ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

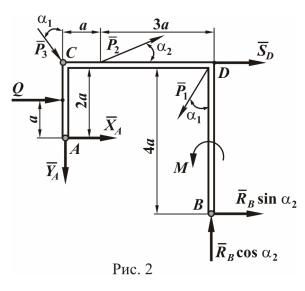
Электротехнический институт

Кафедра теоретической и прикладной механики

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ №1

Тема: «Определение реакций связей, наложенных на невесомую уравновешенную раму»

Работу выполнил		
студент группы 9А82		Иванов И.И.
	(дата, подпись)	
Руководитель		Дробчик В.В.
	(дата ,подпись)	


Определение реакций связей, наложенных на невесомую уравновешенную раму

Пример выполнения задания.

Дано: схема конструкции (рис. 1); $G=3~\mathrm{kH}$; $P_1=2~\mathrm{kH}$; $P_2=0$; $P_3=5~\mathrm{kH}$; $q=8~\mathrm{kH/m}$; $M=4~\mathrm{kH\cdot m}$; $\alpha_1=30^\circ$; $\alpha_2=60^\circ$; $a=1~\mathrm{m}$. Рама невесома. Система находится в равновесии.

Определить реакции связей, наложенных на невесомую уравновешенную раму.

Решение.

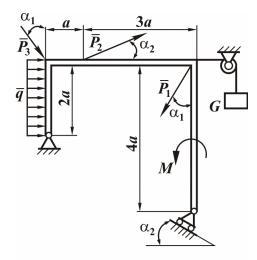


Рис. 1

Заменим связи, наложенные на раму, их реакциями (см. рис. 2). Направление шарнира реакции Aнеизвестно, следовательно, определяем составляющие по осям координат \overline{X}_A и \overline{Y}_A . Реакция \overline{R}_B подвижной опоры направлена перпендикулярно плоскости опоры разложена на составляющие $\overline{R}_B \cdot \cos \alpha_2$ и $\overline{R}_B \cdot \sin \alpha_2$. Реакция нити \overline{S}_D направлена по нити в сторону натяжения и равна по

величине весу груза, т.е. $\overline{S}_D = G = 3 \text{ кH}$.

Равномерно распределённую нагрузку интенсивностью q заменим её равнодействующей $Q=2a\cdot q=2\cdot 1\cdot 8=16$ к $H/{\rm M}$, приложенной в середине участка AC .

Для плоской системы сил, приложенных к раме, составим три уравнения равновесия:

$$\sum M_A = 0;$$
$$\sum X_i = 0;$$
$$\sum Y_i = 0.$$

Изм.	Лист	№ докум.	Подпись	Лата	Индивидуальное задание №1				
Разра		Иванов И.И.	Подінієв	74		Лит.	Лист	Листов	
Провер. Реценз. Н. Контр.		Дробчик В.В.					2	3	
					Определение реакций				
					связей	ТПУ ЭЛТИ группа 9А82			
Утв.									

$$\sum M_A = -Q \cdot a - P_3 \cdot \sin \alpha_1 \cdot 2a - P_2 \cdot \cos \alpha_2 \cdot 2a + P_2 \cdot \sin \alpha_2 \cdot a - P_3 \cdot 2a + P_1 \cdot \sin \alpha_1 \cdot 2a - P_1 \cdot \cos \alpha_1 \cdot 4a + P_3 \cdot \sin \alpha_2 \cdot a - P_3 \cdot 2a + P_3 \cdot \sin \alpha_1 \cdot 2a - P_3 \cdot \cos \alpha_1 \cdot 4a + P_3 \cdot \sin \alpha_2 \cdot a - P_3 \cdot \cos \alpha_1 \cdot 4a + P_3 \cdot \sin \alpha_1 \cdot 2a - P_3 \cdot \cos \alpha_1 \cdot 4a + P_3 \cdot \sin \alpha_1 \cdot 2a - P_3 \cdot \cos \alpha_1 \cdot 4a + P_3 \cdot \sin \alpha_1 \cdot 2a - P_3 \cdot \cos \alpha_2 \cdot 2a + P_3 \cdot \sin \alpha_1 \cdot 2a - P_3 \cdot \cos \alpha_1 \cdot 4a + P_3 \cdot \sin \alpha_1 \cdot 2a - P_3 \cdot \cos \alpha_1 \cdot 4a + P_3 \cdot \sin \alpha_1 \cdot 2a - P_3 \cdot \cos \alpha_1 \cdot 4a + P_3 \cdot \cos \alpha_1 \cdot$$

$$M + R_B \cdot \sin \alpha_2 \cdot 2a + R_B \cdot \cos \alpha_2 \cdot 4a = 0$$

$$\sum X_i = X_A + Q + P_3 \cdot \sin \alpha_1 + P_2 \cdot \cos \alpha_2 + + S_D - P_1 \cdot \sin \alpha_1 + R_B \cdot \sin \alpha_2 = 0$$
(2)

$$\sum Y_i = -Y_A - P_3 \cdot \cos \alpha_1 + P_2 \cdot \sin \alpha_2 - P_1 \cdot \cos \alpha_1 + R_B \cdot \cos \alpha_1 = 0. \quad (3)$$

Из уравнения (1) определяем реакцию связи опоры B, принимая $P_2 = 0$:

$$R_B = \frac{\left(+Q \cdot a + P_3 \cdot \sin\alpha_1 \cdot 2a + S_D \cdot 2a - P_1 \cdot \sin\alpha_1 \cdot 2a + P_1 \cdot \cos\alpha_1 \cdot 4a - M \right)}{\sin\alpha_2 \cdot 2a + \cos\alpha_2 \cdot 4a};$$

$$R_B = \frac{\left(+\,1\,6\cdot 1 + 5\cdot 1/2\cdot 2 + 3\cdot 2 - 2\cdot 1/2\cdot 2 + 2\cdot \sqrt{3}/2\cdot 4 - 4\right)}{\sqrt{3}/2\cdot 2 + 1/2\cdot 4} = +\,7,4\,8\,3\,3\,\mathrm{\kappa\,H}\,.$$

Из уравнения (2) определяем X_A :

$$X_A = -Q - P_3 \cdot \sin \alpha_1 - S_D + P_1 \cdot \sin \alpha_1 - R_B \cdot \sin \alpha_2;$$

$$X_A = -16 - 5 \cdot 1/2 - 3 + 2 \cdot 1/2 - 7,4833 \cdot \sqrt{3}/2 = -26,9807 \text{ kH}.$$

Из уравнения (3) определяем Y_A :

$$Y_A = -P_3 \cdot \cos \alpha_1 + P_2 \cdot \sin \alpha_2 - P_1 \cdot \cos \alpha_1 + R_B \cdot \cos \alpha_1;$$

$$Y_A = -5 \cdot \sqrt{3}/2 - 2 \cdot \sqrt{3}/2 + 7,4833 \cdot \sqrt{3}/2 = +0,4185 \text{ kH}.$$

Знаки плюс, полученные при вычислении, означают, что выбранные направления векторов $\overline{R}_B \cdot \cos \alpha_2$; $\overline{R}_B \cdot \sin \alpha_2$ и Y_A совпадают с их действительными направлениями; знак минус при вычислении величины вектора X_A указывает на то, что вектор направлен в противоположную сторону от показанного на рисунке.

Для определения правильности вычисленных величин реакций связи составляем уравнение равновесия относительно произвольно выбранной точки (точки C):

$$\sum M_C = +Q \cdot a + X_A \cdot 2a + P_2 \cdot \sin \alpha_2 \cdot a - P_1 \cdot \cos \alpha_1 \cdot 4a + \\ +M + R_B \cdot \sin \alpha_2 \cdot 4a + R_B \cdot \cos \alpha_2 \cdot 4a = 0$$

$$\sum M_C = +16 \cdot 1 + (-26,9807 \cdot 2) - 2 \cdot \sqrt{3}/2 \cdot 4 + 4 - \\ +7,4833 \cdot \sqrt{3}/2 \cdot 4 + 7,4833 \cdot 1/2 \cdot 4 = 0$$

Изм.	Лист	№ докум.	Подпись	Дата