ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Электротехнический институт

Кафедра теоретической и прикладной механики

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ №2

Тема: «Определение скоростей и ускорений точек твёрдого тела при поступательном и вращательном движениях»

Работу выполнил		
студент группы 9А82		Иванов И.И.
	(дата, подпись)	
Руководитель		Дробчик В.В.
	(дата ,подпись)	

Определение скоростей и ускорений точек твёрдого тела при поступательном и вращательном движениях

Пример выполнения задания.

Пример. Дано: схема механизма: $R_2 = 50 \,\mathrm{cm}$; $r_2 = 40 \,\mathrm{cm}$; $r_3 = 20 \,\mathrm{cm}$; $S = 45 \,\mathrm{cm}$; закон движения груза 1 $x = 5 + 10t^2 \,\mathrm{cm}$ (t - B секундах).

Определить скорость V_M и полное ускорение a_M точки M , угловую скорость ω_3 и угловое ускорение ϵ_3 звена ${\bf 3}$.

Решение. Определим момент времени t, когда путь S, пройденный грузом $\mathbf{1}$, равен 45 см:

$$x = x(t) = 5 + 10t^2 = 45 \text{ cm},$$

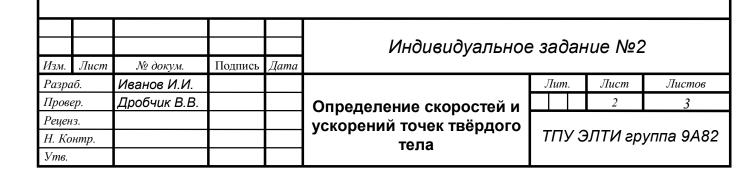
следовательно:

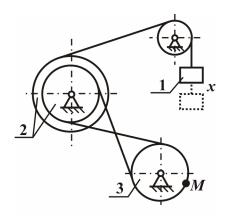
$$t = \sqrt{\frac{45 - 5}{10}} = 2 c.$$

Для определения скорости груза дифференцируем по времени уравнение его движения:

$$V_1 = |\dot{x}| = 20t \text{ cm/c}.$$

Линейная скорость точки A, лежащей на колесе 2, равна скорости груза:


Точка C, находящаяся на колесе $\mathbf{2}$, с помощью гибкой связи соединяется с вспомогательным блоком, на котором лежат точки B и A, следовательно, её линейная скорость равна скорости точки B:


$$V_C = V_R = V_A = 20t \text{ cm/c}$$
.

Определив линейную скорость точки C, находим угловую скорость ω_2 колеса ${\bf 2}$:

$$\omega_2 = \frac{V_C}{R_2} = \frac{20t}{50} = 0,4t \frac{\text{рад}}{\text{c}}.$$

$$V_A = V_1 = 20t \text{ cm/c}.$$

Точка D принадлежит колесу **2** и лежит на окружности меньшего радиуса. Зная угловую скорость ω_2 колеса **2**, определим линейную скорость точки D :

$$V_D = \omega_2 \cdot r_2 = 0.4t \cdot 40 = 16t \text{ cm/c}$$
.

Точка E, находящаяся на колесе **3**, с помощью гибкой связи соединяется с колесом **2**, следовательно, её линейная скорость равна скорости точки D:

$$V_E = V_D = 16t \text{ cm/c}$$
.

Точки M и E принадлежат колесу ${\bf 3}$, следовательно, $V_M = V_E = 1.6t$ см/с . Вектор скорости V_M направлен перпендикулярно к радиусу в сторону вращения колеса ${\bf 3}$.

Зная линейную скорость точки M , находим угловую скорость ω_3 колеса **3**:

$$\omega_3 = \frac{V_M}{r_3} = \frac{16t}{20} = 0.8t \frac{\text{рад}}{\text{c}}.$$

Определив угловую скорость ω_3 колеса **3**, находим угловое ускорение ϵ_3 колеса **3**:

$$\varepsilon_3 = \dot{\omega}_3 = 0.8 = \text{const} \frac{\text{pa}_{\mathcal{A}}}{\text{c}^2}.$$

Касательное ускорение точки M:

$$a_M^{\tau} = \varepsilon_3 \cdot r_3 = 0.8 \cdot 20 = 16 \,\mathrm{cm/c}^2$$

вектор касательного ускорения имеет одинаковое с вектором скорости направление, так как в рассматриваемом примере вращение колес равноускоренное (ω_3 и ϵ_3 направлены в одну сторону).

Нормальное ускорение точки M:

$$a_M^n = \omega_3^2 \cdot r_3 = 20 \,\omega_3^2 \,\mathrm{cM/c^2},$$

направлено по радиусу в сторону центра колеса 3 (см. рис.).

Полное ускорение точки M:

$$a_M = \sqrt{\left(a_M^n\right)^2 + \left(a_M^{\mathfrak{T}}\right)^2} \; .$$

Значения определяемых величин для момента времени t = 2 с приведены в табл.

$V_M, \frac{c_M}{c}$	ускорение, $\frac{c M}{c^2}$			$\omega_3, \frac{\text{рад}}{\text{c}}$	$\varepsilon_3, \frac{\text{рад}}{c^2}$
	a_M^n	$a_M^{ au}$	a_M		C
32	51,2	16	53,6417	1,6	0,8

Изм.	Лист	№ докум.	Подпись	Дата