# ИСЛЕДОВАНИЕ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА ПАРАЛЛЕЛЬНОГО ВОЗБУЖДЕНИЯ

#### 5.3.1. ЦЕЛЬ РАБОТЫ

Изучить конструкцию и принцип действия двигателя параллельного возбуждения. Приобрести практические навыки экспериментального исследования характеристик двигателя.

#### 5.3.2. ПРОГРАММА РАБОТЫ

- 5.3.2.1. Ознакомиться с лабораторной установкой.
- 5.3.2.2. Получить характеристики: рабочие, механические, скоростные.
- 5.3.2.3. Проанализировать полученные характеристики и сделать основные выводы.

### 5.3.3. ОБЩИЕ УКАЗАНИЯ

Электрическая схема для исследования двигателя параллельного возбуждения приведена на рис. 5.3.1.: М - исследуемый двигатель; Q1 - магнитный пускатель; R1 - резистор в цепи возбуждения; R2 - пусковой реостат; G - нагрузочный генератор; Q2 - переключатель режимов работы нагрузочного генератора; R - нагрузочный резистор; R4 - резистор в цепи возбуждения генератора; BR - тахогенератор;  $F_M$  — обмотка возбуждения двигателя;  $F_G$  — обмотка возбуждения генератора.

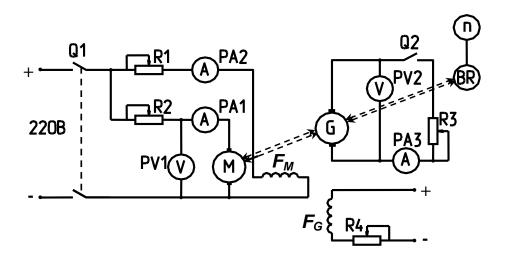



Рис. 5.3.1. Электрическая схема для исследования двигателя параллельного возбуждения

Пуск двигателя производят без нагрузки с помощью пускового реостата R2. Для этого переключателем Q2 размыкают цепь нагрузки генератора. Сопротивление резистора R1 устанавливают минимальным, а сопротивления пускового реостата R2 и резисторов R3, R4 - максимальным. Затем пускают двигатель М. Плавно уменьшают сопротивление пускового реостата R2 до нуля.

#### 5.3.4. РАБОЧИЕ ХАРАКТЕРИСТИКИ

Рабочими характеристиками двигателя параллельного возбуждения называют зависимости:  $I_{a\partial}=f(P_{2\partial}); P_{1\partial}=f(P_{2\partial}); M=f(P_{2\partial});$   $\eta_{\partial}=f(P_{2\partial}); n=f(P_{2\partial})$  при  $U_{\partial}=U_{\partial H}, I_{\partial}=I_{\partial\partial H}$ .

Для получения рабочих характеристик у двигателя, работающего на холостом ходу, записать показания приборов в табл. 5.3.1. Это первые точки рабочих характеристик. Устанавливают переключатель Q2 в положение «Нагрузка» при максимальном значении R2 и записывают показания приборов при минимальной нагрузке двигателя. Регулируют сопротивления резисторов R3 и R4, таким образом, чтобы получить еще  $4\div 5$  точек рабочих характеристик.

Таблица 5.3.1 Рабочие характеристики двигателя

|                     |                 | Оп  | Опыт Расчет       |          |          |                                         |                 |                 |                   |       |          |                                                                                                   |
|---------------------|-----------------|-----|-------------------|----------|----------|-----------------------------------------|-----------------|-----------------|-------------------|-------|----------|---------------------------------------------------------------------------------------------------|
| $N_{\underline{0}}$ | Двига- Генера   |     | нера-             | Ген      | ера-     | Двигатель                               |                 |                 |                   |       |          |                                                                                                   |
| ОП                  | тель            |     | тор               |          | тор      |                                         |                 |                 |                   |       | Примеча- |                                                                                                   |
| ЫТ                  | $I_{a\partial}$ | n   | $U_{\mathcal{E}}$ | $I_{az}$ | $P_{22}$ | $\eta_{\scriptscriptstyle \mathcal{E}}$ | $P_{1\partial}$ | $P_{2\partial}$ | $\eta_{\partial}$ | $M_2$ | M        | кин                                                                                               |
| a                   |                 |     |                   | ue       |          |                                         | 10              | 20              | .0                | _     |          |                                                                                                   |
|                     | Α               | об/ | В                 | A        | Вт       | o.e.                                    | Вт              | Вт              | o.e.              | Н·м   | Н·м      |                                                                                                   |
|                     |                 | МИН |                   |          |          |                                         |                 |                 |                   |       |          |                                                                                                   |
| 1÷                  |                 |     |                   |          |          |                                         |                 |                 |                   |       |          | $U_{\partial \mathcal{H}} = , B$                                                                  |
| 6                   |                 |     |                   |          |          |                                         |                 |                 |                   |       |          | $M_0$ =, H·M                                                                                      |
|                     |                 |     |                   |          |          |                                         |                 |                 |                   |       |          | $U_{\partial H} = , B$<br>$M_0 = , H \cdot M$<br>$I_{\theta \partial} = , A$<br>$R_{\Lambda} = 0$ |
|                     |                 |     |                   |          |          |                                         |                 |                 |                   |       |          | $R_{\perp} = 0$                                                                                   |

Расчеты, необходимые для заполнения табл. 5.3.1. производить по следующим формулам.

Полезная мощность генератора

$$P_{2z} = U_z I_{az}$$
, Bt. (5.3.1)

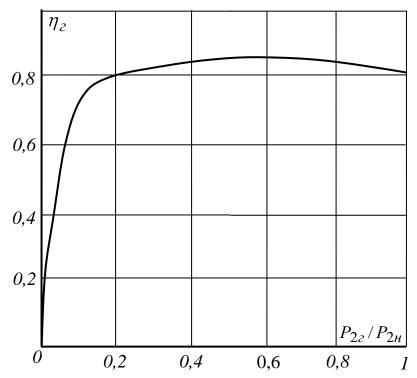



Рис.5.3.2. КПД нагрузочного генератора

Полезная мощность двигателя

$$P_{2\partial} = P_{1z} = P_{2z} / \eta_z$$
, BT, (5.3.2)

где  $\eta_2$  – КПД генератора определяют по рис. 5.3.2. ,  $P_{12}$  - потребляемая мощность генератора.

Потребляемая мощность двигателя.

$$P_{1\partial} = U_{\partial}(I_{a\partial} + I_{e\partial}), \text{ Bt.}$$
 (5.3.3)

КПД двигателя

$$\eta_{\partial} = \frac{P_{2\partial}}{P_{1\partial}}, \text{ o.e.}$$
(5.3.4)

Полезный момент и на валу двигателя

$$M_2 = 9.55P_{2\partial}/n$$
, H·m. (5.3.5)

Момент холостого хода

$$M_0 = 9,55 \frac{P_0}{n_0}, \text{ H·m},$$
 (5.3.6)

где  $P_0$  - мощность, потребляемая двигателем на холостом ходу,  $n_0$  - частота вращения двигателя на холостом ходу.

Электромагнитный момент двигателя

$$M = M_0 + M_2$$
, H·M. (5.3.7)

По результатам табл. 5.3.1 построить рабочие характеристики двигателя.

#### 5.3.5. МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Механической характеристикой двигателя параллельного возбуждения называют зависимость n=f(M), при  $U_{\partial}=U_{\partial H}$ ,  $I_{\partial \partial}=I_{\partial \partial H}$ ,  $R_{\Pi}={\rm const.}$ 

Двигатель параллельного возбуждения имеет естественную и искусственные механические характеристики.

Естественную механическую характеристику,  $(R_{\Lambda}=0)$  получают по табл. 5.3.1.

Искусственные механические характеристики получают при включении в цепь якоря разных по величине добавочных сопротивлений  $R_{\rm Z}$ . В качестве добавочного сопротивления допускается использование ступеней пускового резистора  $R_{\rm Z}$ . Последовательность проведения опыта такая же, как при получении рабочих характеристик. Результаты опытов заносят в табл. 5.3.2. Естественную и искусственные характеристики строят в одних осях.

 Таблица 5.3.2

 Искусственные механические характеристики двигателя

|                     | Опыт              |     |                     |          | Расчет             |                                         |                 |                 |          |      |                                                          |
|---------------------|-------------------|-----|---------------------|----------|--------------------|-----------------------------------------|-----------------|-----------------|----------|------|----------------------------------------------------------|
| $N_{\underline{0}}$ | Двигатель Генера- |     | Генератор Двигатель |          |                    |                                         |                 |                 |          |      |                                                          |
| ОП                  | тор               |     | -                   |          |                    |                                         |                 |                 | Примеча- |      |                                                          |
| ЫТ                  | $I_{a\partial}$   | n   | $U_{\mathcal{E}}$   | $I_{az}$ | $P_{2\varepsilon}$ | $\eta_{\scriptscriptstyle \mathcal{E}}$ | $P_{1\partial}$ | $P_{2\partial}$ | $M_2$    | M    | ния                                                      |
| a                   | uo                |     | c                   | ис       | 26                 | 16                                      | 10              | 20              | 2        |      |                                                          |
|                     | A                 | об/ | В                   | A        | Вт                 | o.e.                                    | Вт              | Вт              | Н·м      | Н·м  |                                                          |
|                     |                   | мин |                     |          |                    | 0.0.                                    | 21              | 21              | 11 111   | 1111 |                                                          |
|                     |                   |     |                     |          |                    |                                         |                 |                 |          |      | $U_{\partial H} = , B$                                   |
| 1÷                  |                   |     |                     |          |                    |                                         |                 |                 |          |      | $U_{\partial \mathcal{H}} = , B$<br>$M_0 = , H \cdot M$  |
| 6                   |                   |     |                     |          |                    |                                         |                 |                 |          |      | $I_{\theta \partial} = A$                                |
|                     |                   |     |                     |          |                    |                                         |                 |                 |          |      | $R_{\Lambda 1} > R_{\Lambda}$<br>$U_{\partial H} = , B$  |
|                     |                   |     |                     |          |                    |                                         |                 |                 |          |      | $U_{\partial\mathcal{H}} = , B$                          |
| 1÷                  |                   |     |                     |          |                    |                                         |                 |                 |          |      | $M_0$ =, H·M                                             |
| 6                   |                   |     |                     |          |                    |                                         |                 |                 |          |      | $I_{\theta\partial} = A$ $R_{\text{A2}} > R_{\text{A1}}$ |
|                     |                   |     |                     |          |                    |                                         |                 |                 |          |      | $R_{\rm JI2} > R_{\rm JI1}$                              |

#### 5.3.6. СКОРОСТНЫЕ ХАРАКТЕРИСТИКИ

Скоростной характеристикой двигателя постоянного тока называется зависимость  $n=f(I_{a\partial})$ , при  $U_{\partial}=U_{\partial H}$ ,  $I_{e\partial}=const$ ,  $R_{\rm Д}\!\!=\!\!0$ . Опыты проводят для трех значений тока возбуждения:  $I_{e\partial}=I_{eH}$ ,  $I_{e\partial}=0.8I_{eH}$ ,  $I_{e\partial}=1.2I_{eH}$ .

Скоростную характеристику при  $I_{\it ed} = I_{\it eh}$  получают по табл. 5.3.1.

Для получения скоростных характеристик при токе возбуждения отличным от номинального ( $I_{\theta\partial} \neq I_{\theta H}$ ) устанавливают нужное значение тока возбуждения двигателя регулированием сопротивления резистора R1. Это первая точка характеристики. Устанавливают переключатель Q2 в положение «Нагрузка» при максимальном сопротивлении резистора R3. Двигатель работает при минимальной нагрузке. Устанавливают  $4\div 5$  значений тока якоря двигателя и частоты вращения уменьшением сопротивлений резисторов R3 и R4. Для других значений тока возбуждения двигателя опыты повторяют.

По результатам табл. 5.3.3. строят скоростные характеристики при различных токах возбуждения в одних осях координат.

Таблица 5.3.3 *Скоростные характеристики двигателя* 

| No    | $I_{a\partial}$ | n      |                                                              |
|-------|-----------------|--------|--------------------------------------------------------------|
| опыта | A               | об/мин | Примечание                                                   |
| 1 ÷ 6 |                 |        | $U_{\partial} = , B$                                         |
|       |                 |        | $I_{\mathcal{B}\partial} = I_{\mathcal{B}\mathcal{H}} = , A$ |
| 1 ÷ 6 |                 |        | $U_{\partial} = , B$                                         |
|       |                 |        | $I_{\theta\partial} = 0.8I_{\theta\mathcal{H}} = , A$        |
| 1 ÷ 6 |                 |        | $U_{\partial} = , B$                                         |
|       |                 |        | $I_{\theta\partial} = 1,2I_{\theta\mathcal{H}} = , A$        |

#### 5.3.7. РЕГУЛИРОВОЧНЫЕ ХАРАКТЕРИСТИКИ

Двигатель параллельного возбуждения имеет регулировочные характеристики двух видов:  $n=f(I_{\theta\partial})$  при  $U_{\partial}=U_{\partial H}$ ,  $M=M_0$ ;  $I_{\theta\partial}=f(I_{\partial\partial})$  при  $U_{\partial}=U_{\partial H}$ ,  $n=n_H=const$ .

## 5.3.7.1. РЕГУЛИРОВОЧНАЯ ХАРАКТЕРИСТИКА $n = f(I_{\theta \partial})$

Регулировочную характеристику  $n=f(I_{\theta\partial})$  получают в режиме холостого хода ( $M=M_0$ ).

Производят пуск двигателя на холостом ходу и записывают показания приборов в табл. 5.3.4 первой точки регулировочной характеристики.

Для получения других точек характеристики плавно изменяют сопротивление резистора R1, изменяя ток возбуждения через примерно одинаковые интервалы. По результатам табл.5.3.4. строят регулировочную характеристику.

 $\label{eq:2.3.4.}$  Регулировочная характеристика двигателя  $n=f(I_{\it ed})$ 

| №     | <i>I<sub>вд</sub></i> | <i>n</i> | Примечания                    |
|-------|-----------------------|----------|-------------------------------|
| опыта | А                     | об/мин   |                               |
| 1 ÷ 6 |                       |          | $U = U_{H} = , B$ $M = M_{0}$ |

# 5.3.7.2. РЕГУЛИРОВОЧНАЯ ХАРАКТЕРИСТИКА $I_{\theta\partial}=f(I_{a\partial})$

Производят пуск двигателя на холостом ходу. Устанавливают переключатель Q2 в положение «Нагрузка». С помощью резисторов R3, R4 и R1 добиваются выполнения условий  $n=n_H$ ,  $I_H < I_{a\partial} \le 1,2I_H$ . Это первая точка регулировочной характеристики. Повторяют опыт для 5 меньших значений тока якоря  $I_{a\partial}$ . Результаты исследования записывают в табл.5.3.5 и строят регулировочную характеристику.

Таблица 5.3.5 Регулировочная характеристика двигателя  $I_{\theta \partial} = f(I_{a \partial})$ 

| <b>№</b> | <i>I<sub>вд</sub></i> | I <sub>að</sub> | Примечание                               |
|----------|-----------------------|-----------------|------------------------------------------|
| опыта    | А                     | A               |                                          |
| 1 ÷ 6    |                       |                 | $U = U_H = $ , В<br>$n = n_H = $ ,об/мин |

#### 5.3.8. АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

При анализе полученных результатов исследований необходимо дать в отчете следующие пояснения.

Рабочие характеристики:

- причину поведения каждой характеристики. *Механические характеристики:*
- вид и причину поведения характеристик;
- причину взаимного расположения естественной и искусственных характеристик.

Скоростные характеристики:

- вид и причину поведения характеристик;
- причину взаимного расположения скоростных характеристик. *Регулировочные характеристики:*
- пид и причину поведения характеристик.

## 5.3.9. КОНТРОЛЬНЫЕ ВОПРОСЫ ПРИ ДОПУСКЕ К ВЫПОЛНЕНИЮ РАБОТЫ

- 5.3.9.1. Поясните способ пуска исследуемого двигателя.
- 5.3.9.2. Какие характеристики двигателя называют рабочими и при каких условиях их получают?
- 5.3.9.3. Что используется в качестве нагрузки при испытаниях двигателя?
- 5.3.9.4. Каким образом регулируют величину нагрузки на валу двигателя?
- 5.3.9.5. Изложите порядок действий при получении рабочих характеристик двигателя.
- 5.3.9.6. Какие характеристики двигателя параллельного возбуждения называют механическими?
- 5.3.9.7. Какую из механических характеристик называют естественной и искусственной?
  - 5.3.9.8. Какие характеристики двигателя называют скоростными?
- 5.3.9.9. Какую из скоростных характеристик называют естественной и искусственной?
- 5.3.9.10. Каким образом получают искусственные скоростные характеристики?
- 5.3.9.11. Какие характеристики двигателя называют регулировочными?

# 5.3.10. КОНТРОЛЬНЫЕ ВОПРОСЫ ПРИ ЗАЩИТЕ ЛАБОРАТОРНОЙ РАБОТЫ

- 5.3.10.1. Изобразите электрическую схему исследования двигателя параллельного возбуждения и дайте необходимые пояснения.
  - 5.3.10.2. Поясните способ пуска исследуемого двигателя.
- 5.3.10.3. Перечислите условия, при соблюдении которых получают рабочие характеристики.
- 5.3.10.4. Изложите порядок действий при получении рабочих характеристик двигателя.
- 5.3.10.5. Какие характеристики двигателя параллельного возбуждения называют механическими?
- 5.3.10.6. Какую из механических характеристик называют естественной и искусственной?
  - 5.3.10.7. Какие характеристики двигателя называют скоростными?
- 5.3.10.8. Какую из скоростных характеристик называют естественной и искусственной?
- 5.3.10.9. Каким образом получают искусственные скоростные характеристики?
- 5.3.10.10. Какие характеристики двигателя называют регулировочными?
- 5.3.10.11. Как получают регулировочную характеристику  $n = f(I_{\it BO})$  ?
- 5.3.10.12. Как получают регулировочную характеристику  $I_{\theta \partial} = f(I_{a \partial})$ ?