Tomsk Polytechnic University

DESCRIPTIVE GEOMETRY
 ENGINEERING GRAPHICS

G.F.Vinokurova, R.G. Dolotova, S.P. Burkova

Lecture 5

AXONOMETRIC PROJECTIONS

Plan

1. The Method of Axonometric Projection
2. Rectangular Parallel Isometry and Dimetry
3. Representation of a Circle and a Sphere in Isometry and Dimetry

The Method of Axonometric Projection

The word "axonometry" is derived from the Greek words "axon" which means "axis" and "metro" meaning "I measure', so it can be translated as "the measurement by the axes".

The method of axonometric projection consists in the following: a given figure and the axes of rectangular co-ordinates to which the figure is related in space are projected on a plane referred to as a plane of projections (it also called a picture plane).

Depending on the distance between the centre of projection and the picture plane all axonometric projections are classified as:
the central projections - the centre is located at a finite distance from the plane;
the parallel projections - the centre is at infinity.

$X_{1} O_{1}, Y_{1} O_{1}, Z_{1} O_{1}$ - axonometric co-ordinate axes or axonometric axes
A_{1} - axonometric projection of the point A;

$$
\boldsymbol{a}_{1}, \boldsymbol{a}_{1}^{\prime}, \boldsymbol{a}_{1}^{\prime \prime} \text { secondary projections of the }
$$

$\boldsymbol{e}_{X}, \boldsymbol{e}_{Y}, \boldsymbol{e}_{Z}-$ scaled line-segments

$\boldsymbol{e}_{X_{1}}, \boldsymbol{e}_{Y_{1}}, \boldsymbol{e}_{Z_{1}}-$ axonometric (secondary) projections of the scaled line-segments

The ratio of the length of the axonometric projection segment to its true size is referred to as the coefficient of distortion on an axis.

Coefficient of distortion on an axis

$$
\frac{e_{X_{1}}}{e_{X}}=m, \quad \frac{e_{Y_{1}}}{e_{V}}=n, \quad \frac{e_{Z_{1}}}{e_{Z}}=k
$$

Oblique axonometric projection $\left(\alpha \neq 90^{\circ}\right)$

$$
m^{2}+n^{2}+k^{2}=2+\operatorname{ctg}^{2} \alpha
$$

Rectangular axonometric projection $\left(\alpha=90^{\circ}\right)$

$$
m^{2}+n^{2}+k^{2}=2
$$

Axonometry is a representation of an object on a plane related to a certain coordinate system and completed to a certain scale subject to the coefficients of distortion.
$\boldsymbol{m}=\boldsymbol{n}=\boldsymbol{k} \quad$ Isometric projections
$\boldsymbol{m}=\boldsymbol{n} \neq \boldsymbol{k}$
$\boldsymbol{m}=\boldsymbol{k} \neq \boldsymbol{n}\}$ Dimetric projections
$\boldsymbol{m} \neq \boldsymbol{n} \neq \boldsymbol{k} \quad$ Trimetric projections

Rectangular Parallel Isometry and Dimetry

Rectangular Parallel Isometry

In rectangular isometric projection the axonometric axes x, y, z are at 120° to each other; The coefficients of distortion

$$
m=n=k=0,82
$$

A reduction of the coefficients of distortion is usually applied

$$
m=n=k=1
$$

In this case, the representation obtained is enlarged by 1.22 .

Axes in a rectangular isometric

Rectangular Parallel Dimetry

In the rectangular dimetry the axis $z 1$ is vertical, the axis $x 1$ is at $7^{\circ} 10^{\prime}$ and the axis $y 1$ is at $41^{\circ} 25^{\prime}$ to the horizontal line.

The coefficients of distortion on the axes $x l$ and $z l$ are assumed to be equal $(m=k)$, those on the axis $y l-$ twice less $(n=1 / 2 m)$.

$$
m=k=0,94 \quad n=(1 / 2) m=0,47
$$

Rectangular Parallel Dimetry

In practice the reduction of dimetry is usually used with the coefficients of distortion

$$
m=k=1 \quad n=(1 / 2) m=0,5
$$

In this case the representation is enlarged
by 1.06.

Axes in a rectangular Dimetry

The cross-hatching lines in axonometric projections are drawn parallel to one of the diagonals of the squares lying in the corresponding co-ordinate planes, the sides of which are parallel to the axonometric axes

a) isometry

Representation of a Circle and a Sphere in Isometry and Dimetry

Representation of a Circle in Isometry

A circle in axonometry is generally projected in an ellipse. When constructing an ellipse, it is necessary to know the direction of its axes and their dimensions.

Note: the minor axis of an ellipse is always perpendicular to the major one.

When a circle projection is constructed (the circle lies in one of the coordinate planes), the minor axis of the ellipse is directed parallel to the axonometric axis which does not participate in the formation of the plane the drawing is in.

Representation of a Circle in Isometry

 A graphical method of determination of the ellipse axes' dimensions. Draw a circle of the diameter D, the chord $A B=0.71 D$ (the length of the ellipse minor axis).

Assuming the points A and B as the centre, with the radius equal to $A B$ draw the arcs to meet each other in E and F.

Join the obtained points with a straight line. $E F=1.22 D$ (the length of the ellipse major axis)

Representation of a Circle in Isometry

$A B=0.71 \boldsymbol{D}$ (the length of the ellipse minor axis) $\boldsymbol{E F}=1.22 \mathrm{D}$ (the length of the ellipse major axis)

Representation of a Circle in Isometry

 Lay off the segments equal in length to the major E and the minor $A B$ axes, to meet in the centre of the ellipse - the point $O 2$.Through this point pass the lines parallel to the axes $x 1$ and $z 1$ generating ${ }^{D}$ the given plane.

On the lines, lay off the values equal to the
 diameter D of the circle.
Join the obtained 8 points to get an ellipse.

Representation of a Circle in Isometry

 Construction of an ellipse in the other planes is similar, only the directions of the axes change.

Representation of a Circle Dimetry

In dimetry only the length of the major axis is always constant (1.06D).

The size of the minor axis in the horizontal (H) and profile (W) planes makes $0.35 D$, in the frontal (V) plane it makes 0.94D.

Representation of a Circle Dimetry

To determine the size of an ellipse axes by means of the graphical method let us construct a right triangle given the legs ($\mathbf{1 0 0} \mathbf{~ m m}$ and $\mathbf{3 5} \mathbf{~ m m}$) and the hypotenuse ($\mathbf{1 0 6} \mathbf{~ m m}$).
If we lay off the segment equal to the circle diameter
D on the longer leg, the legs will make $0.35 D$, i.e. will be equal to the length

Representation of a Circle Dimetry

If we lay off the segment equal to the circle diameter D on the longer leg, the legs will make $0.35 D$, i.e. will be equal to the length of the minor ellipse axis on the planes H and W.
The hypotenuse is equal to $1.06 D$, that is to the length of the major ellipse axis. If we lay off the length of the diameter D on the hypotenuse and then drop a perpendicular to the longer leg of the triangle, the segment
 will be equal to 0.94 D , i.e. to the length of the ellipse minor axis on the plane V.

Representation of a

 Circle Dimetry

1.06 D

Representation of a Circle and a Sphere in Isometry and Dimetry

In rectangular parallel axonometry, a sphere is represented as a circle.
When a sphere is constructed by the true values of distortion, its axonometric projection is a circle of the diameter equal to the diameter of the sphere.
When a sphere is constructed by reduction, the diameter of the circle enlarges in conformity with the reduction coefficient: in isometry it is $\mathbf{1 . 2 2}$; in dimetry - 1.06.

Representation of a Circle and a Sphere in

