Tomsk Polytechnic University

DESCRIPTIVE GEOMETRY
 ENGINEERING GRAPHICS

G.F.Vinokurova, R.G. Dolotova, S.P. Burkova

Lecture 4

SURFACES

Plan

1. Determining and Specifying Surfaces in a Drawing. Classification.
2. Polyhedral Surfaces and Polyhedrons.

A Polyhedron Cut by a Plane.
3. A Point and a Line on the Surface.
4. Conical and Cylindrical Surfaces.
5. Rotation Surfaces.

Determining and Specifying Surfaces in a Drawing Classification

Kinematic method

SURFACE - set
All consecutive positions Moving line

Analytical way Tasks of a surface

SURFACE a geometrical place of points or

lines satisfying the equation $\mathbf{F}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\mathbf{0}$

For example, $\mathbf{x}^{2}+\mathbf{y}^{2}+z^{2}=\mathbf{r}^{2}$

The frame method

The SURFACE is set by family of the lines belonging to a surface (frame)

The frame:

Mesh, linear, dot

To specify a surface in a complex drawing it is necessary to present in it only those elements of a surface which give the opportunity to construct each of its points. A collection of these elements is called surface determinant.

The determinant will consist of 2 parts Geometrical and algorithmic.

Geometrical partGeometrical elements Surfaces (a point, a line, etc.)

Algorithmic part The law of formation of a surface

Classification of the Surfaces 1. Regular and nonregular surfaces;
2. Ruled surfaces (formed by a travel of a straight line) and nonruled (curve-lined) surfaces;
3. Developable surfaces (or torses) and nondevelopable ones;
4. Surfaces with generatrix of a constant form and of a variable form;
5. Surfaces with translational, rotary and helical motion of generatrix.

Polyhedral Surfaces and Polyhedrons. A Polyhedron Cut by a Plane

A polyhedral surface is a surface formed by a travel of a linear generating line along a polygonal directrix.

Polyhedral surfaces are divided into two kinds: pyramidal and prismatic surfaces.

A pyramidal surface is a surface obtained by a travel of a linear generatrix along a polygonal directrix. Note: All generating lines pass through a certain fixed point S.

A pyramidal surface

A prismatic surface is a surface obtained by a travel of a linear generatrix along a polygonal directrix.

Note: All generating lines are parallel to a certain given direction l.

Determinant surface:
polygonal directrix and given direction l

A Point and a Line on the Surface

1. A point belongs to a surface when it belongs to a line of the surface

The points K and N belong to a pyramidal and prismatic surfaces respectively, as they belong to the straight lines contained in these surfaces.
2. A line belongs to a surface when it passes through the points of the surface.
3. A straight line belongs to a surface when it passes through two points belonging to the surface.

Hence, if a point belongs to a surface,

 its projections belong to the like projections of the surface line.Polyhedron

A body bounded by plane polygons is called a polyhedron.

A part of space bounded in all directions by a surface is called a body.

Prism is a polyhedron with the bases being equal mutually parallel faces and the sides being parallelograms.

If the edges of the sides are perpendicular to the base, the prism is a right prism.

To specify a prism it is necessary to

 specify its base and a lateral edge
Pyramid is a polyhedron one face

 of which is an arbitrary polygon taken for the base, the other faces (lateral) are the triangles with the common vertex S being called the vertex of pyramid.

To specify a pyramid it is necessary to specify its base and vertex.

A Polyhedron Cut by a Plane

When polyhedral surfaces are cut by planes we obtain polygons in the section, whose vertices are determined as the points of intersection of the polyhedron edges with a cutting plane.

A polygon obtained by cutting may be determined in two ways:

1. Its vertices may be found in the points of intersection of straight lines (the edges) with a cutting plane;
2. Its sides may be distinguished as the lines of intersection of polyhedron planes (the faces) with a cutting plane.

3. The cutting plane is a frontal projecting plane, therefore, all lines lying in this plane, including the section figure, coincide with the frontal trace $Q V$ of the plane Q.
4. Thus, the intersection of the frontal projections of the pyramid edges with the trace $Q V$ yields the frontal projection of the section figure $1^{\prime}-2^{\prime}-3^{\prime}$.
5. Find the horizontal projections of the points $1,2,3$ by means of the connection lines on the horizontal projections of the corresponding edges.

Conical and Cylindrical Surfaces

Conical Surface

The conical surface is produced by the motion of a linear generating line along a curved directrix.

At that, the generatrix passes some fixed point S, referred to as a vertex.

Determinant surface: Directrix a certain

 ○ $S^{\text {fixed point } S}$
generating

$$
\varphi(\sim m, S)
$$

S Conical

 $\varphi(\sim m, S)$
generating

The cylindrical surface

The cylindrical surface is produced by parallel to a given straight line l motion of a linear generating line along a curved directrix

A cylindrical surface is considered to be distinguished if a directrix and a generatrix.

Determinant surface: $\quad \varphi(\sim m, l)$

generating

$\varphi(\sim m, l)$
 cylindrical

Rotation Surfaces

Rotation surface is a surface described by a curve (or a straight line), rotating on its axis

Rotation Surfaces

Cylinder of rotation - this is a surface produced by rotation of the line L round the axis I parallel to it

Cylinder of rotation

 I-I AXIS OF ROTATION !
generating

Rotation Surfaces

Cone of rotation - this is a surface produced by rotation of the line L round the axis I intersecting it

Cone of rotation

Rotation Surfaces

Sphere - this is a surface produced by rotation of a circle round its diameter

generating (CIRCLE)

X

I

