ГЕНЕРАТОР ИМПУЛЬСНОГО НАПРЯЖЕНИЯ ПО СХЕМЕ МАРКСА

Общие сведения

В настоящее время высокое импульсное напряжение применяется для создания сильных электрических полей; получения импульсных электрических разрядов в конденсированных средах для обработки, разрушения диэлектрических, полупроводящих и проводящих материалов; образования взрывоэмиссионной плазмы в мощных импульсных ускорителях заряженных частиц; исследования характеристик изоляционных материалов и конструкций; зарядки промежуточных накопителей энергии и т.п.

В электроэнергетике генераторы высоковольтных импульсов используют для имитации перенапряжений, возникающих при грозовых поражениях элементов энергосистем, при испытании высоковольтной изоляции электрооборудования: трансформаторов, реакторов, выключателей, изоляторов и т.д.

Работа большинства генераторов импульсных напряжений (ГИН) основана на принципе, предложенном Э. Марксом. На рис.1 представлен один из вариантов схемы генератора импульсных напряжений. Принцип работы заключается в следующем: группа конденсаторов заряжается в параллельной схеме соединения до определенного напряжения U_0 , а разряжается последовательно. Автоматическое и быстрое переключение схемы из параллельного в последовательное соединение осуществляется с помощью шаровых искровых промежутков (разрядников). В результате, напряжение между начало и концом этой цепочки суммируется, достигая величины nU_0 , где n — число последовательно включенных конденсаторов (ступеней ГИН), а U_0 — напряжение, до которого они были заряжены.

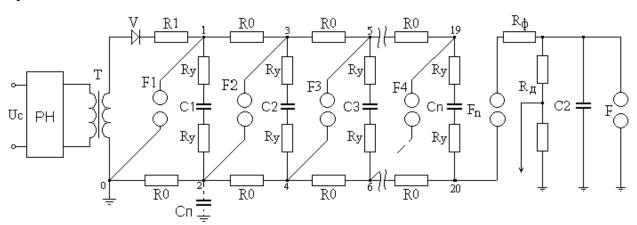


Рис. 1. Электрическая схема многоступенчатого генератора импульсных напряжений. C1=C2=...=Cn.

Конденсаторы C1-Cn заряжаются от источника выпрямленного напряжения через большие сопротивления R1 (защитное) и R0 (зарядные/разделительные) по параллельной схеме, следовательно зарядная емкость ГИН C_{3ap} =nC, где C- емкость ступени. Соотношение R1>>R0, что обеспечивает практически одновременный заряд всех конденсаторов.

Наличие в схеме большого сопротивления (защитного и зарядных/разделительных) ограничивает ток и вызывает потери энергии. Поэтому схемы ГИН с зарядными резисторами используются для генерирования импульсов с частотой не более 1-2 имп/сек. и не предназначены для длительной работы. Для работы ГИН в длительном режиме с частотой десятки имп/сек. заряд конденсаторов происходит через защитный дроссель и зарядные индуктивности (рис.2).

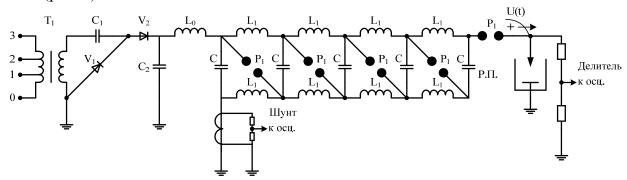


Рис. 2. Схема генератора импульсных напряжений с зарядом через индуктивности.

К моменту окончания заряда конденсаторов напряжение в точках 1, 3,...19 достигает значения $+U_0$, которое будет равно пробивному напряжению воздушного промежутка F1 и зависит от расстояния между электродами S_{F1} . Расстояния S между электродами искровых промежутков $F1...F_n$ устанавливаются из условия $S_{F1} < S_{F2} < S_{F3}...$

После этого происходит пробой промежутка F1 и разряд конденсатора C1 на землю. В точке 0 потенциал мгновенно возрастет до значения U_0 . Наличие в ГИН небольшой (десятки Φ) паразитной емкости C_n образует контур R_y -F1-точка 0 - C_n -точка 2- R_y в котором протекает разрядный ток Емкость C_n будет заряжена до $+U_0$ потенциал в точке 2 потенциал практически мгновенно становится равным - U_0 .

Потенциал *точки* 3 в течение некоторого времени сохраняется равным $+U_0$, т.к. эта точка отделена от *точки* 1 сопротивлением R0, величина которого составляет десятки- тысячи кОм, поэтому постоянная времени разряда $t_2=R_0C_2>>t_1=C_1R_y$. Таким образом, на промежутке F2 после пробоя F1 создается разность потенциалов, примерно равная $2U_0$. Это вызовет пробой промежутка F2, т.к. его пробивное напряжение $U_{F2}>U_{F1}$ из-за большего расстояния между электродами $S_{F2}>S_{F1}$.

После пробоя промежутка F2 потенциал mочки 4 относительно земли станет равным $-2U_0$. Разность потенциалов на промежутке F3 станет примерно $3U_0$, т.к. потенциал mочки 5 сохраняется неизменным и практически равным U_0 . В результате происходит пробой промежутка F3.

Проведя аналогичные рассуждения, можно убедиться, что произойдет практически мгновенный пробой всех последующих промежутков. При пробое промежутков $F1...\ F_n$ все конденсаторы, заряженные до напряжения U_0 , окажутся соединенными последовательно через искровые промежутки, минуя зарядные сопротивления. Следовательно, напряжение между точками 0 и 21 ста-

нет равно: $U_{\varepsilon} = -nU_{0}$, а суммарная (разрядная) емкость $C_{\varepsilon} = C/n$ станет в «n» раз меньше емкости одной ступени ГИН (рис.3).

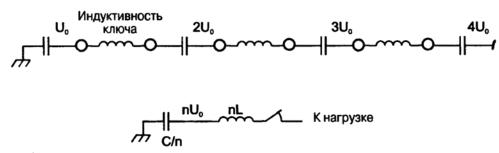


Рис.3 Конфигурация схемы генератора Маркса после пробоя всех воздушных промежутков (a) и эквивалентная схема (б).

Достаточно полная схема замещения разрядного контура ГИН представлена на рис.4. В этой схеме: C_1 -емкость генератора в разряде; R_1 -суммарное активное сопротивление разрядной цепи генератора; L_1 и L_2 -индуктивности элементов генератора и петли подсоединения объекта, R_2 -сумма сопротивлений разрядного контура и фронтового сопротивления для регулирования длительности фронта импульса; C_2 -сумма емкости объекта C_n , паразитной емкости генератора C_n и фронтовой емкости C_ϕ для регулирования длительности фронта импульса; R_n - сумма сопротивлений делителя напряжения R_{∂} и разрядного сопротивления R_{ρ} .

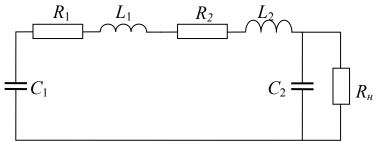


Рис. 4. Схема замещения разрядной цепи

Индуктивность разрядной схемы ГИН L_1 составляет десятки- сотни мкГн, R_1 единицы-десятки Ом из-за большого числа последовательно соединенных элементов. Это приводит к ограничению тока в контуре и искажению формы импульса. Для уменьшения L_1 и R_1 используют минимальные по длине соединительные провода, уменьшают расстояния между электродами воздушных промежутков, используют малоиндуктивные конденсаторы. На форму выходного сигнала также оказывает влияние паразитная емкость ГИН C_n .

Собственные параметры генератора R_I , L_I и C_n можно рассчитать из осциллограмм после опытов холостого хода (по осциллограмме напряжения) и короткого замыкания (по затуханию кривой тока) (рис.5а, б).

Период колебания в контуре зависит от активного и реактивного сопротивления:

$$T_{\rm KS} = 2\pi\sqrt{L_1C_1} + \ln(\Delta) \tag{1}$$

Из опыта короткого замыкания по осциллограмме тока определяют амплитуды первой I_1 и третьей I_3 полуволны и период колебания T_{κ_3} (рис.5б). Затем рассчитывают:

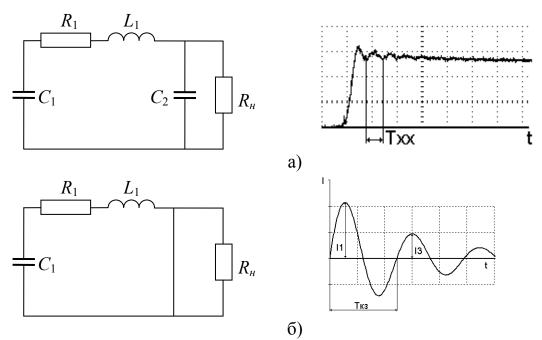
- декремент затухания кривой тока:

$$\Delta = \frac{I_1}{I_3} = e^{\frac{R_1}{2L_1} T_{\kappa 3}} \qquad \text{или} \qquad \ln \Delta = \frac{R_1}{2L_1} \cdot T_{\kappa 3} , \qquad (2)$$

- индуктивность разрядного контура:

$$L_{1} = \frac{T_{ss}^{2}}{C(4\pi^{2} + (\ln \Delta)^{2})},$$
 (3)

- активное сопротивление контура:


$$R_1 = \frac{2L_1 \cdot \ln(\Delta)}{T} \,. \tag{4}$$

Из опыта холостого хода можно рассчитать паразитную емкость генератора, которая может быть значительна для ГИН по схеме Маркса.

$$T_{xx} = 2\pi \sqrt{L_1 \cdot C_n} \ . \tag{5}$$

Рассчитав L_I и зная C_I (значением $C_{\rm m}$ можно пренебречь) находят импеданс генератора:

$$Z_{c} = \sqrt{\frac{L_{1}}{C_{1}}}$$
, Om (6)

Puc.5 Схемы замещения опыта холостого хода (а) и короткого замыкания (б) и соответствующие осциллограммы. $C_2 = C_n$, $R_{\scriptscriptstyle H} = R_{\scriptscriptstyle O}$

Регулирование формы волны импульсного напряжения

Для получения необходимой длительности фронта импульса в разрядную схему включают фронтовое сопротивление R_{ϕ} . и дополнительную фронтовую емкость C_{ϕ} . Использование только R_{ϕ} требует больших значений, что приводит к снижению амплитуды импульса, так как выходное напряжение будет распределяться между R_{ϕ} и R_{H} . Использование только C_{ϕ} нежелательно т.к. это также приводит к снижению амплитуды импульса, так как выходное напряжение будет распределяться между C_1 и $C_2 = C_n + C_{\phi} + C_{H}$. При наличии в разрядном контуре большого значения L1+L2 использование только C_{ϕ} приводит к появлению наложенных колебаний на спадающей части импульса.

Для оценки временных параметров импульса в разрядном контуре по рис.4 для случая $t_{h} << t_{R}$ значения L1 + L2 не учитывают.

Длительность фронта импульса в первом приближении может быть определена из выражения

$$t_{\phi} = 3,25 \cdot T_{2}, \qquad T_{2} = \frac{R_{1} \cdot R_{n}}{R_{1} + R_{n}} \cdot \frac{C_{1} \cdot C_{2}}{C_{1} + C_{2}};$$

$$\text{20e} \quad R_{1} = R_{y} + R_{1} + R_{\phi}; \qquad R_{n} = \frac{R_{p} \cdot R_{\delta}}{R_{p} + R_{\delta}}, \qquad C_{1} = C_{z}, \quad C_{2} = C_{n} + C_{\phi} + C_{n}.$$

$$(7)$$

Длительность волны может быть определена из выражения:

$$t_e \cong 0.7 \cdot T_1, \qquad T_1 = (R_1 + R_u) \cdot (C_1 + C_2).$$
 (8)

Аналитическое выражение для выходного напряжения имеет вид:

$$U_z = nU_0 \eta_{cx} \eta_s, \tag{9}$$

где
$$\eta_{cx}$$
 – коэффициент использования схемы:
$$\eta_{cx} = \frac{R_{_{\!{\scriptscriptstyle H}}} \cdot C_{_{\!\! 1}}}{(R_{_{\!\! 1}} + R_{_{\!{\scriptscriptstyle H}}}) \cdot (C_{_{\!\! 1}} + C_{_{\!\! 2}})}. \tag{10}$$

 $\eta_{\rm g}$ – коэффициент использования волны:

$$\eta_{s} = e^{\frac{t}{T_{1}}} - e^{-\frac{t}{T_{2}}},\tag{11}$$

где T_1 и T_2 – постоянные времени разрядного контура, определяющие длительность волны и фронта импульса.

Максимальное значение коэффициента использования волны определяется при времени, когда напряжение достигает своего амплитудного значения $t=t_m$. При условии равенства нулю первой производной выражения (11) tm можно рассчитать как:

$$t_{m} = \frac{T_{1} \cdot T_{2} \cdot \ln(\frac{T_{1}}{T_{2}})}{T_{1} + T_{2}}$$
 (12)

Описание экспериментальной установки

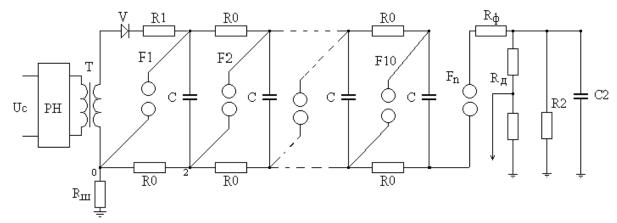


Рис. 6. Принципиальная электрическая схема ГИН 1000/0,01

PH- регулятор напряжения PHO-40; T- высоковольтный трансформатор; V- выпрямитель; R1 и R0 - защитное и зарядные (разделительные) сопротивления; C- конденсаторы IMH-100/0,1; R_{o} - активный делитель напряжения; R_{u} - коаксиальный проволочный шунт, R_{2} - разрядное сопротивление.

Генератор импульсных напряжений состоит из 10 ступеней и имеет конструкцию лестничного типа. На каждой ступени расположен конденсатор ИМН- 100/0,1. Зарядка ГИН осуществляется от трансформатора ИОМ 100/25 через кремниевый выпрямитель на $200~\mathrm{kB}$ обратного напряжения. Зарядные сопротивления выполнены из полиэтиленовых труб, заполненных раствором NaCl. Трубы являются штангами для крепления шаровых разрядников. Одна из труб (штанга) поворачивается вокруг своей оси и тем самым можно менять расстояние искровых промежутков и регулировать выходное напряжение ГИН. Для регистрации выходного сигнала используется омический делитель, токовый шунт и осциллограф. Делитель одновременно является разрядным сопротивлением для ГИН. В качестве фронтовой емкости C_{ϕ} используется система с параллельно-последовательным соединением конденсаторов.

Порядок выполнения работы

- 1. Ознакомиться со схемой ГИН, устройствами для регистрации сигналов, параметрами формирующих элементов. Измерить температуру и давление в лаборатории.
- 2. Измерить длину соединительных проводов и обратного контура ГИН и оценить индуктивность разрядного контура. В расчетах принять 1м=1мкГн, учесть собственную индуктивность конденсаторов.
- 3. Собрать схему короткого замыкания (рис.5б) и записать осциллограммы тока и напряжения. По осциллограмме тока определить период колебаний $T_{\kappa 3}$, первый I_1 и третий I_3 максимумы тока. Определить максимальную амплитуду тока I_m .

Рассчитать индуктивность L_I , активное сопротивление R_1 , импеданс генератора $Z_{\text{гин}}$. Сравнить результаты расчета L_I с оценкой L_I в п.1.

- 4. Собрать схему холостого хода генератора (рис.5а) и получить осциллограммы тока и напряжения на выходе ГИН. По осциллограмме напряжения определить значение t_{ϕ} и амплитуду импульса U_{c} , период наложенных колебаний T_{xx} на спадающей части волны. Рассчитать паразитную емкость C_{n} .
- 5. Измерить расстояние S между электродами шарового разрядника на первой ступени ГИН. По таблицам ГОСТ 17512-82 определить пробивное напряжение промежутка, ввести поправку на относительную плотность воздуха. Рассчитать напряжение на выходе ГИН.
- 6. Подключать электростатический киловольтметр к первой ступени ГИН. Измерить напряжение U_0 при котором произошел пробой. Рассчитать напряжение на выходе ГИН.
- 7. Рассчитать коэффициенты использования схемы, волны и напряжение на выходе ГИН для опыта холостого хода. Для расчета использовать значение U_0 из п.6.
 - 8. Сравнить значения U_{ε} , полученные в п.п.3-6. Дать пояснения.
- 9. Рассчитать значение t_{ϕ} для опыта холостого хода. Сравнить расчет с экспериментальными данными п.3, дать пояснения.

Контрольные вопросы

- 1. Поясните принцип работы ГИН.
- 2. Проясните принцип выбора расстояний в шаровых искровых промежутках, с чем это связано.
 - 3. Назовите основные конструкции ГИН, их достоинства и недостатки
- 4. Поясните, как регулируется длительность фронта импульса, длительность волны, амплитуда напряжения на выходе ГИН?
- 5. Поясните, почему в схеме ГИН (рис. 1) должны соблюдаться соотношения: R1>> R0, C_1 >> C_2 , R_{φ} < R_{π} .
- 6. Поясните, как изменить полярность выходного напряжения ГИН и частоту срабатывания ГИН при неизменной амплитуде импульса.