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1. INTRODUCTION

The essence of the Vavilov–Cherenkov effect is
that an electric charge moving in a medium at a con�
stant velocity emits electromagnetic waves with a con�
tinuous spectrum and specific angular distribution.
Radiation is emitted only if the velocity of the charge
exceeds the phase velocity of light in the transparent
medium under investigation. A specific feature of the
angular distribution is that wavevector k of emitted
waves forms angle Θ with velocity v, such that
nβcosΘ = 1, where n is the refractive index of the
transparent medium. In 1947, Frank and Ginzburg [1]
considered radiation generated by a charge moving
uniformly along the axis of a cylindrical channel cut
through in a medium with permittivity ε1 and filled
with a substance having permittivity ε2. This problem
is important because energy losses for Vavilov–Cher�
enkov radiation (VCR) as a charge moves in a medium
are comparatively small (these are mainly ionization
losses localized in the immediate vicinity of the trajec�
tory). For this reason, ionization losses are avoided for
motion in channels, slits, and in the vicinity of the
medium, and VCR is preserved. In recent years,
intense studies have been carried out in the field of
nondestructive testing of relativistic beams [2–7] and
for developing new methods of accelerating charged
particles [8, 9] based on VCR generated by short
bunches of charged particles in the vicinity of finite�
size targets.

It should be noted that there are very few exact
solutions to the VCR problem for media with sharp
boundaries. The most important exactly solvable
problems are the above�mentioned problem of emis�
sion of radiation by a charge uniformly moving along
the axis of a cylindrical channel [1, 10] and the prob�

lem of radiation occurring when a charged particle
moves through a sphere [11] or past a periodic struc�
ture consisting of spherical targets with a finite con�
ductivity [12]. Solving such problems in more com�
plex geometries is hampered due to the difficulties in
formulating the boundary conditions.

In [13], the characteristics of transition radiation
from perfectly conducting focusing targets were inves�
tigated with a method in which polarization radiation
is considered as the field of the current induced on a
target surface by the field of a point charge moving
uniformly along a straight line. This method was sub�
sequently generalized in [14–16] for media with finite
conductivity and dimensions. The polarization cur�
rent method was used in [15] to solve the problem of
radiation occurring as a charge moves along the axis of
a cylindrical vacuum channel in a finite�radius screen.
Depending on the parameters, the resulting solution
describes various types of radiation (transition radia�
tion, VCR, and diffraction radiation). In the case of a
transparent medium, the solution completely coin�
cides with the analytic expression obtained in the
Cherenkov radiation theory for a finite�thickness layer
[17]; for a thicker layer, the solution gives the well�
known Tamm–Frank formula for VCR in an
unbounded transparent medium. The advantages of
this method lie in the possibility of determining the
characteristics of various types of polarization radia�
tion for targets with complex surface profiles with
allowance for the actual electric dielectric properties
of the material.

This article is devoted to application of the polar�
ization current method to solving the problem of VCR
occurring from the uniform motion of a point charge
in vacuum in the vicinity of a finite�size prismatic tar�
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get with an arbitrary permittivity and to analysis of
peculiarities of the radiation field.

2. VAVILOV–CHERENKOV RADIATION
FROM A DIELECTRIC WEDGE

VCR is polarization radiation emitted by atoms of a
medium under the action of external field E0 of a par�
ticle with energy

which moves at a constant velocity ν = βc in the sub�
stance (or near it). Therefore, the radiation field is a
solution to the “vacuum” macroscopic Maxwell equa�
tions with the polarization current on the right�hand
side, the density of which for a nonmagnetic medium
has the form

(1)

where E0 ≡ E0(r, ω) and Epol ≡ Epol(r, ω) are the Fourier
transforms of the particle field in vacuum and of the
field of the currents induced in the substance, respec�
tively. Conductivity σ(ω) of the medium appearing in
Eq. (1) is related to permittivity ε(ω) of the medium by
the well�known relation

(2)

Maxwell’s equations lead to the following equation
for the magnetic field Hpol of polarization radiation:

(3)
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The solution to the this equation in the wave zone
gives the field of polarization radiation emitted by
atoms and molecules of the substance under the action
of the field of the particle as a result of so�called distant
collisions, in which the energy lost by the particle is
negligibly small as compared to the total energy.

If the polarization currents are induced in a limited
volume (i.e., the medium has boundaries), integration
in the solution to Eq. (3) is performed only over vol�
ume VT occupied by the currents:

(4)

It should be noted that this expression is the exact
solution to the Maxwell equations, which makes it
possible to avoid solving differential equation (1).
Allowance for the second term on the right�hand side
of Eq. (1) would ultimately lead to replacement of vac�

uum wavenumber ω/c by ω/c. Such a replace�
ment describes the “renormalization” of the field of
the charge in the medium due to the contribution from
the field of the polarization current [15]. In spite of its
comparative simplicity, this expression describes all
types of polarization radiation generated in the
medium with an arbitrary conductivity and an arbi�
trary inhomogeneity (i.e., in a target of any shape).

Let us use this method in the problem of radiation
occurring as a result of uniform motion of a charged
particle in vacuum in the vicinity of a finite�size pris�
matic target with an arbitrary permittivity (Fig. 1).

Since the target in Fig. 1 is assumed to be infinitely
large only along the x axis, expression (4) used for
determining the strength of the magnetic field of radi�
ation should be written in the form

(5)

where q = (ω/c) e is the wavevector and e = r/r.

The Fourier component of the particle field
appearing in expression (5) can be determined from
the total Fourier transform of the field:

(6)
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Fig. 1. Diagram of generation of polarization radiation by
a charged particle moving uniformly near a prismatic
wedge.
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The Fourier transform of the current density pro�
duced by the charge moving along an oblique trajec�
tory in the geometry shown in Fig. 1 has the form

(7)

where e is the particle charge, v = ν{0, – sinα, cosα}
is the velocity vector, δ(q ⋅ v – ω) is the Dirac delta
function, and h = b/cosα.

Then, we can determine the Fourier component of
the field of a particle moving uniformly at an angle to
the target surface from the total Fourier component
(6) of the field:

(8)

Here, function sgn(y' – (νy/νz)z' + h) assumes a value
of +1 if the target lies below the particle trajectory and
–1 if the target lies above the particle trajectory.

Substituting expression (8) into formula (5), we can
obtain the following expression for the radiation field
in the medium:

(9)

where we have used the notation

In expression (9), we have taken into account the
fact the target lies below the trajectory of the particle,
i.e.,

(see Fig. 1). This expression defines the total radiation
field in the medium. The components of vector e

appearing in expression (9) can be written in terms of
polar angle Θ in the medium:

To find the radiation field in vacuum, we cannot
directly use the Fresnel diffraction laws; for example,
for good conductors, emitting dipoles are concen�
trated near the interface, and the field near the surface
does not correspond to the wave zone. For this pur�
pose, we can use the reciprocity theorem [18]

(10)

where Epol(vac) is the sought radiation field in vacuum,
which is produced by a dipole located in the medium,
and Epol(m) is the radiation field in the medium, which
is produced by the same dipole, but located in vacuum
at a considerable distance from the interface. To con�
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medium, we used Snell’s law in expression (10). Like
in the formulation of the reciprocity theorem (10), we
have taken into account the relationship between the
strengths of the electric and magnetic fields in vacuum
for a spherical wave:

To determine the electric field in vacuum in the
case when the field of the wave incident on the inter�
face from vacuum is defined by formula (10), the mag�
netic field strength in the medium should be decom�
posed into components relative to the plane of inci�
dence of the wave:

where

Consequently, the electric field strength in vacuum
is defined by the formula

(11)

Here, the following notation has been introduced: the
components of magnetic field (9),

, (12)

which are perpendicular and parallel to the plane of
incidence of the wave on the interface, as well as
Fresnel coefficients

(13)

for an infinitely large interface. To find the radiation
intensity in vacuum using expression (11), we must
express the radiation angles in the medium in terms of
corresponding radiation angles in vacuum:

(14)

Thus, the spectral�angular density of polarized radia�
tion can be determined from the relation

(15)

Expression (15) for the spectral�angular distribu�
tion of polarized radiation was obtained by attaching
the angles of observation to the Cartesian system of
coordinates related to the target (see Fig. 1), which is
unusual for such problems because in analyzing VCR,
the radiation angles are normally measured from
direction of the particle momentum. For this reason,
we pass to the system of observation from the trajec�
tory of a charged particle, in which the relation
between angles θ and θ' can be written as θ = θ' – α.
We focus on the fact that for θ' > α, the azimuthal angle
ϕ = 0, while for θ' < α, azimuthal angle ϕ = π (see Fig. 1).

In experiments, it is often easier to rotate the target
relative to the trajectory of the bunch of charged parti�
cles than to change the direction of the bunch; there�
fore, the relation between the angle of particle flight,
the wedge angle, and the angle of rotation of the target
can be written as α = π/2 – φ – ψ (Fig. 2).

Consequently, the spectral�angular distribution of
polarized radiation in the “forward” direction (posi�
tive direction of the z axis) has the form

(16)

Epol m( ) 1

ε
����� Hpol m( )

.=

Hpol m( ) 2
H||

pol m( ) 2
H⊥

pol m( ) 2
,+=

H⊥

pol m( ) 2
fH

2 H⊥

pol 2
,=

H||

pol m( ) 2
εfE

2
H||

pol 2
.=

Epol vac( ) 2 1

ε 2
������=

× fH
2 H⊥

pol 2
ε fE

2
H||

pol 2
+( ).

H⊥

pol Hx
pol ϕcos Hy

pol ϕ,sin–=

H||

pol Hz
pol( )

2
Hx

pol ϕsin Hy
pol ϕcos+( )

2
+=

fH
2ε θcos

ε θcos ε θsin
2

–+
��������������������������������������,=

fE
2 θcos

θcos ε θsin
2

–+
������������������������������������=

e Θ ϕsinsin Θ ϕcossin Θcos, ,{ }=

=  1

ε
����� θ ϕsinsin θ ϕcossin ε θsin

2
–, ,

⎩ ⎭
⎨ ⎬
⎧ ⎫

.

d2W
dωdΩ
������������� cr2 Epol vac( ) 2

=

=  cr2

ε 2
������ fH

2 H⊥

pol 2
εfE

2
H||

pol 2
+( ).

d2W
dωdΩ
������������� e2β2

4π2c
��������� θ ' α–( )cos

2

P 2
������������������������ ε 1–

ε
���������

2
1

P i ω
βc
�����Σa φcotexp Σ φ ia ω

βc
�����P–expcot+

P Σcotφ+
������������������������������������������������������������������������������������–

2

=

× ε

ε θ ' α–( )cos ε θ ' α–( )sin
2

–+
�����������������������������������������������������������������

2
α γ 1– θ ' α–( )sin iK ϕ ε θ ' α–( )sin

2
–cos–( )cos

⎩
⎨
⎧

+ α iK θ ' α–( )sin γ 1– ϕ ε θ ' α–( )sin
2

–cos+( )sin γβ θ ' α–( ) ε θ ' α–( )sin
2

– ϕsin
2

sin–

+ ε

θ ' α–( )cos ε θ ' α–( )sin
2

–+
���������������������������������������������������������������

2

γ ϕsin( )2 θ ' α–( )sin
2 ε θ ' α–( )sin

2
–

2
+( )

2



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 118  No. 4  2014

PECULIARITIES OF THE GENERATION OF VAVILOV–CHERENKOV RADIATION 505

where the following notation has been introduced:

The expression derived for the spectral�angular
density of polarization radiation takes into account
both diffraction radiation (DR) and VCR, which cor�
responds to the pole in the denominator:

For α  0, this expression passes to the well�known
Vavilov–Cherenkov condition written in vacuum vari�
ables. However, for α ≠ 0, the VCR peak in the angular
distribution is shifted. It should be noted that expres�
sion (16) also contains an extra VCR pole ensuring the
displacement of polarization radiation peaks depend�
ing on the geometry of the chosen target, which in the
given case is characterized by prism angle φ. There�
fore, even when we consider the flight of a charged
particle at angle α = 0 (see Fig. 1), the VCR peak will
be displaced relative to the emission angles satisfying
the well�known condition of generation of this radia�
tion in the medium.

It should be noted that expression (16) derived
above is valid only for angles of particle flight smaller
than the critical angle αcr ; a further increase in the
angle leads to the situation in which the particle trajec�
tory intersects the target (Fig. 3) and, hence, to the
generation of transient radiation in addition to diffrac�
tion radiation and VCR. The value of the critical angle
is determined by the flight geometry of the charged
particle and the target size from the following simple
relation:

The target geometry also imposes natural con�
straints on the result. To preserve the triangular profile
of the prism, the prism angle must satisfy the condition
0 < φ < π/2. Another limitation appears as a result of
application of Fresnel coefficients (13) in the model
for a planar infinitely large interface. This approxima�
tion is valid if the target parameter a/tanφ consider�
ably exceeds the wavelength of emitted radiation (i.e.,
when the condition a/tanφ � λ is satisfied). In this
case, face AC of the prism (see Fig. 1) through which
radiation that propagateds to a vacuum can be
assumed infinitely large compared to the radiation
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Fig. 2. Diagram illustrating a transition to new angles of
observation and rotation of the target relative to the trajec�
tory of a charged particle.
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Fig. 3. Diagram of generation of polarization radiation by
a charged particle moving at the critical angle towards a
prismatic wedge.
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wavelength, and the contribution from the edges can
be disregarded.

Let us consider some features of polarization radi�
ation for an oblique flight of a charged particle in the
vicinity of a dielectric wedge. For a transparent sub�
stance satisfying the Vavilov–Cherenkov condition,
the DR intensity is small, and the main contribution
comes from Cherenkov radiation (Fig. 4). The DR
intensity remains almost constant, and DR propaga�
tion corresponds to the direction of motion of the
charged particle. With increasing flight angle α, the
intensity at the VCR peak increases because the effec�
tive impact parameter decreases. The case in which
rotation angle ψ is zero corresponds to parallel flight of
the charged particle along the AB face; in this case, the
direction of propagation of VCR satisfies the well�
known relation nβcosΘ = 1 with allowance for the
refraction of radiation at the output face AC. It should
be noted once again that when rotation angle ψ of the
target increases or decreases, the VCR propagation
direction does not obey the requirements of the well�
known Cherenkov relation. Pay attention to the cho�
sen parameters of calculation, the results of which are
shown in Fig. 4: the values of the charged particle
energy, the permittivity of the target material, basic
sizes, and the target geometry were selected in confor�
mity with the experimental conditions for verifying
our results.

To explain the effect of displacement of the VCR
distribution peak, let us consider the dependence of
the radiation peak intensity on the volume of the pris�
matic target.

Expression (16) makes it possible to explain the
spectral�angular density of polarization radiation from
prismatic targets of different volumes by varying angle

φ and the vertex of the prismatic target (Fig. 5), thus
changing its volume involved in the process of polar�
ization by the charged particle. In all further calcula�
tions, we will consider only the flight of a charged par�
ticle parallel to face AB of the prismatic target; there�
fore, the relation between flight angle α and wedge
angle φ assumes the form φ + α = π/2. In the tradi�
tional representation, the VCR intensity at the peak of
the angular distribution is proportional to the squared
mean free path of the charged particle in the medium;
therefore, the size of the AB face of the prismatic target
(from the side of motion of the charged particle)
remains unchanged; consequently, quantity a in
expression (16) can be written in the form a = ABsinφ.

The spectral�angular distribution of polarization
radiation in the case when the particle trajectory is
parallel to the target (φ = π/4) with the angles attached
to the system of coordinates is shown in Fig. 6. The
radiation peak at θChR = –0.73° indicates that VCR
propagates at right angles to the AC face; therefore, the
Fresnel coefficients make the smallest contribution to
scattering and refraction of radiation occurring from
the target material.

Let us analyze the dependence of radiation inten�
sity at the peak of its angular distribution on the wedge
angle φ and, hence, on wedge thickness a (Fig. 7).

It can be seen from Fig. 7 that upon a change in
wedge angle φ, the VCR intensity at the angular distri�
bution peak decreases. It should be noted that polar
angle θ for VCR propagation in vacuum also varies
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from zero (see Fig. 7); therefore, the Fresnel coeffi�
cients make a noticeable contribution to scattering of
radiation passing from the target material to vacuum.
Consequently, to take into account the total contribu�
tion from VCR to the spectral�angular distribution of
polarization radiation, we must evaluate the integral
over the entire area occupied by the VCR peak (Fig. 8):

Comparing the results depicted in Figs. 7 and 8, we
see that the total radiation intensity is independent of
the thickness of the dielectric target. The effect under
investigation can be explained, first, by the decrease in
the field of the charged particle with increasing dis�
tance from its trajectory. Second, VCR is coherent
radiation; consequently, constructive interference of
radiation can take place only in a thin layer of the sub�
stance. It should be noted that the effect of VCR gen�
eration in the surface layer of the target was demon�
strated experimentally for the first time in [19], where
the disappearance of Cherenkov radiation was
observed during investigation of simultaneous genera�
tion of diffraction radiation and Cherenkov radiation
in a dielectric target after the installation of a metal foil
in front of the target face on which the electron beam
is incident.

Let us consider qualitatively the physical nature of
VCR in the case of oblique flight of a charged particle
near a dielectric target. If the relativistic charged par�
ticle moves in vacuum (n1 = 1) in the vicinity of a
dielectric medium (n2 ≠ 1) at a constant velocity, elec�

S d
2W
ω Ωdd

������������ θ.d

θChR 7°–

θChR 7°+

∫=

tromagnetic radiation associated with this particle
temporarily polarizes the medium in the vicinity of its
trajectory (in our case, maximum polarization of
atoms of the medium is observed at the interface
between the two media). Thus, the oscillations of the
molecules of the medium induced by the electromag�
netic field of the charged particle become emitters of
electromagnetic waves. In the general case, the waves
emitted by the molecules in all parts of the interface
between the two media interfere so that the intensity of
the resultant field at a point located at a certain dis�
tance from the interface is zero.

If the velocity of a charged particle exceeds the
phase velocity of light in the medium, the phases of
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elementary waves emitted from all parts of the inter�
face may coincide at a certain point of observation,
giving rise of a resultant field. It can be seen from the
Huygens construction in Fig. 9 that this radiation can
be observed only at a certain angle ψ + Θ relative to the
perturbation propagation path at the interface
between two media; it is the angle at which elementary
waves from points P1, P2, and P3 on perturbation prop�
agation trajectory A'B' are coherent and form plane
front B'C of the wave. This coherence takes place when
a particle traverses distance AB during the time in
which light traverses the distance from A' to C.

Thus, the coherence condition requires that the
particle should traverse the distance from A to B over
time interval Δt, while the radiation front during this
time should traverse the segment from A' to C. If the
particle velocity is βc, where c is the velocity of light,
and if n2 is the refractive index of the dielectric
medium, we can write

Hence it follows that

(17)

This relation is the main result; it can be seen that for
ψ = 0, this relation transforms to the well�known
Vavilov–Cherenkov condition.

To confirm our arguments, let us compare the
dependences of the VCR propagation angle on the
angle of rotation of the target (Fig. 10). Curve 1 in
Fig. 10 was obtained by the polarization current
method (the radiation generation diagram is shown in
Fig. 1), curve 2 was obtained using formula (17) and
the Snell law. It should be noted that the curves in
Fig. 10 completely coincide in the range of negative
values of target rotation angle ψ; for positive angles,
the slight difference observed in the behavior of the
curves can be explained by the effect of the DR peak
since for larger values of ψ, the VCR intensity becomes
commensurate with the intensity of diffraction radia�
tion, and the peaks are partly superimposed.

An additional proof of the effect considered here
would be comparison of the spectral�angular distribu�
tions of VCR generated by wedge�shaped targets with
different volumes. Figure 11 shows the diagram of
generation of polarization radiation from a double tar�
get.

Performing calculations analogous to those carried
out earlier for polarization radiation from a dielectric
wedge, we arrive at the following expression for the
intensity of polarization radiation in the forward
direction:

(18)
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This expression describes both DR and VCR. As in
the previous case, the latter radiation corresponds to
the main intensity pole

and the displacement pole determined by the geome�
try of the target under investigation.

The results of theoretical analysis are shown in
Figs. 12 and 13. Comparison of the spectral�angular
distributions of polarization radiation generated by
prismatic targets with different volumes leads to the
conclusion that only the AB face of the target facing
the trajectory of the charged particle participates in
the VCR generation, while the remaining faces
(AC and BC) are responsible for DR generation.

3. DISCUSSION OF RESULTS

In this work, we have reported on the results of the�
oretical investigation of VCR generated by a charged
particle flying near prismatic targets with an arbitrary
permittivity. Our results make it possible to draw the
main conclusion concerning the origin of the effect in
question: VCR is generated in the surface layer of the
interface between two media closest to the particle tra�
jectory (face AB in Fig. 1), and its intensity is deter�
mined by the length of this face. The second conclu�
sion becomes a logical continuation of the first: the
VCR angular distribution in the case when a charged
particle moves past a dielectric target does not obey the
well�known Vavilov–Cherenkov condition, but is
mainly determined by the orientation of the emitting
layer relative to the trajectory of the charged particle.

αcos β ε θ ' α–( )sin
2

–– iγ 1– K αsin+ 0

Therefore, polarization radiation can be represented
as radiation occurring in the surface layer of the target
due to dynamic polarization currents induced by the
field of charged particles flying past the target.
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It should be noted that our results have a number of
limitations associated with geometrical conditions as
well as the approach used in this article for calculating
the characteristics of polarization radiation. The
application of Fresnel formulas (13) requires that the
wedge face length a/tanφ be much larger than the
wavelength of the emitted radiation: a/tanφ. If the
condition a/tanφ � λ is satisfied, the output face of
the prism can be assumed infinitely large, and the
effect of the edges on the characteristics of radiation
can be disregarded. Nor do Fresnel coefficients (13)
allow us to consider possible multiple rereflections of
polarization radiation inside the prism. Another

equally important constraint is the condition imposed
by the target geometry, which can be written in a very
simple form: 0 < φ < π/2. However, this condition is
not violated upon an increase in the prism volume if
we add an analogous segment to the initial prism (see,
for example, Fig. 11).
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