

Направление 09.03.03

Информатика 1.2

Лекция «Математические и логические основы информатики. Кодирование данных»

Лектор Молнина Елена Владимировна Старший преподаватель кафедры Информационных систем,

ауд.9, гл.корпус.

mail: molnina@list.ru

Арифметические основы ВМ

Заголовок фрагмента	Ссылка на запись вебинара
лекции	
Системы счисления	http://www.youtube.com/watch?v=Xd4WMmmG DHc

Понятие числа. В информатике важно знать способы представления чисел, так как именно они определяют необходимые ресурсы внешней и оперативной памяти, скорость и погрешность вычислений.

Система счисления — это способ представления числа символами специального алфавита. Символы специального алфавита называют цифрами.

Системы счисления бывают:

- непозиционные,
- позиционные.

В непозиционных системах счисления значение числа определяется как сумма или разность цифр в числе, т.е. позиция цифры не влияет на величину числа. Например, в римской системе счисления в числе XXX (тридцать) цифра X (десять) в любой позиции равна десяти.

Позиционная система счисления (СС)

В позиционных системах счисления величина, которая обозначается цифрой, зависит от места, т.е. позиции цифры в числе. Например, в десятичном числе 5432,1 первая цифра означает пять тысяч, вторая цифра — четыре сотни, третья цифра — три десятка, четвёртая цифра — две единицы, а после запятой — одну десятую долю единицы.

Запись же числа 5432,1 означает сокращённую запись суммы:

Позиционная система счисления (СС)

Основание позиционной СС (q) — это количество различных цифр, которые используются для изображения чисел в данной системе счисления.

Если за основание принять число 5, то получим пятеричную СС, которая до сих пор используется в Японии. Это числа 0,1,2,3,4.

Если за основание принять число 10, то получим десятичную СС.

Числа от 0 до 9 называют базисными числами.

Базисные числа — от 0 до q-1.

В любой системе счисления с основанием q **запись любого числа** означает сокращённую запись выражения вида:

$$X(q) = a_{n-1}q^{n-1} + a_{n-2}q^{n-2} + \ldots + a_1q^1 + a_0q^0 + a_{-1}q^{-1} + \ldots + a_{-m}q^{-m} = \sum_{i=-m}^{n-1} a_i \cdot q^i,$$

Системы счисления, используемые в ЭВМ

Системы счисления	Цифры системы счисления				
Двоичная	0, 1				
Восьмеричная	0, 1, 2, 3, 4, 5, 6, 7				
Шестнадцатеричная	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i>				

Задание:

напишите по порядку числа в двоичной и в шестнадцатеричной СС. Что происходит в каждом разряде при исчерпании базисных цифр?

Например, в восьмеричной СС счёт будет выглядеть следующим образом:

_	
10	
11	
12	
13	100
14	•••
15	777
16	1000
17	
20	7777
77	
100	
	12 13 14 15 16 17 20

Системы счисления, используемые в ЭВМ

(10)	(16)	(2)	(8)
0	0	0	0
1	1	1	1
2	2	10	2
3	3	11	3
4	4	100	4
5	5	101	5
6	6	110	6
7	7	111	7
8	8	1000	10
9	9	1001	11
10	Α	1010	12
11	В	1011	13
12	С	1100	14
13	D	1101	15
14	Е	1110	16
15	F	1111	17
16	10	10000	20

Смешанные СС — в которой числа, заданные в некоторой системе счисления с основанием р изображаются с помощью цифр другой системы счисления с основанием q.

• Примером смешанной СС является **двоично-десятичная система.** В данной СС для изображения каждой десятичной цифры отводится 4 двоичных разряда, поскольку максимальная десятичная цифра 9 кодируется как 1001₂. Например,

$$925_{10} = 1001\ 0010\ 0101_{2-10}$$
.

• Числа в таких СС называются двоично-кодированными.

$$A2_{16} = 1010\ 0010_2 = 1010\ 0010_{2-16}$$

Перевод чисел из одной системы счисления в другую (из 10-й в любую)

Пример. Представить число 89₁₀ в двоичном виде.

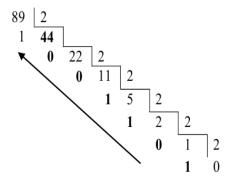


Рис. 1. Перевод числа 8910 в двоичное представление

Результат перевода числа из десятичной системы в двоичную систему будет 89_{10} = 1011001_2 .

$$344=2^8+88;\ 88=2^6+24;\ 24=2^4+8;\ 8=2^3.$$
 Позиция 8 7 6 5 4 3 2 1 0 Коэффициент 1 0 1 0 1 1 0 0 0

Omsem: 101011000₂.

Число в десятичной СС	Степень числа 2	Число в двоичной СС
1	2 ⁰	1
2	2 ¹	10
4	2 ²	100
8	2 ³	1000
16	2 ⁴	10000
32	2 ⁵	100000
64	2 ⁶	1000000
128	2 ⁷	10000000
256	2 ⁸	10000000
512	2 ⁹	100000000
1024	2 ¹⁰	1000000000

Перевод чисел из одной системы счисления в другую (из любой в 10-ю)

Пример 1.1. Переведите число 110110, 01 из двоичной системы в десятичную.

Решение.
$$110110, 01_2 = 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = 32 + 16 + 4 + 2 + 0,25 = 54,25_{10}$$
.

Omsem: 54,25₁₀.

Пример 1.2. Переведите число 206,4 из восьмеричной системы в десятичную.

Решение.
$$206,4_8 = 2 \cdot 8^2 + 0 \cdot 8^1 + 6 \cdot 8^0 + 4 \cdot 8^{-1} = 128 + 6 + 0,5 = 134,5_{10}$$
. Ответ: $134,5_{10}$.

Пример 1.3. Переведите число A2F,4 из шестнадцатеричной системы в десятичную.

Решение.
$$A2F$$
, $4_{16} = 10 \cdot 16^2 + 2 \cdot 16^1 + 15 \cdot 16^0 + 4 \cdot 16^{-1} = 2560 + 32 + 15 + 0,25 = 2607,25_{10}$.

Omeem: 2607,25₁₀.

Перевод чисел из любой системы счисления в двоичную и обратно (смешанная СС)

	· · ·		_					
Цифра	0	1	2	3	4	5	6	7
Триада	000	001	010	011	100	101	110	111

Пример 1.10. Переведите число 10011001111,0101 из двоичной системы в восьмеричную.

Решение.

$$\underbrace{010}_{2} \underbrace{011}_{3} \underbrace{001}_{1} \underbrace{111}_{7}, \underbrace{010}_{2} \underbrace{100}_{4} = 2317,24_{8}$$

Ответ: 2317,248.

Цифра	0	1	2	3	4	5	6	7
Тетрада	0000	0001	0010	0011	0100	0101	0110	0111
Цифра	8	9	A	В	С	D	Е	F
Тетрада	1000	1001	1010	1011	1100	1101	1110	1111

Пример 1.12. Переведите число 10111111011,100011 из двоичной системы в шестнадцатеричную.

Решение.

$$\underbrace{0101}_{5} \underbrace{1111}_{F} \underbrace{1011}_{B}, \underbrace{1000}_{8} \underbrace{1100}_{C} = 5FB,8C_{16}$$

Ответ: 5FB,8С₁₆.

Например:

$$1234,5_{8} = \underbrace{001}_{1} \underbrace{010}_{2} \underbrace{011}_{3} \underbrace{100}_{4}, \underbrace{101}_{5}; \quad 2ABCD_{16} = \underbrace{10}_{2} \underbrace{1010}_{A} \underbrace{1011}_{B} \underbrace{1100}_{C} \underbrace{1101}_{D};$$

$$2467,1_{8} = \underbrace{010}_{2} \underbrace{100}_{4} \underbrace{110}_{6} \underbrace{111}_{7}, \underbrace{001}_{7}; \quad FD97E_{16} = \underbrace{11111101}_{F} \underbrace{0011}_{D} \underbrace{1101}_{1111110}.$$

Контрольные вопросы и задания к п. 1.1.

- 1. Дайте определение системы счисления.
- 2. Назовите виды систем счисления.
- 3. Укажите, почему римская система счисления и старославянская буквенная система счисления относятся к непозиционным системам.
- 4. Укажите, почему десятичная система счисления относится к позиционным системам.
- 5. Укажите, что называют основанием позиционной системы счисления.
- 6. Назовите позиционные системы счисления.
- 7. Приведите выражение сокращённой записи любого числа в любой системе счисления с основанием q.
- 8. Укажите, какие преимущества имеет двоичная система счисления.
- 9. Укажите, какие системы счисления при работе компьютера вы знаете.
- 10. Укажите, как осуществляется перевод целого числа из десятичной системы счисления в двоичную систему.
- 11. Укажите, как осуществляется перевод восьмеричных и шестнадцатеричных чисел в двоичную систему.
- 12. Укажите, как осуществляется перевод чисел из двоичной системы в восьмеричную и шестнадцатеричную системы.

СПАСИБО ЗА ВНИМАНИЕ