Tomsk Polytechnic University

DESCRIPTIVE GEOMETRY
 ENGINEERING GRAPHICS

G.F.Vinokurova, R.G. Dolotova, S.P. Burkova

Lecture 5

REPRESENTATIONS -
Views, Sectional View, Section

Plan

1. Views
2. Sectional View
3. Section
4. Extension Elements
5. Conventions and Simplifications

Views

All drawing representations are classified into views, sections and sectional views.

View (elevation) - is a representation of a visible, facing the viewer, part of an object surface.

Representations of objects in technical drawing are completed by the method of rectangular (orthogonal) projections.

Six faces of a cube are taken as the basic projection planes.

The orthogonal projections are completed either in first angle projection (the E-method, "European", applied in Russia and in most of the continental countries) or in third angle projection (the A-method, "American", applied in the USA, England, Holland).

Projecting in First Angle Projection (E-Method)

When this method is used, imagine an object to be placed inside a cube and projected on the interior surfaces of its faces.

The projecting beams are directed from the viewer to the cube faces. Six faces of the cube are taken as the basic projection planes, they coincide with a drawing plane.

The image on the frontal projection plane is assumed to be the principal one. An object is located relative to the frontal projection plane so that the image on it represents the form and dimensions of the object with sufficient clarity.

The principal views are the views obtained by projecting an object on the six principal projection planes.

bottom

 viewright-side
front view elevation
left-side
rear elevation elevation
plan

The image of a subject on a front plane is accepted for the main kind of a product

The main kind should give the most full representation about a structure of a detail

If the views have no direct projection link with the principal representation, an arrow should be drawn to point in the direction that the view is projected.

One and the same capital letter should be written above the arrow and above the view.

Similar presentation of a drawing is used when the views mentioned above are separated from the principal view by the other views or located on the other sheets.

The dimensions of the arrow, showing the direction of view

The number of representations (elevations, sections, sectional views) should be minimal, still providing a clear pictorial view of an object.
lessen the number of representations on a drawing

Additional view the image of a detail or its part, received at displaying on an inclined plane

When there is a direct projection link between the auxiliary view and the corresponding representation, the arrow and the designation are not drawn

A If there is no projection link between the principal and the auxiliary views, the later should be marked
 with a capital letter, and the linked (with the auxiliary view) representation with an arrow pointing in the direction of the view, plus the corresponding lettering

An auxiliary view may be rotated (but the position of the object, as a rule, corresponds to the principal view), then the view is marked with a special symbol of rotation - \bigcirc
The dimensions of the arrow, showing the direction of view, and the symbols of the words "rotated" and "unfolded".

Representation of a certain

 limited part of an object surface is referred to as a detail (partial) viewA detail view may be terminated with a continuous irregular line in the possible minimal size; or it may not be terminated.

A (2:1)

If a detail view is to a scale which
 differs from the scale of the other representations in a drawing, its scale is shown in brackets next to the lettering of the view.

A detail view

A detail view must be marked on a drawing in a similar fashion as an auxiliary view.

