Chemical Nomenclature

Positive ions (cations)	Negative ions (anions)
1+	1-
ammonium (NH ₄ ⁺)	acetate $(C_2H_3O_2)$
copper(I) (Cu ⁺)	azide (N ₃ ⁻)
hydrogen (H ⁺)	chlorate (ClO ₃ ⁻)
silver (Ag ⁺)	cyanide (CN)
	dihydrogen phosphate (H ₂ PO ₄)
2+	hydride (H ⁻)
cadmium (Cd ²⁺)	bicarbonate (HCO ₃ ⁻)
cobalt(II) (Co ²⁺)	hydroxide (OH ⁻)
copper(II) (Cu ²⁺)	nitrate (NO ₃ ⁻)
iron (Fe ²⁺)	nitrite (NO ₂ ⁻)
lead (Pb^{2+})	perchlorate (ClO ₄ ⁻)
manganese(II) (Mn ²⁺)	permanganate (MnO ₄ ⁻)
mercury(I) (Hg $_2^{2+}$)	thiocyanate(SCN)
mercury(II) (Hg ²⁺)	
nickel (Ni ²⁺)	2-
tin (Sn ²⁺)	carbonate (CO ₃ ²⁻)
zinc (Zn^{2+})	chromate (CrO ₄ ²⁻)
	dichromate ($Cr_2O_7^{2-}$)
3+	hydrogen phosphate (HPO ₄ ²⁻)
aluminum (Al ³⁺)	oxide (O^{2-})
chromium(III) (Cr ³⁺)	peroxide $(O_2^{2^-})$
iron(III) (Fe ³⁺)	sulfate (SO ₄ ²⁻)
	sulfide (S ²⁻)
	sulfite (SO ₃ ²⁻)
	3-
	nitride (N ³⁻)
	phosphate (PO ₄ ³⁻)
	phosphide (P ³⁻)

Naming cations and anions

Monatomic anions (a single atom with a negative charge) change their ending to "-ide"

Examples:

- \circ O²⁻ = oxide ion
- \circ Cl⁻ = chloride ion

Oxoanions (negatively charged polyatomic ions which contain O) end in "-ate". However, if there is more than one oxyanion for a specific element then the endings are:

Two less oxygen than the most common starts with "hypo-" and ends with "-ite"	One less oxygen than the most common ends with "-ite"	THE MOST COMMON OXOANION ENDS WITH ''-ATE''		One more oxygen than the most common starts with "per-" and ends with "-ate"
lO ⁻ = hypochlorit e	$ClO_2^- =$ chlorite $NO_2^- =$ nitrite $SO_3^{2-} =$ sulfite	Most common oxyanions w four oxygens $SO_4^{2^-} = sulfate$ $PO_4^{3^-} = phosphate$ $CrO_4^{2^-} = chromate$	it Most common oxyanions with three oxygens $NO_3^- = nitrate$ $CIO_3^- = chlorate$ $CO_3^{2-} = carbonate$	ClO ₄ ⁻ = perchlorat e

Polyatomic anions (a negatively charged ion containing more than one type of element) often add a hydrogen atom; in this case, the anion's name either adds "hydrogen-" or "bi-" to the beginning

Example:

CO₃²⁻ becomes HCO₃⁻

"Carbonate" becomes either "Hydrogen Carbonate" or "Bicarbonate"

Naming Binary Molecular Compounds

Molecular compounds are formed from the covalent bonding between non-metallic elements. The nomenclature for these compounds is described in the following set of rules.

- 1. The more positive atom is written first (the atom which is the furthest to the left and to the bottom of the periodic table)
- 2. The more negative second atom has an "-ide" ending.
- 3. Each prefix indicates the number of each atom present in the compound.

Number of Atoms	Prefix	Number of Atoms	Prefix
1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

Examples:

 CO_2 = carbon dioxide P_4S_{10} = tetraphosphorus decasulfide

Naming Inorganic Acids

 Binary acids (H plus a nonmetal element) are acids that dissociate into hydrogen atoms and anions in water. Acids that only release one hydrogen atom are known as*monoprotic*. Those acids that release more than one hydrogen atom are called *polyprotic*acids. When naming these binary acids, you merely add "hydro-" (denoting the presence of a hydrogen atom) to the beginning and "-ic acid" to the end of the anion name.

Examples:

HCl = hydrochloric acid HBr = hydrobromic acid

2. Ternary acids (also called oxoacids, are formed by hydrogen plus another element plus oxygen) are based on the name of the anion. In this case, the *-ate*, and *-ite*suffixes for the anion are replaced with *-ic* and *-ous* respectively. The new anion name is then followed by the word "acid." The chart below depicts the changes in nomenclature.

Anion name	Acid name	
hypoite	hypoous acid	
ite	ous acid	
ate	ic acid	
perate	peric acid	

3.

Example:

 ClO_4^{-} to $HClO_4 =>$ perchlorate to perchloric acid ClO^{-} to HClO => hypochlorite to hypochlorous acid