, C-14), 155.0 (C, C-1), 162.0 (C, C-12), 166.5 (C=O, C-8). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{9}: \mathrm{C}, 59.11$; H , 5.46. Found: C, 58.95; H, 5.54.
3.6.4. 2-(β-d-Glucopyranosyloxy)-benzyl 3-methoxy (4-hydroxy) benzoate (18)

Crystallization from water afforded colorless crystals, yield 35\%, $\mathrm{mp} 173-177^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}: 265,292$. IR $\left(\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}\right)$: 3470, 3380, 2930, 1700, 1690, 1610, 1510, 1300, 1230, 1090, 760, 750. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}, 300 \mathrm{MHz}$) $\delta: 3.16$ (m, $1 \mathrm{H}, \mathrm{H}-4$ '), $3.27-$ 3.38 (DMSO) (m, 2H, H-2', H-3'), 3.43 (m, 2H, H- $5^{\prime}, \mathrm{H}^{\prime} 6^{\prime} \mathrm{a}$), 3.68 (d, 1H, J-11.4 Hz, H-6'b), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 5.37 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{H}-7$), 6.86 (d, $1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-13$), $7.01(\mathrm{t}, 1 \mathrm{H}$, $J=7.5 \mathrm{~Hz}, \mathrm{H}-4), 7.16$ (d, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-2$), $7.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 7.34 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-5$), 7.48 (s, 1H, H-10), 7.51 (dd, 1 H , $J=1.5,8.4 \mathrm{~Hz}, \mathrm{H}-14) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\mathrm{d}_{6}, 75.5 \mathrm{MHz}$) $\delta: 55.7$ $\left(\mathrm{OCH}_{3}\right), 60.8\left(\mathrm{CH}_{2}, \mathrm{C} 6^{\prime}\right), 61.1\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 69.7\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 73.3(\mathrm{CH}$, C-2'), 76.5 (CH, C-3'), 77.2 ($\mathrm{CH}, \mathrm{C}-5^{\prime}$), 101.0 ($\mathrm{CH}, \mathrm{C}-1^{\prime}$), 112.5 (CH, C-10), 115.0 (CH, C-13), 115.1 (CH, C-2), 120.5 (C, C-9), 121.9 (CH, C-4), 123.5 (CH, C-14), 125.2 (CH, C-6), 129.4 (C, C-5), 130.3 (CH, C-3), 145.4 (C, C-11), 151.5 (C, C-12), 155.2 (C, C-1), 165.4 ($\mathrm{C}=\mathrm{O}, \mathrm{C}-8$). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{10}$: $\mathrm{C}, 57.80 ; \mathrm{H}, 5.54$. Found: C , 57.71; H, 5.70.

3.6.5. 2-(β-d-Glucopyranosyloxy)-5-hydroxy benzyl (3,4dihydroxy) cinnamoate (19)

Crystallization from acetone gave yellowish crystals, yield 30\%, mp 156-158 ${ }^{\circ} \mathrm{C}$, lit. ${ }^{6} 157-158^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}$ (EtOH)/nm: 248, 300, 331. IR (KBr, $v_{\max } / \mathrm{cm}^{-1}$): 3272, 1680, 1610, 1560, 1520, 1460, 1380, 1280, 1210, 1080, 1050, 990, 810. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, 300 MHz) $\delta: 3.17$ (m, 1H, H-4'), 3.26-3.47 (DMSO) (m, 4H, H-2', H-3', H-5', H-6'), 3.66 (m, 1H, H-6'), 4.62 (d, 1H, $J=6.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 5.22 (m, 2H, H-7), 6.31 (d, 1H, $J=16.2 \mathrm{~Hz}, \mathrm{H}-9$), 6.63 (dd, 1 H , $J=9.0,1.5 \mathrm{~Hz}, \mathrm{H}-3$), $6.70(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{H}-5), 6.73(\mathrm{~d}, 1 \mathrm{H}$, $J=8.1 \mathrm{~Hz}, \mathrm{H}-15), 7.00-7.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-16), 7.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 2), $7.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.6 \mathrm{~Hz}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75.5 \mathrm{MHz}$) $\delta: 60.8\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 61.0\left(\mathrm{CH}_{2}, \mathrm{C}-6^{\prime}\right), 69.8\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 73.4(\mathrm{CH}$, $\mathrm{C}^{\prime} 2^{\prime}$), 76.5 (CH, C-3'), 77.1 (CH, C-5'), 102.8 (CH, C-1'), 113.8 (CH, $\mathrm{C}-12$), 114.0 ($\mathrm{CH}=\mathrm{CH}, \mathrm{C}-9$), 114.9 (CH, C-3), 115.2 (CH, C-5), 115.9 (CH, C-15), 117.7 (CH, C-2), 121.7 (CH, C-16), 126.5 (CH, C-11), 127.1 (C, C-6), 145.6 (C, C-1, CH=CH, C-10), , 147.9 (CH, C13), 148.8 (C, C-14), 152.8 (C, C-4), 166.5 ($C=0, C-8$). The data agree well with those given in Ref. 6.
3.6.6. 2-(β-d-Glucopyranosyloxy)-5-hydroxy benzylcinnamoate (20)

Crystallization from water gave colorless crystals, yield 34%, mp $135-139^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}: 282$. IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): 3425,

2920, 1700, 1635, 1500, 1210, 1080, 770. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}, $300 \mathrm{MHz}) \delta: 3.23$ (m, 1H, H-4'), 3.30-3.48 (DMSO) (m, 4H, H-2', H-3', H-5', H-6'a), 3.68 (m, 1H, H-6'b), 4.62 (d, 1H, J=6.3, Hz, H1^{\prime}), 5.26 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{H}-7$), 6.62-6.75 (m, 3H, H-3, H-5, H-9), 7.00 (d, $1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-2$), 7.43 (m, 3H, H-13, H-14, H-15), 7.68 (d, $1 \mathrm{H}, J=16.2 \mathrm{~Hz}, \mathrm{H}-10), 7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-16) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ (DMSO-d $\left.{ }_{6}, 75.5 \mathrm{MHz}\right) \delta: 60.7\left(\mathrm{CH}_{2}, \mathrm{Cb}^{\prime}\right), 60.9\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 69.8(\mathrm{CH}$, C-4'), 73.2 ($\mathrm{CH}, \mathrm{C}-2^{\prime}$), 76.4 (CH, C-3'), 77.0 (CH, C-5'), 102.6 (CH, C-1'), 114.8 (CH, C-3), 115.3 (CH, C-5), 117.4 (CH, C-2), 118.0 (CH, H-9), 126.7 (C, C-6), $128.3(2 \times \mathrm{CH}, \mathrm{C}-12, \mathrm{C}-16), 128.9$ ($2 \times \mathrm{CH}, \mathrm{C}-13, \mathrm{C}-15$), 130.5 (CH,C-14), 134.0 (CH, C-11), 144.7 (C, C-1), 147.9 (CH, C-10), 152.1 (CH, C-4), 166.0 ($\mathrm{C}=\mathrm{O}, \mathrm{C}-8$). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{9}$: C, 61.11; H, 5.59. Found: C, 61.00; H, 5.65.

3.6.7. 2-(β-d-Glucopyranosyloxy)-5-hydroxy benzyl (4-hydroxy) benzoate (21)

Crystallization from water gave colorless crystals, yield 55%, mp $140^{\circ} \mathrm{C}$. UV $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}: 257$. IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): 3360, 2930, 1680, 1610, 1495, 1280, 1210, 1070, 770. ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}, 300 \mathrm{MHz}\right) \delta: 3.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.30-3.44$ (DMSO) (m, 4H, H$\left.2^{\prime}, \mathrm{H}^{\prime} 3^{\prime}, \mathrm{H}^{\prime} 5^{\prime}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.32$ (m, 2H, CH2, H-7), 6.64 (dd, $1 \mathrm{H}, J=2.7,9.3 \mathrm{~Hz}, \mathrm{H}-3$), 6.75 (d, 1 H , $J=2.4, \mathrm{~Hz}, \mathrm{H}-5), 6.85$ (d, 2H, $J=8.4, \mathrm{~Hz}, \mathrm{H}-11, \mathrm{H}-13$), 7.00 (d, 1H, $J=8.7 \mathrm{~Hz}, \mathrm{H}-2), 7.85(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-10, \mathrm{H}-14) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta: 61.8\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right), 61.9\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 69.8(\mathrm{CH}$, C-4'), $74.2\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right), 76.5\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 77.0\left(\mathrm{CH}, \mathrm{C}-5^{\prime}\right), 102.6(\mathrm{CH}$, C-1'), $114.2(\mathrm{CH}, \mathrm{C}-5), 115.0(\mathrm{CH}, \mathrm{C}-3), 115.5(2 \times \mathrm{CH}, \mathrm{C}-11, \mathrm{C}-13)$, 117.8 (CH, C-2), 120.2 (C, C-9), 127.0 (C, C-6), 131.4 ($2 \times \mathrm{CH}$, C-10, C-14), 147.7 (C, C-1), 152.2 (C, C-4), 163.0 (C, C-12), 165.3 ($\mathrm{C}=\mathrm{O}, \mathrm{C}-8$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{10}: \mathrm{C}, 56.87$; $\mathrm{H}, 5.25$. Found: C , 56.80; H, 5.29.

3.6.8. 2-(β-d-Glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) benzoate (22)

Crystallization from water gave colorless crystals, yield 36%, mp $128-136{ }^{\circ} \mathrm{C}$. UV $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}: 264$, 292. IR (KBr, $v_{\max } /$ cm^{-1}): $2970,1695,1520,1290,1215,1080,1240,990,760 .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta: 3.17$ (m, 1H, H-4'), 3.22-3.44 (m, 4H, H-2', H-3', H-5', H-6'a), 3.67 (d, 1H, J-11.4 Hz, H-6'b), 3.82 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.63 (m, 1H, H-1'), 5.33 (m, 2H, CH2, H-7), 6.63 (dd, $1 \mathrm{H}, J=2.7,8.7 \mathrm{~Hz}, \mathrm{H}-3), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}-5), 6.87(\mathrm{~d}, 1 \mathrm{H}$, $J=8.1 \mathrm{~Hz}, \mathrm{H}-13), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}-2), 7.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-10)$, 7.54 (dd, $1 \mathrm{H}, \mathrm{J}=3.0,8.4 \mathrm{~Hz}, \mathrm{H}-14) .{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 75.5 \mathrm{MHz}$) $\delta: 55.8\left(\mathrm{OCH}_{3}\right), 60.9\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right), 61.0\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 69.8\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right)$, 73.4 (CH, C-2'), 76.6 (CH, C-3'), 77.1 (CH, C-5'), 102.6 (CH, C- 1^{\prime}), 112.7 (CH, C-10), 114.2 (CH, C-13), 115.0 (CH, C-5), $115.3(\mathrm{CH}$, C-3), 117.7 (CH, C-2), 120.5 (C, C-9), 123.6 (CH, C-14), 127.1 (C, C-6), 147.3 (CH, C-11), 147.8 (C, C-1), 151.7 (C, C-12), 152.4 (C, $\mathrm{C}-4), 165.5(\mathrm{C}=\mathrm{O}, \mathrm{C}-8)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{11}: \mathrm{C}, 55.75$; H , 5.35. Found: C, 55.71 ; H, 5.37.

3.6.9. 2-(β-d-Glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) cinnamoate (23)

Crystallization from water gave colorless crystals, yield 48%, mp $99-100^{\circ} \mathrm{C}$. UV $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}: 296,325$. IR ($\mathrm{KBr}, v_{\max } / \mathrm{cm}^{-1}$): 3405, 2930, 1690, 1600, 1500, 1270, 1210, 1175, 1075, 1035, 810. ${ }^{1} \mathrm{H}$ NMR (MeOD, 300 MHz) $\delta: 3.82$ (m, 1H, H-5'), 4.15 (dd, $1 \mathrm{H}, J=9.9,1.7 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}$), 4.24 (dd, $1 \mathrm{H}, J=5.3,12.0 \mathrm{~Hz}, \mathrm{H}^{\prime} 6^{\prime} \mathrm{b}$), 5.02 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{1}^{\prime}$), 5.12 (m, 1H, H-4'), 5.17 (m, 2H, H-7), 5.27 (m, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} 3^{\prime}\right), 6.39$ (d, 1H, J=15.9 Hz, H-9), 6.97 (dd, $1 \mathrm{H}, J=2.5$, 8.7 Hz, H-3), 7.09 (d, 1H, J = $7.2 \mathrm{~Hz}, \mathrm{H}-2$), 7.10 (s, 1H, H-5), 7.19 (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{H}-15$), 7.36 (s, 1H, H-12), 7.38 (d, 1H, $J=8.4 \mathrm{~Hz}$, $\mathrm{H}-16$), 7.62 (d, 1H, J = 16.2 Hz, H-10). ${ }^{13} \mathrm{C}$ NMR (MeOD, 75.5 MHz) $\delta: 60.6\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 61.8\left(\mathrm{CH}_{2}, \mathrm{C}-6^{\prime}\right), 68.1\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 70.9(\mathrm{CH}, \mathrm{C}-$ $\left.2^{\prime}\right), 72.0\left(\mathrm{CH}, \mathrm{C}-3^{\prime}\right), 72.5\left(\mathrm{CH}, \mathrm{C}-5^{\prime}\right), 99.7\left(\mathrm{CH}, \mathrm{C}-1^{\prime}\right), 117.1(\mathrm{CH}=\mathrm{CH}$,
$\mathrm{C}-9), 118.7(\mathrm{CH}, \mathrm{C}-2), 122.1(2 \times \mathrm{CH}, \mathrm{C}-3, \mathrm{C}-5), 122.7(\mathrm{CH}, \mathrm{C}-15)$, 123.9 (CH, C-12), 126.5 (CH, C-16), 127.8 (C, C-6), 133.1 (C, C-11), 142.4 (C, C-13), 143.4 (C, C-14), 145.5 (CH=CH, C-10), 146.3 (C, $\mathrm{C}-1), 151.8(\mathrm{C}, \mathrm{C}-4), 166.0(\mathrm{C}=\mathrm{O}, \mathrm{C}-8)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{11}$: C, 57.74; H, 5.48. Found: C, 57.67; H, 5.53.

3.6.10. 2-(β-d-Glucopyranosyloxy)-5-benzoyloxy
 benzylbenzoate (24)

Crystallization from water gave colorless crystals, yield 60\%, mp $190-194^{\circ} \mathrm{C}$. UV $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}: 230,276$. IR ($\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}$): 2950, 1730, 1715, 1500, 1390, 1255, 1200, 1080, 1060, 1040, 890, 795 703. ${ }^{1} \mathrm{H}$ NMR (DMSO, 300 MHz) $\delta .: 3,17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.30-$ 3.38 (DMSO) (m, 3H, H-2', H-3', H-5'), 3.45-3.52 (m, 1H, H-6'a), 3.69-3.75 (m, 1H, H-6'b), 4.91 (d, 1H, J=6.6, Hz, H-1'), 5.39 (dd, $2 \mathrm{H}, \mathrm{J}=13.5,3.6$, Hz, H-7), 7.27 (m, 2H, H-3, H-5), 7.33 (m, 1H, $\mathrm{H}-2), 7.50-7.68$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-12, \mathrm{H}-13, \mathrm{H}-18, \mathrm{H}-20$), 7.72-7.77 (m, 1H, H-19), 8.01 (d, 2H, J=7.2 Hz, H-10,H-14), 8.11 (d, 2H, $J=6.9, \mathrm{~Hz}, \mathrm{H}-17, \mathrm{H}-21) .{ }^{13} \mathrm{C}$ NMR (DMSO, 75.5 MHz$) \delta: 60.9\left(\mathrm{CH}_{2}\right.$, C-6'), $61.4\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 69.8\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 73.1\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right), 76.5(\mathrm{CH}, \mathrm{C}-$ $\left.3^{\prime}\right), 76.9\left(\mathrm{CH}, \mathrm{C}-5^{\prime}\right), 100.1\left(\mathrm{CH}, \mathrm{C}-1^{\prime}\right), 117.4(\mathrm{CH}, \mathrm{C}-2), 121.9(\mathrm{CH}$, C-5), 122.8 (CH, C-3), 126.1 (C, C, C-6), $129.0(5 \times \mathrm{CH}, \mathrm{C}-9, \mathrm{C}-11$, $\mathrm{C}-13, \mathrm{C}-18, \mathrm{C}-20), 129.2(2 \times \mathrm{CH}, \mathrm{C}-17, \mathrm{C}-21), 129,5(\mathrm{CH}, \mathrm{C}-10)$, $129.8(2 \times \mathrm{CH}, \mathrm{C}-14, \mathrm{C}-16), 133.2(\mathrm{CH}, \mathrm{C}-12), 134.0(\mathrm{C}, \mathrm{C}-19)$, 145.0 (C, C-4), 152.9 (C, C-1), 164.9 ($\mathrm{C}=\mathrm{O}, \mathrm{C}-15$), 165.8 ($\mathrm{C}=\mathrm{O}, \mathrm{C}-$ 8). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{10}$: C, 63.53; H, 5.13. Found: C, 63.60; H, 5.25.

3.7. 4-(2,3,4,6-Tetra-O-acetyl- β-d-glucopyranosyloxy)phenylbenzoate (26)

The compound 26 was obtained by glycosylation of (25), yield, $\mathrm{mp} 150-151^{\circ} \mathrm{C}$, lit. ${ }^{25} 136-138^{\circ} \mathrm{C}$, lit. ${ }^{30} 154-155^{\circ} \mathrm{C}$. UV $\lambda_{\max }$ $(\mathrm{EtOH}) / \mathrm{nm}: 283$. IR $\left(\mathrm{KBr}, v_{\text {max }} / \mathrm{cm}^{-1}\right): v / \mathrm{cm}^{-1}: 1740,1505,1370$ 1230, 1200, 1065, 700. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta .: 2.04,2.05$, 2.08 (s, $4 \times 3 \mathrm{H}, \mathrm{Ac}), 3.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.15(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}, \mathrm{H}-$ $6^{\prime} \mathrm{b}$), 4.27 (dd, $1 \mathrm{H}, J=5.4,12.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}$), 5.05 (d, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}$, H-1'), 5.15 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 5.25-5.34 (m, 2H, H-2', H-3'), 7.03 (d, $2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-6), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5), 7.48$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-18, \mathrm{H}-20$), 7.61 (t, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}-19$), 8.17 (d, 2 H , $J=7.5 \mathrm{~Hz}, \mathrm{H}-17, \mathrm{H}-21) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta: 20.7$ $\left(4 \times \mathrm{CH}_{3}, \mathrm{COCH}_{3}\right), 62.1\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right), 68.4\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right), 71.3\left(\mathrm{CH}, \mathrm{C}-2^{\prime}\right)$, 72.2 (CH, C-5'), 72.8 (CH, C-3'), 99.7 (CH, C-1'), 118.2 ($2 \times \mathrm{CH}, \mathrm{C}-$ 2, C-6), $122.8(2 \times \mathrm{CH}, \mathrm{C}-5, \mathrm{C}-3), 128.7(2 \times \mathrm{CH}, \mathrm{C}-18, \mathrm{C}-20)$, 129.5 (C, C-16), $130.3(2 \times \mathrm{CH}, \mathrm{C}-17, \mathrm{C}-21), 133.8(\mathrm{CH}, \mathrm{C}-19)$, 146.6 (C, C-4), 154.7 (C, C-1), 165.0 (C=O, C-15), 169.5, 170.3, $170.7(4 \times C, A c)$. The data are in agreement with literature. ${ }^{25}$

3.8. 4-(β-d-Glucopyrfmanosyloxy)-phenylbenzoate (27)

The compound 27 was obtained according to procedure for $\mathbf{1 4}$ 23 from glycoside 25 and was crystallized from water. Yeild 36\%, mp 189-196 ${ }^{\circ} \mathrm{C}$. UV $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}: 230$, 269. IR (KBr, $v_{\text {max }} /$ cm^{-1}): $v / \mathrm{cm}^{-1}: 3540,3390,2890,1712,1600,1510,1455,1400$, 1275, 1240, 1200, 1080, 1040, 820, 710. ${ }^{1} \mathrm{H}$ NMR (DMSO, $300 \mathrm{MHz}) \delta: 3.17-3.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.25-3.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3\right.$, H-5'), 3.44-3.53 (1H, m, H-6'a), 3.69 (dd, $1 \mathrm{H}, J=4.5,11.1, \mathrm{~Hz}, \mathrm{H}-$ $\left.6^{\prime} \mathrm{b}\right), 4.87\left(\mathrm{~d}, 1 \mathrm{H}, J=6.9, \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-$ 6), 7.19 (d, $2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5$), $7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-12)$, 7.72 (t, 1H, $J=7.2 \mathrm{~Hz}, \mathrm{H}-11$), 8.11 (d, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-9, \mathrm{H}-13)$. ${ }^{13} \mathrm{C}$ NMR (DMSO, 75.5 MHz) $\delta: 60.6\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right), 69.6\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right)$, 73.2 (CH, C-2'), 76.5 (CH, C-5'), 77.0 (CH, C-3'), 100.6 (CH, C-1'), $116.9(2 \times \mathrm{CH}, \mathrm{C}-2, \mathrm{C}-6), 122.6(2 \times \mathrm{CH}, \mathrm{C}-5, \mathrm{C}-3), 129.0(2 \times \mathrm{CH}$, C-16, C-18, C-20), 129.7 ($2 \times$ CH, C-17,C-21), 134.0 (CH, C-19), 144.8 (C, C-4), 155.1 (C, C-1), 165.0 ($\mathrm{C}=\mathrm{O}, \mathrm{C}-8$). 164.8. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{8}$: C, 60.63; H, 5.36. Found: C, $60.50 ; \mathrm{H}, 5.52$.

Acknowledgements

This work was supported by the scientific program 'Nauka' No. 2387. We would like to thank the Department of Chemical Analysis of Tomsk State University for assistance in obtaining elemental analysis data.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.carres.2014.02. 014.

References

1. Hedner, T.; Everts, B. Clin. Rheumatol. 1998, 17, 17-25.
2. Boeckler, G. A.; Gershenzon, J.; Unsicker, S. B. Phytochemistry 2011, 72, 14971509.
3. Chen, P. D. Chin. Tradit. Herb. Drugs 2006, 37, 1607-1608.
4. Choudhary, M. I.; Fatima, N.; Abbasi, M. A.; Jalil, S.; Ahmad, V. U.; Atta-urRahman Bioorg. Med. Chem. 2004, 12, 5793-5798.
5. Lee, K. H.; Yang, M. C.; Kim, K. H.; Kwon, H. C.; Choi, S. U.; Lee, K. R. Molecules 2008, 13, 41-45.
6. Si, Ch. L.; Li, Sh. M.; Liu, Z.; Kim, J. K.; Bae, Y. S. Nat. Prod. Res. 2011, 25, 13961401.
7. Zhang, X. F.; Thuong, P. T.; Min, B. S. J. Nat. Prod. 2006, 69, 1370.
8. Poblocka-Olech, L.; Krauze-Baranowska, M.; Glod, D.; Kawiak, A.; Lojkowska, E. Phytochem. Anal. 2010, 21, 463-469.
9. Lim, E.; Doucet, C. J.; Li, Y.; Elias, L.; Worrall, D.; Spencer, S. P., et al J. Biol. Chem. 2002, 277, 586-592.
10. Gülçin, I. Toxicology 2006, 217, 213-220.
11. Pérez-Alvarez1, V.; Fernández-Martinez, E.; Morales-Ríos, M. S.; Bobadilla, R. A.; Muriel, P. Proc. West. Pharmacol. Soc. 2003, 46, 136-138.
12. Lodovici, M.; Guglielmi, F.; Meoni, M.; Dolara, P. Food Chem. Toxicol. 2001, 39, 1205-1210.
13. Ou, Sh.; Kwok, K. Ch. J. Sci. Food Agric. 2004, 84, 1261-1269.
14. Chong, K. P.; Rossall, S.; Atong, M. J. Agric. Sci. 2009, 1, 15-20.
15. Khadem, Sh.; Marles, R. J. Molecules 2010, 15, 7985-8005.
16. Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Watari, A.; Kobayashi, M., et al Biol. Pharm. Bull. 2010, 33, 983-987.
17. Kumar, S.; Prahalathan, P.; Raja, B. Redox Rep. 2011, 16, 208-215.
18. Prince, P. S. M.; Rajakumar, S.; Dhanasekar, K. Eur. J. Pharmacol. 2011, 668, 233240.
19. Belyanin, M. L.; Stepanova, E. V.; Ogorodnikov, V. D. Carbohydr. Res. 2012, 363, 66-72.
20. Briggs, J. C.; Haines, A. H.; Taylor, R. J. K. J. Chem. Soc., Chem. Commun. 1992, 1039-1041.
21. Zemplen, G.; Bognar, R.; Pongor, G. Acta Chim. Hung. Tomus. 1959, 19, 285293.
22. Erickson, R. L.; Pearl, I. A.; Darling, S. F. Phytochemistry 1970, 9, 857-863.
23. Lee, Y. S.; Cui, Ch. B.; Kim, J. K.; Bae, Y. S.; Lee, J. Y.; Kang, I. J., et al Korean Soc Appl. Biol. Chem. 2010, 53, 729-733.
24. Choudhary, M. I.; Fatima, N.; Abbasi, M. A.; Jalil, S.; Ahmad, V. U.; Rahman, A. Bioorg. Med. Chem. 2004, 12, 5793-5798.
25. Lee, Y. S. U.S. Patent $6,388,103$ B2, 2002.
26. Seo, D. H.; Jung, J. H.; Lee, J. E.; Jeon, E. J.; Kim, W.; Park, C. S. Appl. Microbiol. Biotechnol. 2012, 95, 1417-1425.
27. Varma, M.; Varma, R. S.; Parthasarathy, M. R. Monatsh. Chem. 1980, 111. 46947.
28. Perold, G. W.; Rosenberg, M. E. K.; Howard, A. S.; Huddle, P. A. J. Chem. Soc., Perkin Trans. 1 1979, 239-243.
29. Yang, R. L.; Li, N.; Ye, M.; Zong, M. H. J. Mol. Catal. B Enzym. 2010, 67, 41-44.
30. Robertson, A.; Waters, R. B. J. Chem. Soc. 1930, 2729-2733.

[^0]: * Corresponding author. Tel.: +7 8 (3822) 5638 61; fax: +7 8 (3822) 563637

 E-mail address: eline_m@mail.ru (E.V. Stepanova).

