

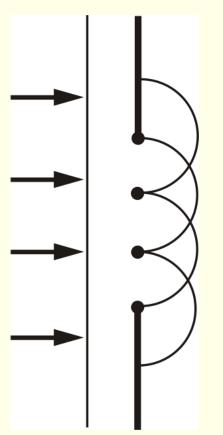
Оптика. *Дифракция* света

Лекция 4

Постникова Екатерина Ивановна, доцент кафедры экспериментальной физики

Дифракция света

Дифракция — отклонение распространения волн от законов геометрической оптики вблизи препятствий (огибание волнами препятствий).



Дифракция объясняется с помощью **принципа Гюйгенса**: каждая точка, до которой доходит волна, служит *центром вторичных волн*, а огибающая этих волн задает положение волнового фронта в следующий момент времени, т.е. волна заходит в область геометрической тени.

y

Явление дифракции объяснённое с помощью принципа Гюйгенса, не дает никакой информации об амплитуде (интенсивности) волн, распространяющихся в различных направлениях.

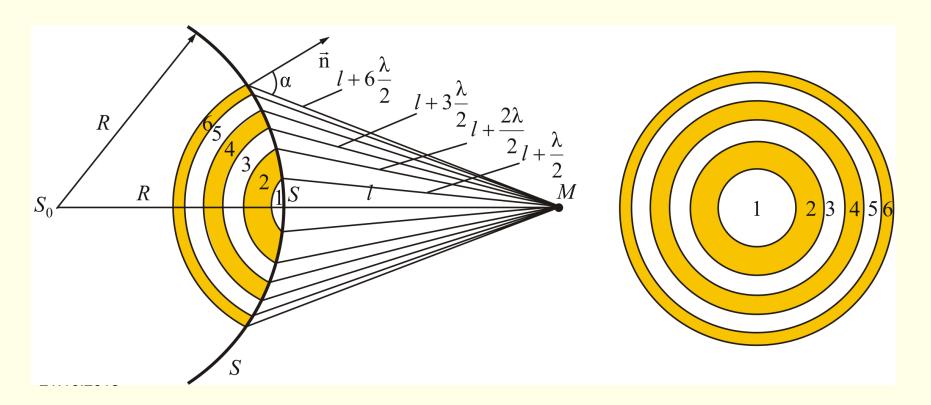
Френель дополнил принцип Гюйгенса представлением об *интерференции вторичных волн*. Учет фаз и амплитуд вторичных волн позволяет определить амплитуду результирующей волны во всех точках пространства.

Принцип Гюйгенса-Френеля: световая волна, возбуждаемая источником света, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками (бесконечно малыми элементами любой замкнутой поверхности, охватывающей источник света).

Если эта поверхность — волновая поверхность, то все фиктивные источники действуют синфазно. Следовательно, волны, распространяющиеся от источника света, являются результатом интерференции всех когерентных вторичных волн, т.е. учет амплитуд и фаз вторичных волн позволяет найти амплитуду результирующей волны в любой точке пространства. 4

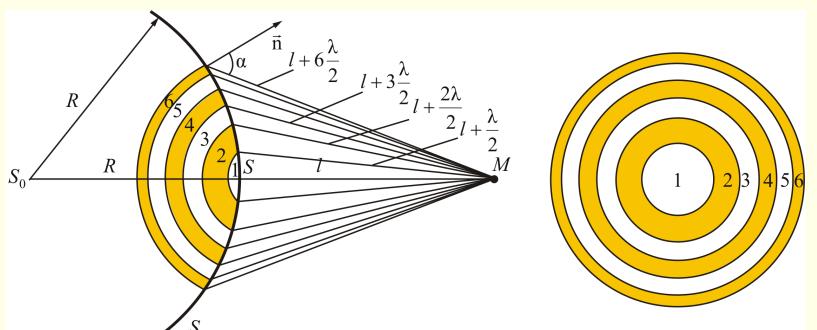
Метод зон Френеля

Зоны Френеля — кольцевые зоны на волновой поверхности, расстояния от краев которых до точки M, в которой определяется амплитуда световой волны от точечного источника S, отличается на $\frac{\lambda}{2}$.



Для соседних зон результирующее колебание, создаваемое каждой из зон, отличается по фазе на π . Следовательно, амплитуда результирующего светового колебания (от всех зон) в точке M:

$$A = A_1 - A_2 + A_3 - A_4 + \dots$$

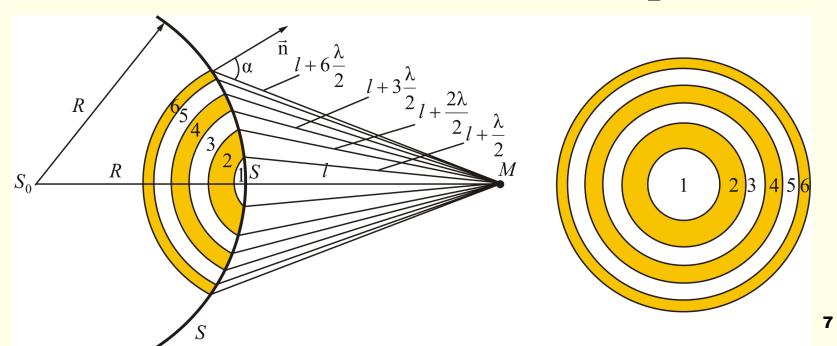


С ростом порядкового номера зоны (m), интенсивность излучения в направлении точки M уменьшается:

$$A_1 > A_2 > A_3 > A_4 \dots$$

Т.к. количество зон велико, то амплитуду колебаний от тольным можно записать как

$$A_m = \frac{A_{m-1} + A_{m+1}}{2}.$$



Получаем

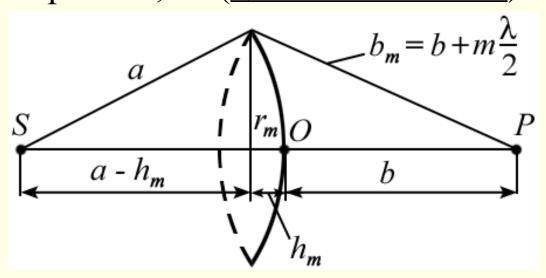
$$A = \frac{A_1}{2} + \left| \frac{A_1}{2} - A_2 + \frac{A_3}{2} \right| + \left(\frac{A_3}{2} - A_4 + \frac{A_5}{2} \right) + \dots = \frac{A_1}{2},$$

$$= 0, \frac{A_1}{2} + \frac{A_3}{2} = A_2$$

т.е. амплитуда результирующего колебания в произвольной точке M определяется действием только половины центральной зоны Френеля. Действие всей волновой поверхности сводится к действию её малого участка меньшего центральной зоны.

При конечном числе зон: $A = \frac{A_1}{2} \pm \frac{A_m}{2}$.

Если расстояние a до источника света S и расстояние bдо точки наблюдения P много больше размеров зон Френеля, то (для небольших m):



$$r_{m} = \sqrt{\frac{ab}{a+b}} m \lambda$$

- радиус внешней границы т-й зоны

Площадь т-й зоны:

$$\Delta S_{m} = \frac{\pi a b}{a + b} \lambda$$

- не зависит от m, т.е. npu небольших т площади зон Френеля примерно одинаковы.

Для первой зоны m = 1 легко вычислить r_1 . Он оказывается малым.

$$a=b=10~c$$
м , $\lambda=0.16~$ мкм , \Rightarrow $r_1=0.16~$ нм .

T.e. с учетом
$$A = \frac{A_1}{2}$$
 можно сказать, что

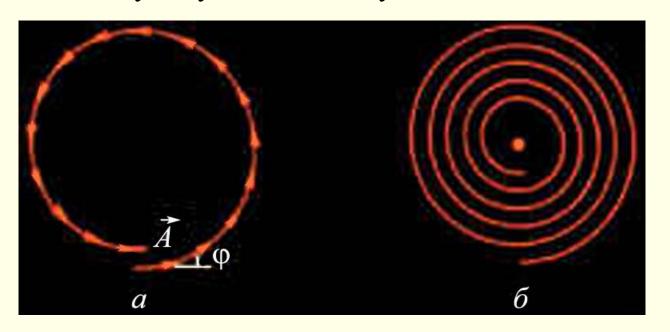
распространение света от S к P происходит так, как будто световой поток амплитудой $\frac{A_1}{2}$

распространяется вдоль *SM* внутри узкого канала, другими словами, *прямолинейно*.

Векторная диаграмма.

Каждая зона Френеля разбивается на кольцевые подзоны. Колебание, создаваемое в точке наблюдения P каждой из подзон, изображается вектором A, длина которого равна амплитуде колебаний, а угол ϕ дает начальную фазу колебания.

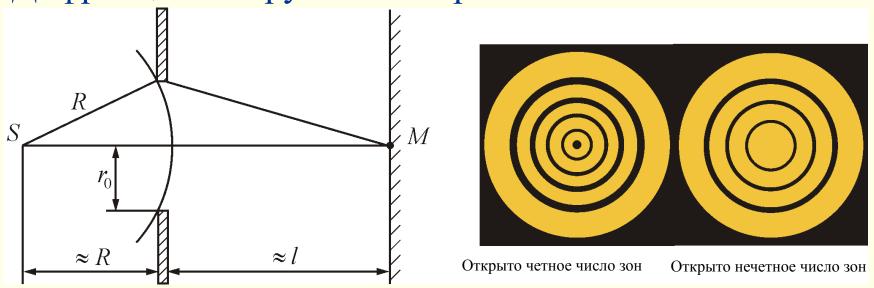
- Амплитуда колебаний медленно убывает при переходе от подзоны к подзоне.
- Каждое последующее колебание отстает по фазе от предыдущего на одну и ту же величину.



a — векторная диаграмма, полученная при сложении таких векторов; δ — вид векторной диаграммы (спираль, вьющаяся вокруг фокуса) при стремлении ширины подзон к нулю.

Дифракция Френеля (дифракция в расходящихся лучах)

✓Дифракция на круглом отверстии



результирующего колебания в точке Амплитуда Френеля m, открываемых зависит числа 30H отверстием

$$A = \frac{A_1}{2} \pm \frac{A_m}{2},$$

при нечетном числе *m*,

при четном числе m.

Открыта 1 зона: m = 1, если на пути света поставить экран с отверстием

$$r = r_1 = \sqrt{\frac{ab}{a+b}} \lambda$$

амплитуда в точке M будет $A = A_1$, т.е. в 2 раза больше, чем без экрана, т.к. влияние других зон Френеля устраняется экраном. Интенсивность света больше в 4 раза.

2 зоны:
$$A = A_1 - A_2 \approx 0$$
.

Нечетное число зон m: в центре светлое пятно. Четное число зон m: в центре темное пятно.

✓Дифракция на диске, закрывающем m зон Френеля.

Амплитуда результирующего колебания $A = \frac{A_{m+1}}{2}$.

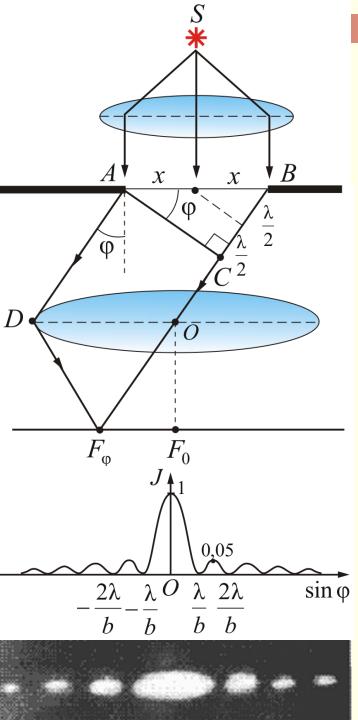
В центре экрана наблюдается интерференционный максимум равный $\frac{1}{2}$ амплитуды первой открытой зоны Френеля.

«Пятно Пуассона»

Дифракция Фраунгофера

(дифракция плоских световых волн, дифракция в параллельных лучах)

15



Дифракция света на одной щели

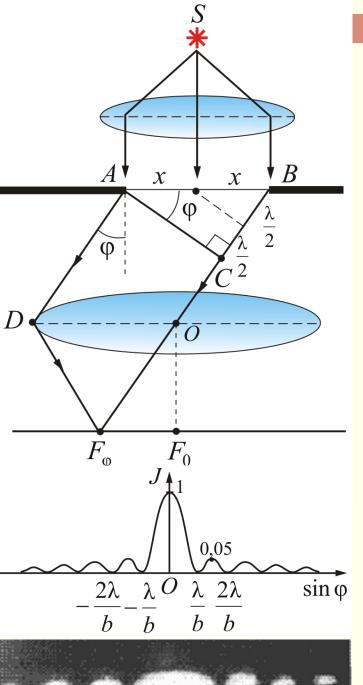
Ширина щели AB = b

$$b \sin \varphi = \pm 2m \frac{\lambda}{2}$$

– дифракционный минимум

Тогда
$$\sin \varphi = \frac{m \lambda}{b}$$

Из этой формулы видно, что с увеличением ширины щели b положения минимумов сдвигаются к центру, центральный максимум становится резче.



$$b \sin \varphi = \pm (2m + 1) \frac{\lambda}{2}$$

– дифракционный максимум

Интенсивность света $\sim A^2$

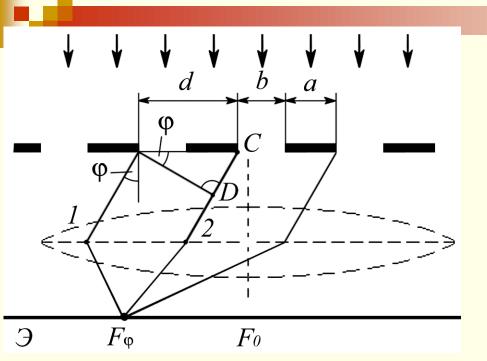
Из рис.видно, что центральный максимум превосходит по интенсивности все остальные

Дифракция на дифракционной решетке.

Одномерная дифракционная решетка — система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. осуществляется *многолучевая* интерференция.

18



b- *ширина щели* решетки; a- расстояние между щелями;

$$a + b = d$$

постоянная решетки;

$$\Delta = (a + b)\sin \varphi = d \sin \varphi$$
.

Условие главного минимума:

$$\Delta = b \sin \varphi = \pm m \lambda$$
, $m = 0,1,2...$

- дифракционный минимум.

 ϕ — угол дифракции; m — порядок дифракционного максимума

Вследствие взаимной интерференции световых лучей от 2-х и т.д. щелей в некоторых направлениях они будут гасить друг друга. Следовательно, возникает

условие дополнительных минимумов:

$$\Delta = d \sin \varphi = \pm (2m + 1) \frac{\lambda}{2}, \qquad m = 0,1,2...$$

- интерференционный минимум.

В других направлениях действие одной щели усиливает действие другой. Следовательно, возникает условие главных максимумов:

$$\Delta = d \sin \varphi = \pm 2m \frac{\lambda}{2}, \qquad m = 0,1,2...$$

- интерференционный максимум.

Для *N* щелей.

Главный тах

Центральный тах

Дополнителные min

Главный тах

Условия дифракции:

Главный минимум

$$\Delta = b \sin \varphi = \pm m \lambda$$
, $m = 0,1,2...$

Главный максимум

$$\Delta = d \sin \varphi = \pm m \lambda, \qquad m = 0,1,2...$$

Дополнительные минимумы

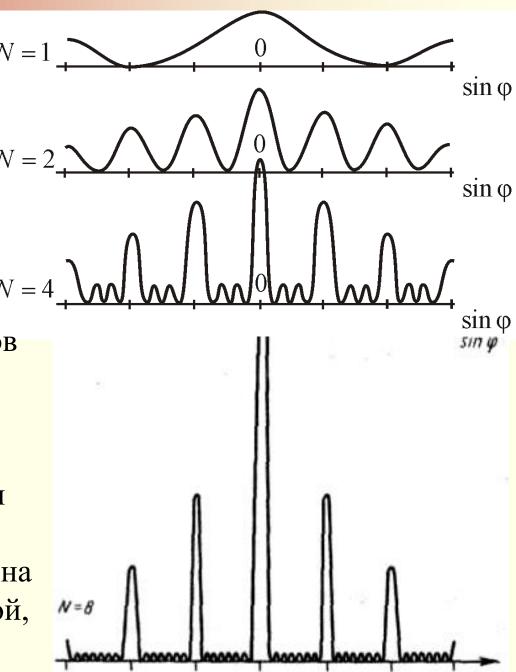
$$\Delta = d \sin \varphi = \pm \frac{2m'}{N} \frac{\lambda}{2} = \pm \frac{m'}{N} \lambda, \qquad m = 0,1,2...$$

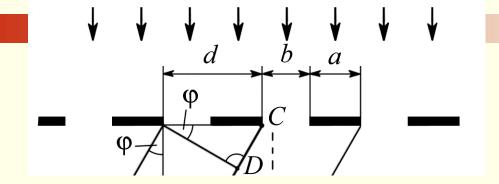
$$m' = 1, 2 \dots \kappa pome \qquad 0, N, 2N \dots$$

Kоличество щелей N=1 определяет световой поток через решетку: N=1

Чем больше щелей N, тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, тем, следовательно, более интенсивными и более острыми будут максимумы.

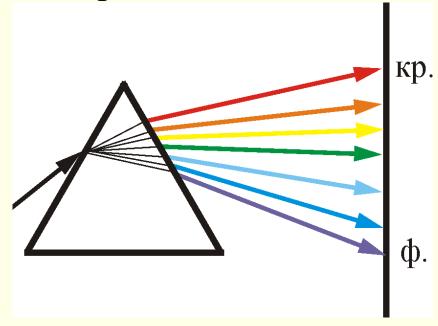
На рис. качественно сопоставлена дифракционная картина от одной, двух, четырех и восьми щелей.





$$\sin \varphi = \frac{m \lambda}{b}$$

Дифракционная решетка разлагает белый свет на составляющие, причем свет с большей длиной волны (красный) отклоняется на больший угол, в отличие от призмы, где все происходит наоборот:



Дифракция на пространственной решетке. Дифракция рентгеновских лучей

Пространственной (трехмерной) дифракционной решеткой называется такая оптически неоднородная среда, неоднородности которой периодически повторяются при изменении всех трех пространственных координат.

Примером пространственной дифракционной решетки может служить кристаллическая решетка твердого тела. Частицы, находящиеся в узлах этой решетки, играют роль упорядоченно расположенных центров, когерентно рассеивающих падающий на них свет.

21.10.2015 **24**

Ŋ

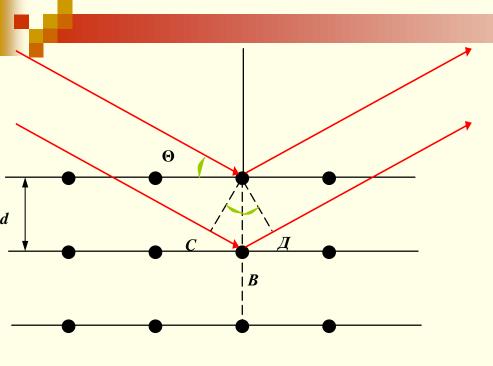
Для наблюдения дифракционной картины необходимо, чтобы постоянная решетки была бы того же порядка, что и длина волны λ падающего на них излучения.

Постоянная кристаллической решетки твердых тел много меньше λ видимого света ($d \sim 5 \cdot 10^{-10}$ м,

 λ видимого света ~ 5·10-7 м). Следовательно, для видимого света кристаллы являются *оптически однородной средой*, т.е. свет распространяется в них «не замечая» её неоднородности и не испытывает дифракции.

В то же время для рентгеновских лучей кристаллы представляют естественные дифракционные решетки. В кристаллах происходит интерференция рентгеновского излучения, зеркально отражающегося от системы параллельных плоскостей, которые проходят через узлы кристаллической решетки.

25



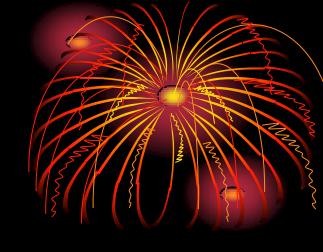
Разность хода лучей, отражающихся от двух соседних кристаллографических плоскостей

$$\Delta = CB + B \mathcal{I} = 2 d \sin \Theta$$
.

Максимум интенсивности наблюдается в направлениях удовлетворяющих условию дифракционных максимумов

$$2 d \sin \Theta = m \lambda$$

- формула Вульфа-Брэггов, m=1, 2...- порядок дифракционного максимума.



Конец лекции

21.10.2015 27