Tomsk Polytechnic University

DESCRIPTIVE GEOMETRY
 ENGINEERING GRAPHICS

G.F.Vinokurova, R.G. Dolotova, S.P. Burkova

Lecture 1

PREFACE
 PROJECTION METHOD POINT

Plan

1. PREFACE
2. FROM THE HISTORY OF

GRAPHIC REPRESENTATIONS
3. PROJECTION METHOD
4. POINT

PREFACE

Descriptive geometry

Engineering the GRAPHIC

Descriptive geometry-

Science about projective Images

Descriptive geometry-

considers:

-Methods of the image of spatial figures on a plane

-Properties of figures under their images

In section Engineering the GRAPHIC rules of performance
 and reading of drawings of separate details and assembly units are studied

The literature

From the history of graphic representations

The founder Descriptive GeometryJasper Monge

Jasper Monge (1746-1818)

The first textbook on descriptive geometry It is published In France In 1798 year

In 1810 y. Charles Potje Started to read lectures on Descriptive geometry In the Petersburg Institute Cases of engineers Means of communication

Since 1818 y . the lectures on

 descriptive geometry have been delivered by Professor Y.A.Sevostyanov (1796-1849)
In 1821 y. he published an original course named "Foundation of Descriptive Geometry"

It happened to be the first

 textbook on descriptive geometryin Russia in the Russian language

V. Jhons

28(16) October 9002. Has read in Tomsk Polytechnic University the first lecture on descriptive geometry

PROJECTION METHOD

PROJECTION METHOD

Central Projection

Parallel Projection

Point S is the

Projection Centre,
Plane P is the Projection Plane A, B, C - points in space

To make a central projection of a point, draw a projecting line through the point and the projection centre.

The intersection point of this line and the projection plane turns out to be the central projection of the given point on the selected plane.

The a, b, c, d points are the central projections of the A, B, C, D points on the P plane.

The whole set of points of one projecting line has only one central projection if there is only one projection centre

So, on the given plane and given projection centre one point in space has one central projection. But one central projection of a point does not allow us to determine the location of the point in space unambiguously, i.e. in central projecting there is no reversibility of drawing and additional conditions are required to provide drawing reversibility.

Properties of central projection:

I. Under central projection
a) a point projects to a point;
b) a line not passing through the projection center projects to a line (projecting line - to a point);
c) a plane (two-dimensional) figure not belonging to the projecting plane projects to a two-dimensional figure (figures belonging to the projecting plane project to straight lines);
d) a three-dimensional figure projects to a two-dimensional one;
e) a central projection of figures keep mutual belonging,
continuity and some other geometric properties
2. Under the given projection center figures of parallel planes are similar.
3. Central projection provides unambiguous similarity of the figure and its projection, for example, projection on a screen or a film.

If the direction of projecting is perpendicular to the plane of projections, the last are called rectangular or orthogonal.

In other cases they are called oblique projections.

$\angle \alpha=90^{\circ}$ - Rectangular Projection

$\angle \alpha \neq 90^{\circ}$ - oblique Projection

Parallel projection possesses all the

 properties of central projection and the following new ones:1. Parallel projections of mutually parallel lines are parallel, and the ratio of those lines segments is equal to the ratio of their projections lengths.
2. A plane figure parallel to a projection plane projects to the same figure on the above plane.
3. A parallel transfer of a figure in space or in projection plane does not change the shape or dimensions of the figure projection.

Methods of Projection Drawings Supplement

The essence of the method is that the position of any point in space is specified by its rectangular projection on a horizontal plane taken for a zero plane.

Academician E.S. Fyodorov suggested the representation of the points altitudes (heights) by means of parallel segments in the projection plane, the beginnings of which are situated on the projections of the respective points.

The Method of Orthogonal Projections

(Method of Monge)

The Method of Orthogonal Projections

(Method of Monge)

Into the system of the planes H

 and V, let us introduce one more plane, perpendicular to them.This plane is called the profile projection plane and is denoted by letter W.

The Point Drawing

Rectangular projections of a point (in the H, V and W planes) are always obtained as the bases of perpendiculars, dropped from the given point onto each of projection planes

The location of a point in space is specified by means of its three coordinates (abscissa x, ordinate y, applicate $z) \quad \mathbf{A}(x, y, z)$ The location of a point in planes two coordinate:

$$
a(x, y) ; a^{9}(x, \mathbb{Z}) ; a^{99}(y, \mathbb{Z})
$$

Z

Z

Z

Z

Z

YH

frontal and profile projections (a^{\prime} and $a^{\prime \prime}$) are situated on one perpendicular to the z-axis on the connection line $a^{\prime} a^{\prime \prime}$
a

Thus, in a complex drawing consisting of three orthogonal point projections:

- two projections are situated on one connection line;
- connection lines are perpendicular to the projection axes;
- two projections of a point specify the locus of its third projection;
- two projections of a point specify its
locus in space.

