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INTRODUCTION 

Institutional and individual customers have increasingly better and 

broader awareness of products (and services) and are increasingly making 

smarter choices in their purchases. In fact, because society as a whole contin-

ues to become more knowledgeable of product performance, quality, reliabil-

ity, and cost, these attributes are considered to be market differentiators. 

People are responsible for designing, manufacturing, testing, maintain-

ing, and disposing of the products that we use in daily life. Perhaps you may 

agree with Neville Lewis (2003), who wrote, “Systems do not fail, parts and 

materials do not fail – people fail!” It is the responsibility of people to have 

the knowledge and skills to develop products that function in an acceptably 

reliable manner. These concepts highlight the purpose of this book: to pro-

vide the understanding and methodologies to efficiently and cost effectively 

develop reliable power supply systems and to assess and manage the opera-

tional availability of complex products, processes, and systems. 

In general, reliability needs to be built, as far as possible, at the design 

or planning stage of a product or a system. Corrective actions to fix the relia-

bility are generally more inconvenient and expensive. So far as the power grid 

is concerned, it is emerging as a highly complex system with heavy penetra-

tion of renewable energy sources, central and distributed energy storage and 

massive deployment of distributed communication and computational technol-

ogies allowing smarter utilization of resources. In addition, as the shape of the 

grid unfolds, there will be higher uncertainty in the planning and operation 

of these systems. As the complexity and uncertainty increase, the potential for 

possible failures with a significant effect on industrial complexes and society 

can increase drastically. In these circumstances maintaining the grid reliability 

and economy will be a very important objective and will be a challenge for 

those involved. Although many activities are involved in meeting these goals, 

educating the engineers in the discipline of reliability provides them with tools 

of analysis, trade-off and mental models for thinking. Reliability cannot be left 

to the goodwill of those designing or planning systems nor as a by-product 

of these processes but must be engineered into the grid and its subsystems in 

a systematic and deliberate manner. An important step in this process 

is to model, analyze and predict the effect of design, planning and operating 

decisions on the reliability of the system. So there is a need for educational 

tools covering the spectrum of reliability modeling and evaluation tools needed 

for this emerging complex cyber-physical system. 
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This book provides state of the art tools for analyzing power supply sys-

tem’s reliability. This material will be useful for those who need to use these 

tools as well as those who want to do further research. They will be able to 

use this knowledge to make trade-offs between reliability, cost, environmen-

tal issues and other factors as needed. 

To achieve this objective, we provide a strong background in general re-

liability that cultivates a deep understanding that can be used to develop ap-

propriate tools as needed. We then use this foundation to build the tools for 

analyzing the power systems. The book can thus be used both by those who 

want to understand the tools of reliability analysis and those who want exper-

tise in power system reliability. 
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Chapter 1  
PROBABILITY THEORY 

Knowledge of probability concepts is essential for power systems relia-

bility modeling and analysis. These serve as fundamental ideas for the under-

standing of random phenomenon in reliability engineering problems. Proba-

bility theory is used to describe or model random occurrences in systems that 

behave according to probabilistic laws. Basic probability theory is reviewed 

in this chapter, with emphasis on application to power systems. 

1.1. State Space and Event 

Sample space or state space, usually denoted by S, is a collection of all 

possible outcomes of a random phenomenon. Consider the following examples: 

 Outcome of tossing a coin once: S = {Head, Tail}. 

 Outcome of rolling a dice: S = {1, 2, 3, 4, 5, 6}. 

 Status of a generator: S = {Up, Down}. 

 Status of two transmission lines: S = {(1U, 2U), (1U, 2D), (1D, 2U), 

(1D, 2D)}, where U denotes that a transmission line is working (i.e., in the up 

state) and D denotes that the transmission line has failed (and is in the down 

state), as shown in Fig. 1.1. 

 

 

Fig. 1.1. Status of two transmission lines 
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In power system applications, we may want to focus our analysis 

on certain scenarios in the state space. For instance, in the example of the 

two transmission lines, we may be concerned only with the situation where 

at least one transmission line is working. This leads to what we call an event. 

An event is defined as a set of outcomes of a random phenomenon. It is 

a subset of a sample space. 

For example, 

 Rolling a dice yields a “1”: E = {1}; 

 A generator has failed: E = {Down}; 

 At least one transmission line is working, E = {(1U, 2U), (1U, 2D), 

(1D, 2U)}; 

 Only one transmission line has failed, E = {(1U, 2D), (1D, 2U)} 

as shown in Fig. 1.2. 

 

 

Fig. 1.2. The event that only one transmission line has failed 

For any two events E1 and E2 in the state space S, the new event that 

contains outcomes from either E1 or E2 or both is called the union of the 

events, denoted by E1   E2. For example, if E1 is an event that at least one 

transmission line is up, E1 = {(1U, 2U), (1U, 2D), (1D, 2U)}, and E2 is an 

event that at least one transmission line is down, E2 = {(1U, 2D), (1D, 2U), 

(1D, 2D)}, then, union of event E1 and E2 is 

 E1   E2 = {(1U, 2U), (1U, 2D), (1D, 2U), (1D, 2D)}. 

For any two events E1 and E2 in the state space S, the new event that 

contains outcomes from both E1 and E2 is called the intersection of the 
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events, denoted by E1   E2. For example, the intersection of events E1 and 

E2 in the example of the two transmission lines is 

 E1   E2 = {(1U, 2D), (1D, 2U)}. 

There are cases where some events do not have any common outcome, i.e., 

the intersection of these events does not contain any outcome. Consider the event 

that both transmission lines are down, E3 = {(1D, 2D)}; then the intersection of 

events E1 and E3 has no outcome. This null event is denoted by an empty set,  . 

When the intersection of two events creates an empty set, the two events 

are said to be mutually exclusive or disjoint events. For example, if E4 is 

an event that the two transmission lines are up, i.e., E4 = {(1U, 2U)}, and E5 

is an event that two transmission lines are down, i.e., E5 = {(1D, 2D)}, then 

it is impossible for E4 and E5 to happen together, and the intersection of E4 

and E5 is a null set: E4   E5 =  . We can conclude that E4 and E5 are mutu-

ally exclusive, and this is shown by the Venn diagram in Fig. 1.3. 

 

 

Fig. 1.3. Venn diagram between inclusive events and mutually exclusive events 

The concept of union and intersection of events can be extended to in-

clude more than two events. If E1, E2,…, En are events in the state space S, 

then union of these events, denoted by 
1

n

ii
E


, is the event that contains out-

comes from any of the events E1, E2,…, En. The intersection of these events, 

which is defined in a similar way, denoted by 
1

n

ii
E


, is an event that selects 

only outcome(s) that is (are) common in all the events E1, E2,…, En. The 

same concept also applies when n goes to infinity. 

Example 1.1. Consider a system of three generators connected to a load, 

as shown in Fig. 1.4. A generator can assume two statuses, either working 

in the up state or failure in the down state. 

Let us find the possible outcomes (state space) of the status of genera-

tors in this problem, the event that the one generator is working and the event 

that satisfies any of the following criteria: 

 One generator is working; 

 Three generators failed; 

 The third generator failed. 



 

8 

And lastly, find the event that satisfies all the above criteria. The state 

space of this problem is shown in Fig. 1.5. 

 

 

Fig. 1.4. Three-generator system representation in Example 1.1 

 

Fig. 1.5. State space of three-generator system in Example 1.1 

Let S be a state space of a status of three generating units. Then 

S = {(1U, 2U, 3U), (1U, 2U, 3D), (1U, 2D, 3U), (1D, 2U, 3U),  

(1D, 2U, 3D), (1D, 2D, 3U), (1U, 2D, 3D), (1D, 2D, 3D)}, 

where U denotes a unit that is working and D denote a unit that is failed. The 

state space, S, shows the possible outcomes of this problem. 

Let E1 be an event that one generating unit is up; thenE1 = {(1D, 2U, 

3D), (1D, 2D, 3U), (1U, 2D, 3D)}. 
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Let E2 be an event that three generating units are down then E2 = {(1D, 

2D, 3D)}, and E3 be an event that the third unit is down, then 

 E3 = {(1U, 2U, 3D), (1D, 2U, 3D), (1U, 2D, 3D), (1D, 2D, 3D)}. 

The event that satisfies any one of the three criteria is given as the union 

of E1, E2, E3 or E1   E2   E3 = {(1U, 2U, 3D), (1D, 2U, 3D), (1D, 2D, 3U), 

(1U, 2D, 3D), (1D, 2D, 3D)}. 

The event that satisfies all of the three criteria is given as the intersec-

tion of E1, E2, E3 or, E1   E2   E3 = {(1D, 2D, 3D)}. 

Let us also find the event, denoted by 3

cE , that the third unit is up; then,

3

cE  = {(1U, 2U, 3U), (1U, 2D, 3U), (1D, 2U, 3U), (1D, 2D, 3U)}. 

Note that this event 3

cE  contains all possible outcomes in the state 

space that are not in the event E3, which describes the outcomes that the third 

unit is down. 

We can now define a new event, denoted by Ec, a complement of 

an event E, to be the set of outcomes that are in the state space, S, but not in-

cluded in an event E. This means that Ec will occur only when E does not oc-

cur. This also implies that E and Ec are mutually exclusive (E   Ec
 =  ) and 

that the union of E and Ec yields the state space, E   Ec
 = S. 

1.2. Probability Measure and Related Rules 

Probability is defined as a quantitative measure of an event E in a state 

space S. This measure is denoted by P(E), called probability of an event E 

and defined to satisfy the following properties. 

1. 0 ≤ P(E) ≤ 1. 

2. P(S) = 1. 

3. If E1, E2, …, Ei,  are mutually exclusive events in S, then 

 1 ii
P E






1

( )i

i

P E




 . 

For engineering applications, probability can be interpreted as 

a measure of how frequent an event will occur in a long-run experiment. 

Intuitively, this measure of an event should be proportional to a number of 

times that an outcome in the event occurs divided by the total number of 

experiments. For example, 

 If a coin is tossed once, what is the probability of the outcome be-

ing a Head? If the coin is fair, i.e., there is equal chance to appear as Head 

or Tail, 

 P({Head}) = P({Tail}). 

Since S = {Head, Tail} and P(S) = 1, the probability of being Head is 

 P({Head}) = 1/2. 
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 If a dice is rolled once, what is the probability of the outcome being 

“1”? If the dice is fair, then each number has the same chance to appear, 

 P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}). 

Using the 2nd and 3rd properties, we have 

 P({i}) = 1 6, i ∈ {1, 2,…, 6}. 

The probability of rolling “1” is P({1}) = 1/6. 

 If a dice is rolled once, what is the probability of the outcome being 

an odd number? 

The event of being odd number is {1, 3, 5}. Since these events are mu-

tually exclusive, using the 3rd property, we have 

 P({1, 3, 5}) = P({1}) + P({2}) + P({3}) = 1/2. 

For any set, E, the union of E and its complement, Ec, yields the state space, 

E   Ec
 = S. Since E and Ec are always mutually exclusive, by properties 2 and 3, 

we have P(E   Ec) = P(E) + P(Ec) = P(S) = 1. This implies that P(Ec) = 1 − P(E). 

For some application problems, it is easier to calculate probability of a comple-

ment of an event than the probability of an event itself. We can use this property, 

called complementation rule, to help us find a probability of an event. 

We can also derive another important rule, called addition rule, to find 

a probability of union of two events. If the two events are mutually exclusive, we 

arrive at the same result as the 3rd property. We now consider the case when the 

two events are not disjoint and introduce the concept by the following example. 

Example 1.2. Consider a system of two transmission lines. If E1 is an 

event that at least one transmission line is up, E1 = {(1U, 2U), (1U, 2D), (1D, 

2U)}, E2 is an event that at least one transmission line is down, E2 = {(1U, 

2D), (1D, 2U), (1D, 2D)}; then, union of event E1 and E2 is 

 E1   E2 = {(1U, 2U), (1U, 2D), (1D, 2U), (1D, 2D)}, 

and the intersection of event E1 and E2 is 

 E1   E2 = {(1U, 2D), (1D, 2U)}. 

If we add probability of E1 to probability of E2, we have P(E1) + P(E2) = 

= P({(1U, 2U), (1U, 2D), (1D, 2U), (1U, 2D), (1D, 2U), (1D, 2D)}). Note that 

the events {(1U, 2D), (1D, 2U)} appear twice. Rearranging the events, we have 

 P(E1) + P(E2) = P({(1U, 2U), (1U, 2D), (1D, 2U), (1D, 2D)}) + 

 + P({(1D, 2U), (1U, 2D)}). 

This means that P(E1) + P(E2) = P(E1   E2) + P(E1   E2). 

For any two events, we can calculate the probability of union of two 

events as follows. 

 P(E1   E2) = P(E1) + P(E2) − P(E1   E2). 

Note that if E1 and E2 are mutually exclusive, then P(E1   E2) = 

= P(E1) + P(E2) follows from the 3rd condition. This implies P(E1   E2) = 0, 

and we can conclude that P( ) = 0 since E1   E2 =  . 
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In general, the probability of union of n events can be found as shown 

below: 

 

     

   

1 2 1

1

1 2

...

... ( 1) ... ;

n i j

i i j

n

i j k n

i j k

P E E E P E P E E

P E E E P E E E





 

      

        

 


 

 P(E1   E2 …  En) = ∑ i P(Ei) − ∑ i < j. 

Consider again a system of two transmission lines. Suppose that the first 

transmission line fails, and we may wish to know the probability of the sec-

ond line failing. Let E1 be an event that the first transmission line fails, 

E1 = {(1D, 2U), (1D, 2D)}, and E2|E1 be an event that the second transmission 

line fails, given that one transmission line has already failed. The event that 

the second transmission line fails is E2 = {(1U, 2D), (1D, 2D)}. However, 

(1U, 2D) cannot occur in this problem since the first transmission line has al-

ready failed. We are interested in calculating the conditional probability 

that the event E2 occurs, given that the event E1 has already occurred. We de-

note this probability as P(E2|E1). 

Intuitively, when E1 has already occurred, we can only consider the states 

with occurrences E1 in the state space. This means that the state space has shrunk 

to become the set E1, and the events in E2 will have to be in common with the 

events in E1. This leads to the following formula for conditional probability: 

 2 1
2 1

1

( )
( | )

( )

P E E
P E E

P E


 . 

This formula is properly defined only when P(E1) > 0. 

Example 1.3. Consider the same system as in Example 1.2. The state 

space of this problem is S = {(1U, 2U), (1U, 2D), (1D, 2U), (1D, 2D)}. The 

probability of each event is given as shown in Table 1.1. Let us calculate the 

probability that the second transmission line fails given that the first trans-

mission line has already failed. 
 

Table 1.1  

Probability of an Event in Example 1.3 

Event Probability 

(1U, 2U) 0.81 

(1U, 2D) 0.09 

(1D, 2U) 0.09 

(1D, 2D) 0.01 
 

Let E1 be an event that the first transmission line fails, E1 = {(1D, 2U), 

(1D, 2D)}, and E2 be an event that the second transmission line fails, 
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E2 = {(1U, 2D), (1D, 2D)}. We need to calculate P(E2|E1). Fig. 1.6 shows the 

state space of this example. 

Since E2   E1 = {(1D, 2D)}, P(E2   E1) = 0.01 and P(E1) = 0.09 + 

0.01 = 0.1, then we have 

 P(E2|E1) = P(E2   E1) P(E1) = 0.01/0.1 = 0.1. 
 

 

Fig. 1.6. State space of two-transmission line in Example 1.3 

This conditional probability rule is in fact a very powerful technique to help 

us calculate the probability of an event in a state space. To illustrate how we can 

apply this technique, let us first divide the state space into two mutually exclusive 

sets, S = B1   B2, B1   B2 =  . An event E in the state space has to be inclusive 

with either event B1 or B2 and can be described as E = (E   B1)   (E   B2). 

Using addition rule, 

 P(E) = P(E   B1) + P(E  B2) − P(E   E   B1   B2). 

Since B1   B2 =  , it follows that P(E   E   B1   B2) = 0. From 

conditional probability rule 

 P(E   B1) = P(E|B1) × P(B1), 

 P(E   B2) = P(E|B2) × P(B2). 

Then, 

 P(E) = P(E|B1) × P(B1) + P(E|B2) × P(B2). 

This expression can be interpreted as a weighted average of the condi-

tional probability of E on a given event when the weight is the probability of 

the event in which E is conditioned to occur. 

For n mutually exclusive events, Bi that 
1

n

ii
B


 = S. We can find 

a probability of any event E from the following Bayes’ rule 

 
1

( ) ( | ) ( )
n

i i

i

P E P E B P B


  . 
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For example, if the state space is divided into five mutually exclusive 

events, B1, B2,…, B5, then the probability of an event E can be found from 

conditional probability of event E on each of the disjoint events and can be 

shown in graphical form in Fig. 1.7. 

 

 

Fig. 1.7. Graphical representation of Bayes’ rule 

The conditional probability rule can also be used to calculate the proba-

bility of an intersection of events. Recall that for any two events, 

 P(E2   E1) = P(E2|E1) × P(E1). 

We now define another important property of two events called inde-

pendent. The two events are independent, if and only if 

 P(E2   E1) = P(E2) × P(E1). 

This also implies that P(E2|E1) = P(E2), which means that the probability 

that E2 will occur does not depend on whether E1 has already occurred or not. 

This property helps us to calculate the probability of the intersection of two 

events by simply multiplying the probabilities of the two events. We call this 

multiplication rule. It should be noted that the independence property is dif-

ferent from mutually exclusive property of two events and cannot be de-

scribed using a Venn diagram. 

Example 1.4. Consider the same system as in Example 1.3. Determine 

whether or not the event of failure of the first transmission line and the event 

of failure of the second transmission line are independent. Let E1 and E2 be 

events that the first transmission line and the second transmission line fail, then 

 E1 = {(1D, 2U), (1D, 2D)}, 

 E2 = {(1U, 2D), (1D, 2D)}. 

We can find P(E1) = 0.09 + 0.01 = 0.1, and P(E2) = 0.09 + 0.01 = 0.1. 

Since E2   E1 = {(1D, 2D)}, P(E2   E1) = 0.01. Then, we have P(E2   E1) = 

= P(E2) × P(E1) = 0.01. 

This means that the event that the first transmission line fails and the 

event that the second transmission line fails in this problem are independent. 
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Now, if the probability of this state space has changed and is given by 

the Table 1.2, determine if the two events are still independent or not. 

 

Table 1.2  
Probability of an Event in Example 1.4 

Event Probability 

(1U, 2U) 0.80 

(1U, 2D) 0.10 

(1D, 2U) 0.09 

(1D, 2D) 0.01 

 

In this case, P(E1) = 0.09 + 0.01 = 0.1, P(E2) = 0.10 + 0.01 = 0.11 and 

P(E   E1) = 0.01. Then, 

 P(E2   E1) = 0.01 ≠ P(E2) × P(E1) = 0.011. 

This shows that the two events are not independent. This implies that the 

event that the first transmission line fails is dependent on the event that the 

second transmission line fails and vice versa. 

From Example 1.4, since a transmission line can assume either up or 

down state, i.e., the state space of one transmission line is S = {U, D}. This 

means that if the failure probability of a transmission line is P(D) = 0.1, the 

probability that a transmission line will work is P(U) = 1 − P(D) = 0.9 accord-

ing to the complementary rule 

For a system of two identical transmission lines, let E be an event that 

the first transmission line is working and the second transmission line fails, 

E = {(1U, 2D)}. If the working or failure statuses of the two transmission 

lines are independent, then the probability of this event can be found from 

multiplication rule, 

 P(E) = P(1U   2D) = P(1U) × P(2D) = 0.09, 

which is the same as shown in Example 1.3. 

Example 1.5. Consider the same system of three generators connected 

to a load as shown in Example 1.1. Assume that each generator has 50 MW 

capacity with the probability of failure of 0.01, and each generator fails inde-

pendently. Let us find the probability that the system will supply 0, 50, 100 

and 150 MW to the load and the probability of loss of load when the load 

is 50, 100 or 150 MW with 0.20, 0.75 and 0.05 probability accordingly 

Let us first define the events as follows: 

E1 Event that the system will supply 0 MW. 

E2 Event that the system will supply 50 MW. 

E3 Event that the system will supply 100 MW. 

E4 Event that the system will supply 150 MW. 
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These events are given in the following: 

E1 = {(1D, 2D, 3D)}. 

E2 = {(1U, 2D, 3D), (1D, 2U, 3D), (1D, 2D, 3U)}. 

E3 = {(1U, 2U, 3D), (1D, 2U, 3U), (1U, 2D, 3U)}. 

E4 = {(1U, 2U, 3U)}. 

In order to calculate the probability of each event, it is important to note 

that each generator has failure probability of 0.01. Since all generators fail 

independently, we can use multiplication rule: 

 P(E1) = P(1D   2D   3D) = P(1D) × P(2D) × P(3D) = 0.00001. 

 P(E2) = P{(1U, 2D, 3D)   (1D, 2U, 3D)   (1D, 2D, 3U)} =  

 = P(1U   2D   3D) + P(1D   2U   3D) + P(1D   2D   3U) =  

 = {P(1U) × P(2D) × P(3D)}+{P(1D) × P(2U) × P(3D)} + 

 +{P(1D) × P(2D) × P(3U)} = 0.000297. 

 P(E3) = P{(1U, 2U, 3D)   (1D, 2U, 3U)   (1U, 2D, 3U)} =  

 = P(1U   2U   3D) + P(1D   2U   3U) + P(1U   2D   3U) =  

 = {P(1U) × P(2U) × P(3D)}+{P(1D) × P(2U) × P(3U)} + 

 + {P(1U) × P(2D) × P(3U)} = 0.029403. 

 P(E4) = P(1U   2U   3U) = P(1U) × P(2U) × P(3U) = 0.970299. 

The loss of load can occur in three mutually exclusive load scenarios, i.e., 

when the load is 50, 100 or 150 MW. First, we define the following events. 

F Event of loss of load. 

B1 Event that load is 50 MW. 

B2 Event that load is 100 MW. 

B3 Event that load is 150 MW. 

Then, the probability of loss of load can be found using Bayes’ rule as 

follows. 

 P(F) = P(F|B1) × P(B1) + P(F|B2) × P(B2) + P(F|B3) × P(B3). 

The loss of load event given that the load is 50 MW, described by Fig. 1.8, will 

occur when all units fail. Thus, P(F|B1) = P(1D   2D   3D) = P(E1) = 0.00001.  

The loss of load event given that the load is 100 MW will occur when at 

least two units fail. This event is described by Fig. 1.9. Thus, 

P(F|B2) = P{(1U, 2D, 3D)   (1D, 2U, 3D) (1D, 2D, 3U)   (1D, 2D, 3D)} = 

= P(E2) + P(E1) = 0.000298. 

The loss of load event given that the load is 150 MW will occur when at 

least one unit fails. This event is described by Fig. 1.10. Equivalently, no loss 

of load will occur when all units are working. Using complementary rule, 

P(F|B3) = 1 − P(1U, 2U, 3U) = 1 − P(E4) = 0.029701. 

From Bayes’ rule, we can calculate the loss of load probability as follows. 

 P(F) = P(F|B1) × 0.20 + P(F|B2) × 0.75 + P(F|B3) × 0.05 = 0.00170875. 

Должно быть ":"

Должно быть ":"
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We can also use Bayes’ rule to calculate loss of load probability by con-

ditioning on the delivered capacity of the three generators instead of condi-

tioning on the different load levels shown in this example. 
 

 

Fig. 1.8. State space representation for loss of load event when load is 50 MW 

 

Fig. 1.9. State space representation for loss of load event when load is 100 MW 
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Fig. 1.10. State space representation for loss of load event when load is 150 MW 

As seen in Example 1.5, we are interested in knowing the total generat-

ing capacity of the system rather than the status of each generator. This real-

valued quantity is more important for our analysis since we are interested in 

a function of the outcome (generating capacity) of the event rather than the 

outcome (status of each generator) itself. This quantity is a real-valued func-

tion defined on the sample space and is called a random variable. 
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Chapter 2  
RELIABILITY PRINCIPLES AND CHARACTERISTICS 

2.1. Introduction into reliability theory 

The twentieth century was characterized by rapid changes in technology, 

with many changes occurring at an exponential rate, and this is certainly con-

tinuing in the twenty-first century as well. Technology is, according to 

a standard dictionary definition, “the totality of the means employed to provide 

objects necessary for human sustenance and comfort.” Electrical “objects” can 

vary from relatively simple products, such as light bulbs, to power generating 

systems. Items such as these are engineered and manufactured to perform in 

some specified manner when operated under normal operating conditions. By 

and large, engineered objects such as these perform satisfactorily, but occa-

sionally they fail. A dictionary definition of failure is “falling short in some-

thing expected, attempted, or desired, or in some way deficient or lacking.” 

From an engineering point of view, it is useful to define failure in a broader 

sense. Witherell (1994) elaborates as follows: “It [failure] can be any incident 

or condition that causes an industrial plant, manufactured product, process, 

material, or service to degrade or become unsuitable or unable to perform its 

intended function or purpose safely, reliably, and cost-effectively.” According-

ly, “the definition of failure should include operations, behavior, or product 

applications that lead to dissatisfaction, or undesirable, unexpected side ef-

fects.” When a failure occurs, no matter how benign, its impact is felt. Failure 

causes a certain degree of inconvenience or result in personal injury, damage 

to property, and a significant economic loss. When the failure is catastrophic, 

the total economic damage and loss of life can be very dramatic, affecting so-

ciety as a whole. Failures occur in an uncertain manner and are influenced by 

factors such as design, manufacture or construction, maintenance, and opera-

tion. In addition, the human factor is important. 

There is no way that failures can be totally eliminated. Every engineered 

object is unreliable in the sense that it will fail sooner or later, even with the 

best design, construction, maintenance, and operation. The reason for this 

is that there are limits to everything and as a result all objects, whether engi-

neered and manufactured or natural (living organisms) must fail eventually. 

What can be done is reduce the chance of occurrence of failures within 

a limited time frame. This requires effective integration of good engineering 

with good management so that the failures and their consequences are mini-

mized and the object can fulfill its intended purpose. 
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Engineered objects are becoming more and more complex. This, 

combined with the use of new materials and new construction methods, of-

ten increases the risk of failure and the possible damage that may result. 

Civilized society has always taken a dim view of the damage suffered by 

its members that is caused by someone or some activity and has demanded 

a remedy or retribution for offenses against it. Consequently, manufactur-

ers are required to provide compensation for any damages resulting from 

failures of an object. This has serious implications for manufacturers of 

engineered objects (including for electricity suppliers). Product-liability 

laws and warranty legislation are signs of society’s desire to ensure fitness 

of products for their intended use and compensation for failures. Similarly, 

the actions of user-owners (e. g., operations and maintenance) of engi-

neered objects may have an impact on failure, and individuals and busi-

nesses need to understand the implications of this. For example, operating 

an engine at a higher load than that for which it is rated might lead to in-

creased output but hasten its failure and hence lead to loss rather than gain. 

A generator that is not properly maintained or is allowed to be overloaded 

may collapse even though it was properly engineered. The study of various 

aspects related to failures of engineered objects, the consequence of such 

failures, and techniques for their avoidance requires that we begin with 

a good and clear conceptual understanding and have a framework that al-

lows us to integrate the various issues involved in an effective manner. 

The systems approach provides the framework needed. An important fea-

ture of this approach is the use of mathematical models to obtain solutions 

to a variety of problems of interest to manufacturers and user-owners. We 

commence with a description of a few engineered objects ranging from 

a simple product to a complex system. We discuss characterization of 

a product or system in terms of its various parts. This is essential to the 

analysis, since the failure of a product or system is related to failure of one 

or more parts. 

For complex products, the number of parts is large. Parts counts, in fact, 

can provide a crude notion of relative reliability; the more parts, the lower the 

reliability, all other things being equal, simply because there are more things 

that can go wrong. Systems of the type indicated above are very complex, in-

deed, requiring huge charts and schematics for design and analysis. We illus-

trate in detail the decomposition of products and systems into parts with one 

or more intermediate levels through a few examples, beginning with much 

simpler products and extending to complex systems. We shall see that even 

for quite simple products there are many possible causes of failure. Theoreti-

cally, any part, even some not explicitly shown, such as adhesives, could fail 

and lead to item failure. 
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Example 2.1 Incandescent Electric Bulb 

The components of a typical incandescent light bulb are shown 

in Fig. 2.1. The light-emitting part is the filament. When heated to 2000 

to 3000 °C, it emits light due to incandescence. The source of heating is the 

resistance of the filament to the electrical current flowing through it. The fil-

ament is made by first pressing tungsten ingots and sintering them. The ingot 

is shaped into round rods and drawn through a die to produce thin wire. The 

lead-in wires are usually made of nickel, copper, or molybdenum and the 

support wires are made of molybdenum. The base is made of aluminum. The 

bulb is filled with an inert gas, usually a mixture of nitrogen and argon. 

 

 

Fig. 2.1. Components of a typical light bulb 

Example 2.2 Electric Power System 

Industrial nations require electrical energy for use in homes as well as in 

commerce and industry. This electricity is generated by power plants and 

transmitted to demand centers (which include domestic and/or commercial 

and industrial consumers) using a network of high- and low-voltage transmis-

sion lines. In schematic form, an electric power system can be represented as 

a network, as shown in Fig. 2.2. The network consists of two types of nodes–

square nodes representing power plants and round nodes representing de-

mand centers–and connecting arcs representing transmission lines that trans-

fer the power from power plants to demand centers.  
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Each power plant is a complex subsystem consisting of several ele-

ments. The main elements of a thermal power plant are shown schematically 

in Fig. 2.3. The basic process in a thermal power station is as follows. The 

chemical energy contained in the fuel is converted into heat energy through 

combustion in the boiler. This energy is used to generate steam from water. 

The steam is used to drive a turbine that converts the thermal energy into me-

chanical energy. Finally, the generator transforms the mechanical energy into 

electrical energy for transmission over high-voltage lines. 

 

 

Fig. 2.2. Schematic representation of a power system network 

 

Fig. 2.3. Schematic of a Coal -Fired Steam Power Plant 
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Each element of a thermal power plant consists of several components 

and these in turn can be decomposed into various parts. A partial list of the 

components for the different elements are as follows: 

 Boiler: water tubes, drum, headers, superheater/reheater tubes. 

 Turbine: high-, intermediate-, and low-pressure units, rotor disk, 

bladings, inner casings, steam chests. 

 Generator: stator, rotor, retaining rings, coils. 

2.2. Failures and Faults 

We have defined failure in an intuitive manner. In this section we refine 

this concept and discuss some related notions in order to define clearly what 

is meant by deterioration and failure in a system. 

We begin with some definitions of failure. 

 “Failure is the termination of the ability of an item to perform 

a required function.” [International Electronic Commission, IEC 50(191)] 

 “Equipment fails, if it is no longer able to carry out its intended 

function under the specified operational conditions for which it was de-

signed.” (Nieuwhof, 1984) 

 “Failure is an event when machinery/equipment is not available 

to produce parts at specified conditions when scheduled or is not capable of 

producing parts or perform scheduled operations to specification. For every 

failure, an action is required.” (Society of Automotive Engineers, “Reliability 

and Maintainability Guideline for Manufacturing Machinery and Equipment”) 

 “Recent developments in products-liability law has given special empha-

sis to expectations of those who will ultimately come in direct contact with what we 

will do, make or say or be indirectly affected by it. Failure, then, is any missing of 

the mark or falling short of achieving these goals, meeting standards, satisfying 

specifications, fulfilling expectations, and hitting the target.” (Witherell, 1994) 

As can be seen, the key term in the above definitions is the inability of 

the system or product to function as required. Rausand and Oien (1996) sug-

gest a classification of functions for items of a complex system. The various 

functions in their classification are as follows: 

1. Essential functions: This defines the intended or primary function. In 

Example 2.1, the primary function is to provide light. In Example 2.2, it is to 

provide electric power on demand to the consumers who are part of the network. 

2. Auxiliary functions: These are required to support the primary 

function. In Example 2.2, transport of power from areas of low demand to ar-

eas of high demand, storage of excess capacity, and sale to other networks 

are examples of auxiliary functions. 

3. Protective functions: The goal here is to protect people and the envi-

ronment from damage and injury. In Example 2.2, relays in the network serve 
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the primary role of offering protection against current surges, and scrubbers on 

smokestacks remove particulate matter to protect the environment. 

4. Information functions: These comprise condition monitoring, 

gauges, alarms, etc. In Example 2.2, the main control panel displays various 

bits of information about the different subsystems, e. g., voltage and current 

output of generators, pressure and temperature of steam in various parts 

of a power generating plant, and so on. 

5. Interface functions: This deals with the interface between the item 

under consideration and other items. 

6. Superfluous functions: These are superfluous to the system. They 

occur due to modifications to a system that make an item no longer necessary. 

A fault is the state of the system characterized by its inability to perform its 

required function. (Note, this excludes situations arising from preventive mainte-

nance or any other intentional shutdown period during which the system is unable 

to perform its required function.) A fault is hence a state resulting from a failure. 

It is important to differentiate between failure (fault) and error. According to the 

International Electrotechnical Commission [IEC 50(191)], an error is a “discrepancy 

between a computed, observed or measured value or condition and the true, speci-

fied or theoretically correct value or condition.” As a result, an error is not a failure 

because it is within the acceptable limits of deviation from the desired performance 

(target value). An error is sometimes referred to as an incipient failure. 

2.3. Failure Modes 

A failure mode is a description of a fault. It is sometimes referred to as 

fault mode [for example, IEC 50(191)]. Failure modes are identified by stud-

ying the (performance) function of the item. Blache and Shrivastava (1994) 

suggest a classification scheme for failure modes; this is shown in Fig. 2.4. 
 

 

Fig. 2.4. Failure classification 
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A brief description of the different failure modes is as follows: 

1. Intermittent failures: Failures that last only for a short time. A 

good example of this is software faults that occur only under certain condi-

tions that occur intermittently. 

2. Extended failures: Failures that continue until some corrective action 

rectifies the failure. They can be divided into the following two categories: 

a) Complete failures, which result in total loss of function 

b) Partial failures, which result in partial loss of function 

Each of these can be further subdivided into the following: 

a) Sudden failures: Failures that occur without any warning 

b) Gradual failures: Failures that occur with signals to warn of the oc-

currence of a failure 

A complete and sudden failure is called a catastrophic failure and 

a gradual and partial failure is designated a degraded failure. 

In Example 2.1, failure of the item is sudden and catastrophic in the 

sense that failure is essentially instantaneous and after failure the bulb no 

longer emits light. In a power station (Example 2.2), the bearings (for turbine 

and generator) often fail due to wear, resulting in gradual deterioration. In 

contrast, failure due to a lightning strike is sudden and can lead to either par-

tial or complete failure of the network. 

2.4. Failure Causes and Severity 

According to IEC 50(191), failure cause is “the circumstances during de-

sign, manufacture or use which have led to a failure.” Failure cause is useful in-

formation in the prevention of failures or their reoccurrence. Failure causes may 

be classified (in relation to the life cycle of the system) as shown in Fig. 2.5.  
 

 

Fig. 2.5. Failure cause classification [from IEC 50(191)] 
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First, we briefly describe each of these failure causes. 

1. Design failure: Due to inadequate design. 

2. Weakness failure: Due to weakness (inherent or induced) in the 

system so that the system cannot stand the stress it encounters in its normal 

environment. 

3. Manufacturing failure: Due to nonconformity during manufacturing. 

4. Aging failure: Due to the effects of age and/or usage. 

5. Misuse failure: Due to misuse of the system (operating in environ-

ments for which it was not designed). 

6. Mishandling failure: Due to incorrect handling and/or lack of care 

and maintenance. 

Note that the various failure causes shown in Fig. 2.5 are not necessarily 

disjoint. Also, one can differentiate between primary (or root) cause and sec-

ondary and other levels of failures that result from a primary failure. 

In Example 2.2, blades in the steam turbine can fail due to excessive 

thermal stress resulting from poor design. Bearings of the turbine may fail 

due to improper lubrication (mishandling), aging, or, in fact, for any of the 

other reasons. A mishandling failure in the case of Example 2.1 occurs when 

the filament breaks loose under a mechanical impact.  

Finally, the severity of a failure mode signifies the impact of the failure 

mode on the system as a whole and on the outside environment. A severity 

ranking classification scheme (MIL-STD 882) is as follows: 

1. Catastrophic: Failures that result in death or total system loss. 

2. Critical: Failures that result in severe injury or major system damage. 

3. Marginal: Failures that result in minor injury or minor system damage. 

4. Negligible: Failures that result in less than minor injury or system 

damage. 

Another classification is given in the reliability centred maintenance 

(RCM) approach, where the following severity classes (in descending order 

of importance) are used: 

1. Failures with safety consequences. 

2. Failures with environmental consequences. 

3. Failures with operational consequences. 

4. Failures with non-operational consequences. 

The specific causes of failures of components and equipment in 

a system can be many. Some are known and others are unknown due to the 

complexity of the system and its environment. A few of them including the 

causes mentioned earlier are listed below: 

1. Poor Design, Production and Use 

Poor design and incorrect manufacturing techniques are obvious reasons 

of the low reliability. Some manufacturers hesitate to invest more money 
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on an improved design and modern techniques of manufacturing and testing. 

Improper selection of materials is another cause for poor design. 

Components and equipment do not operate in the same manner in all 

conditions. A complete knowledge of their characteristics, applications, and 

limitations will avoid their misuse and minimize the occurrence of failures. 

All failures have a cause and the lack of understanding these causes is the 

primary cause of the unreliability of a given system. 

2. System Complexity 

In many cases a complex and sophisticated system is used to accomplish 

a task which could have been done by other simple schemes. The implica-

tions of complexity are costly. First it employs more components thereby de-

creasing overall reliability of the system. Second, a complex scheme presents 

problems in terms of users’ understanding and maintenance. 

On the other hand, simplicity costs less, causes less problems, and has 

more reliability. A basic rule of reliability with respect to complexity is: Keep 

the system as simple as is compatible with the performance requirements. 

3. Poor Maintenance 

The important period in the life cycle of a product or a system is its oper-

ating period. Since no product is perfect, it is likely to fail. However its life 

time can be increased if it can be repaired and put into operation again. In 

many cases preventive-measures are possible and a judiciously designed pre-

ventive-maintenance policy can help eliminate failures to a large extent. The 

adage Prevention is better than cure applies to products and equipment as well. 

4. Communication and Coordination 

Reliability is a concern of almost all departments of an organization. It is 

essentially a birth-to-death problem involving such areas as raw material and 

parts, conceptual and detailed engineering design, production, test and quality 

control, product shipment and storage, installation, operation and maintenance. 

A well-organized management with an efficient system of communica-

tion is required to share the information and experiences about components. 

Sufficient opportunity should be available for the people concerned to discuss 

the causes of failures. In some organizations, rigidity of rules and procedures 

prohibits the creative-thinking and design. 

5. Human Reliability 

In spite of increased application of automation techniques in industries 

and other organisations, it is impossible to completely eliminate the human 

involvement in the operation and maintenance of systems. The contribution 

of human-errors to the unreliability may be at various stages of the product 

cycle. Failures due to the human- error can be due to: 

 lack of understanding of the equipment, 

 lack of understanding of the process, 
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 carelessness, 

 forgetfulness, 

 poor judgemental skills, 

 absence of correct operating procedures and instructions, 

 physical inability. 

Although, it is not possible to eliminate all human-errors, it is possible to 

minimize some of them by the proper selection and training of personnel, stand-

ardization of procedures, simplification of control schemes and other incentive 

measures. The designer should ensure that the operation of the equipment is as 

simple as possible with practically minimum probability for error. The operator 

should be comfortable in his work and should be free from unnecessary stresses. 

The following checklist should prove useful to the design engineer: 

 Is the operator position comfortable for operating the controls? 

 Do any of the operations require excessive physical effort? 

 Is lighting of the workplace and surrounding area satisfactory? 

 Does the room temperature cause any discomfort to the operator? 

 Are noise and vibration within the tolerable limits? 

 Does the layout ensure the required minimum movement of operator? 

 Can the operator’s judgement be further minimized? 

With all this care, human operators are still likely to make errors. A hu-

man error may or may not cause a failure. Consequently, the quantitative 

measurement of the human reliability is required in order to present a correct 

picture of the total system reliability. 

2.5. Catastrophic failures and degradation failures 

When the ability of an item to perform its required function is terminated 

the item is said to have failed. As failure is an ill-defined term, we have tried to 

cross-reference some of the more important kinds of failures by way of 

a contingency Table 2.1. A failure may be complete or partial depending up-

on how complete the lack of the required function is. If we follow a particular 

item in time as it functions and finally fails we will see that it may fail in one 

of two ways, by a catastrophic failure or by a degradation failure. 

Catastrophic failures are characterized as being both complete and sud-

den. Complete in the sense that the change in output is so gross as to cause 

complete lack of the required function, and sudden in the sense that the failure 

could not be anticipated. For example, at the system level the event of the gain 

of an amplifier suddenly going to zero would be a catastrophic failure. 

Degradation failures often called drift failures, require further categori-

zation. We can distinguish between monotonic and non-monotonic drift. 

Monotonic drift is characterized by an output variable continuously varying 

in the same direction as illustrated in the Fig. 2.6. At some point in time the 



 

28 

value of the output crosses one of the constraints, giving rise to failure. Non-

monotonic drift is characterized by both positive and negative excursions 

of an output variable as shown in Fig. 2.7, a, the excursions being somewhat 

similar to Brownian movements. The definition of unsatisfactory performance 

(especially failure) in the case of non-monotonic drift is not quite so straight-

forward as for monotonic drift. Of course, violation of the constraints at any 

point must strictly speaking be classified as a failure. 
 

Table 2.1 
Failures 

 Sudden failures: 

Failures that could not be antici-

pated by prior examination. 

(Sudden failures are similar to 

random failures. A random fail-

ure is any failure whose time of 

occurrence is unpredictable). 

Gradual failures: 

Failures that could be 

anticipated by prior ex-

amination. 

Complete failures: 

Failures resulting from 

deviations in character-

istic (s) beyond speci-

fied limits. 

Catastrophic failures: Failures 

that are both sudden and com-

plete. 

This state of affairs 

may be the end result 

when degradation fail-

ures are left unattended 

Partial failures: 

Failures resulting from 

deviations in characteris-

tic (s) beyond specified 

limits but not such as 

to cause complete lack 

of required function. 

We define marginal failures as 

failures which are observed at 

time t = 0, when the item has 

just been finished. Sudden and 

partial failures are rarely seen 

later in life of an item. 

Degradation failures: 

Failures that are both 

gradual and partial. 

 

 

Fig. 2.6. Three examples or monotonic drift two or which give rise to failures 
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Fig. 2.7. a – Non- monotonic drift or a variable. 

b – v(t) Is the total time Y(t) has spent in the region or degradation 

However, in the case of non-monotonic drift, it may happen that the 

output drifts back into the acceptable region shortly afterwards if so the short-

lasting excursion into the region of unsatisfactory performance may not have 

harmed the system performance appreciably. Depending on the system, this 

consequence of drift may more properly be defined in terms of the accumu-

lated amount of resulting degradation. 

As an example, consider the definition of a possible function v(t) for 

measuring the accumulated degradation as shown in Fig. 2.7, b. Only when 

the accumulated amount of degradation defined by this function exceeds 

a specified level, Vf, is the system deemed to have performed unsatisfactorily. 

Other indications of unsatisfactory performance are also possible in the case 

of non- monotonic drift. We might for example use the area of V(t) above or 

below the limits for acceptable performance as an indicator. Unsatisfactory 

performance would then be evidenced when the area exceeds a specified 

amount. A third possibility would be to use the number of crossings of the 

limits as an indicator of unsatisfactory performance. 
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2.6. Characteristic types of failures 

Reliability Engineering distinguishes three characteristic types of fail-
ures (excluding damage caused by careless handling, storing, or improper op-

eration by the users) which may be inherent in the equipment and occur 
without any fault on the part of the operator. 

First, there are the failures which occur early in the life of a component. 
They are called early failures. Some examples of early failures are: 

 Poor welds or seals. 
 Poor solder joints. 

 Poor connections. 
 Dirt or contamination on surfaces or in materials. 

 Chemical impurities in metal or insulation. 
 Voids, cracks, thin spots in insulation or protective coatings. 

 Incorrect positioning of parts. 
Many of these early failures can be prevented by improving the control 

over the manufacturing process. Sometimes, improvements in design or ma-
terials are required to increase the tolerance for these manufacturing devia-

tions, but fundamentally these failures reflect the manufacturability of the 
component or product and the control of the manufacturing processes. Con-

sequently, these early failures would show up during: 
 In-process and final tests. 

 Process audits. 
 Life tests. 

 Environmental tests. 
Early failures can be eliminated by the so-called debugging or burn-in 

process. The debugging process consists of operating equipment for a number of 
hours under conditions simulating actual use. The weak or substandard compo-
nents fail in these early hours of the equipment’s operation and they are replaced 

by good components. Similarly poor solder connections or other assembly faults 
show up and they are corrected. Only then is the equipment released for service. 

Secondly, there are failures which are caused by wearout of parts. These 
occur in equipment only if it is not properly maintained-or not maintained at 

all. Wearout failures are due primarily to deterioration of the design strength 
of the device as a consequence of operation and exposure to environmental 

fluctuations. Deterioration results from a number of familiar chemical and 
physical phenomena: 

 Corrosion or oxidation. 
 Insulation breakdown or leakage. 

 Ionic migration of metals in vacuum or on surfaces. 
 Frictional wear or fatigue. 

 Shrinkage and cracking in plastics. 
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In most cases wearout failures can be prevented. For instance, in repeat-

edly operated equipment one method is to replace at regular intervals the ac-

cessible parts which are known to be subject to wearout, and to make the re-

placement intervals shorter than the mean wearout life of the parts. Or, when 

the parts are inaccessible, they are designed for a longer life than the intended 

life of the equipment. This second method is also applied to so-called one-shot 

equipment, such as missiles, which are used only once during their lifetime. 

Third, there are so-called chance failures which neither good debug-

ging techniques nor the best maintenance practices can eliminate. These fail-

ures are caused by sudden stress accumulations beyond the design strength of 

the component. Chance failures occur at random intervals, irregularly and 

unexpectedly. No one can predict when chance failures will occur. However, 

they obey certain rules of collective behaviour so that the frequency of their 

occurrence during sufficiently long periods is approximately constant. 

Chance failures are sometimes called catastrophic failures, which is inaccu-

rate because early failures and wearout failures can be as catastrophic as 

chance failures. It is not normally easy to eliminate chance failures. However, 

reliability techniques have been developed which can reduce the chance of 

their occurrence and, therefore, reduce their number to a minimum within 

a given time interval. 

Reliability engineering is concerned with eliminating early failures by 

observing their distribution and determining accordingly the length of the 

necessary debugging period and the debugging methods to be followed. Fur-

ther, it is concerned with preventing wearout failures by observing the statis-

tical distribution of wearout and determining the overhaul or preventive re-

placement periods for the various parts or their design life. Finally, its main 

attention is focused on chance failures and their prevention, reduction, or 

complete elimination because it is the chance failure phenomenon which 

most undesirably affects after the equipment has been debugged and before 

parts begin to wear out. 

2.7. Useful life of components 

If we take a large sample of components and operate them under con-

stant conditions and replace the components as they fail, then approximately 

the same number of failures will occur in sufficiently long periods of equal 

length. The physical mechanism of such failures is a sudden accumulation of 

stresses acting on and in the component. These sudden stress accumulations 

occur at random and the randomness of the occurrence of chance failures is 

therefore an obvious consequence. 

If we plot the curve of the failure rate against the lifetime T of a very 

large sample of a homogeneous component population, the resulting failure 
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rate graph is shown in Fig. 2.8. At the time T = 0 we place in operation a very 

large number of new components of one kind. This population will initially 

exhibit a high failure rate if it contains some proportion of substandard, weak 

specimens. As these weak components fail one by one, the failure rate de-

creases comparatively rapidly during the so-called burn-in or debugging pe-

riod, and stabilizes to an approximately constant value at the time Tb when 

the weak components have died out. The component population after having 

been burned in or debugged, reaches its lowest failure rate level which is ap-

proximately constant. This period of life is called the useful life period and it 

is in this period that the exponential law is a good approximation. When the 

components reach the life Tw wearout begins to make itself noticeable. From 

this time on, the failure rate increases rather rapidly. If upto the time Tw only 

a small percentage of the component population has failed of the many com-

ponents which survived up to the time Tw, about one-half will fail in the time 

period from Tw to M. The time M is the mean wearout life of the population. 

We call it simply mean life, distinguished from the mean time between fail-

ures, m = 1/λ. in the useful life period.  

If the chance failure rate is very small in the useful life period, the mean 

time between failures can reach hundreds of thousands or even millions of 

hours. Naturally, if a component is known to have a mean time between fail-

ures of say 100,000 hours (or a failure rate of 0.00001) that certainly does not 

mean that it can be used in operation for 100,000 hours. 
 

 

Fig. 2.8. Component failure rate as a function of age 
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The mean time between failures tells us how reliable the component IS 

In its useful life period, and such information is of utmost importance. A 

component with a mean time between failures of 100,000 hours will have 

a reliability of 0.9999 or 99.99 percent for any 10-hour operating period. Fur-

ther if we operate 100,000 components of this quality for 1 hour, we would 

expect only one to fail. Equally, would we expect only one failure if we oper-

ate 10,000 components under the same conditions for 10 hours, or 1000 com-

ponents for 100 hours, or 100 components for 1000 hours. 

Chance failures cannot be prevented by any replacement policy because 

of the constant failure rate of the components within their useful life. If we 

try to replace good non-failed components during useful life, we would im-

prove absolutely nothing. We would more likely do harm, as some of the 

components used for replacement may not have been properly burned in, and 

the presence of such components could only increase the failure rate. There-

fore, the very best policy in the useful life period of components is to replace 

them only as they fail. However, we must stress again that no component 

must be allowed to remain in service beyond its wearout replacement time T 

w. Otherwise, the component probability of failure increases tremendously 

and the system probability of failure increases even more. 

The golden rule of reliability is, therefore: Replace components as they fail 

within the useful life of the components, and replace each component preventive-

ly, even if it has not failed, not later than when it has reached the end of its useful 

life. The burn-in procedure is an absolute must for missiles, rockets, and space 

systems in which no component replacements are possible once the vehicle takes 

off and where the failure of any single component can cause the loss of the sys-

tem. Component burn-in before assembly followed by a debugging procedure of 

the system is, therefore, another golden rule of reliability. 

Failure is often a result of the effect of deterioration. The deterioration 

process leading to a failure is a complicated process, and this varies with the 

type of the system and the material used. Failure mechanisms may be divided 

into two broad categories (Dasgupta and Pecht, 1991): (i) overstress failures, 

and (ii) wear-out failures. 

Overstress failures are those due to brittle fracture, ductile fracture, yield, 

buckling, large elastic deformation, and interfacial deadhesion. Wear-out fail-

ures are those due to wear, corrosion, dendritic growth, interdiffusion, fatigue 

crack propagation, diffusion, radiation, fatigue crack initiation, and creep. 

As an illustrative example, consider fatigue failure. When cyclic stress 

is applied to a mechanical component, failure of the material occurs at stress-

es much below the ultimate tensile strength of the material because of the ac-

cumulation of damage. Fatigue failure begins with the initiation of a small, 

microscopic crack. The crack typically develops at a point of discontinuity 
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or at a defect in the material that can cause local stress and plastic strain con-

centration. This is termed fatigue crack initiation. Once a fatigue crack has 

been initiated, the crack can propagate in a stable fashion under cyclic stress, 

until it becomes unstable under applied stress amplitude. The crack propaga-

tion rate is a material property. The rate at which the deterioration occurs is 

a function of time and/or usage intensity. 

2.8. What Is Quality? 

The word quality comes from the Latin qualis, meaning “how constitut-

ed.” Dictionaries define quality as the essential character or nature of some-

thing, and as an inherent characteristic or attribute. Thus, a product has cer-

tain qualities or characteristics, and a product’s overall performance, or its 

effectiveness, is a function of these qualities. 

Juran and Gryna (1980) looked at multiple elements of fitness for use 

and evaluated various quality characteristics (or “qualities”), such as tech-

nological characteristics (strength, weight, and voltage), psychological 

characteristics (sensory characteristics, aesthetic appeal, and preference), 

and time-oriented characteristics (reliability and maintainability). Deming 

(1982) also investigated several facets of quality, focusing on quality from 

the viewpoint of the customer. 

The American Society for Quality (ASQC Glossary and Tables for Sta-

tistical Quality Control 1983) defines quality as the “totality of features and 

characteristics of a product or service that bear on its ability to satisfy a user’s 

given needs.” Shewhart (1931) stated it this way: 

The first step of the engineer in trying to satisfy these wants is, there-

fore, that of translating as nearly as possible these wants into the physical 

characteristics of the thing manufactured to satisfy these wants. In taking this 

step, intuition and judgment play an important role, as well as a broad 

knowledge of the human element involved in the wants of individuals. The 

second step of the engineer is to set up ways and means of obtaining 

a product which will differ from the arbitrary set standards for these quality 

characteristics by no more than may be left to chance. 

One of the objectives of quality function deployment (QFD) is to 

achieve the first step proposed by Shewhart. QFD is a means of translating 

the “voice of the customer” into substitute quality characteristics, design con-

figurations, design parameters, and technological characteristics that can be 

deployed (horizontally) through the whole organization: marketing, product 

planning, design, engineering, purchasing, manufacturing, assembly, sales, 

and service. 

Products have several characteristics, and the “ideal” state or value of 

these characteristics is called the target value (Fig. 2.9). QFD (Fig. 2.10) is 
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a methodology to develop target values for substitute quality characteristics that 

satisfy the requirements of the customer. Mizuno and Akao (1931) have devel-

oped the necessary philosophy, system, and methodology to achieve this step. 

 

 

Fig. 2.9. The relationship of quality, customer satisfaction, and target values 

 

Fig. 2.10. Illustration of the steps in QFD 
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2.9. Basic concepts of reliability 

Reliability of a system conveys the concept of dependability, successful 

operation or performance, and the absence of failures. Unreliability (or lack 

of reliability) conveys the opposite. Since the process of deterioration leading 

to failure occurs in an uncertain manner, the concept of reliability requires 

a dynamic and probabilistic framework.  

The concept of reliability has been interpreted in many ways in numer-

ous works. Since many of these do not agree in content, it is expedient to ex-

amine the main ones. 

The following definitions of reliability are most often met with in the 

literature. 

1. Reliability is the integral of the distribution of probabilities of fail-
ure – free operation from the instant of switch- on to the first failure. 

2. The reliability of a component (or a system) is the probability that 

the component (or a system) will not fail for a time t. 
3. Reliability is the probability that a device will operate without fail-

ure for a given period of time under given operating conditions. 

4. Reliability is the mean operating time of a given specimen between 
two failures. 

5. The reliability of a system is called its capacity for failure -free op-
eration for a definite period of time under given operating conditions, and for 

minimum time lost for repair and preventive maintenance. 

6. The reliability of equipment is arbitrarily assumed to be the equip-
ment’s capacity to maintain given properties under specified operating con-
ditions and for a given period of time. 

One of the definitions which has been accepted by most contemporary 

reliability authorities is given by the Electronics Industries Association, 

(EIA) USA (formerly known as RETMA) which states: 

The reliability of an item (a component, a complex system, a computer 
program or a human being) is defined as the probability of performing its 
purpose adequately for the period of time intended under the operating and 
environmental conditions encountered. 

This definition stresses four elements: 

1. Probability. 

2. Adequate performance. 

3. Time. 

4. Operating and environmental conditions. 

We will also use the following definition: 

The reliability of a system is the probability that the system will per-

form its intended function for a specified time period when operating 

under normal (or stated) environmental conditions. 
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The true reliability is never exactly known, but numerical estimates 

quite close to this value can be obtained by the use of statistical methods and 

probability calculations. How close the statistically estimated reliability 

comes to the true reliability depends on the amount of testing, the complete-

ness of field service reporting all successes and failures, and other essential 

data. For the statistical evaluation of equipment, the equipment has to be op-

erated and its performance observed for a specified time under actual operat-

ing conditions in the field or under well-simulated conditions in a Laboratory. 

Criteria of what is considered an adequate performance have to be exactly 

spelled out for each case, in advance. 

Measurement of the adequate performance of a device requires meas-

uring all important performance parameters. As long as these parameters 

remain within the specified limits, the equipment is judged as operating sat-

isfactorily. When the performance parameters drift out of the specified tol-

erance limits, the equipment is judged as having malfunctioned or failed. 

For instance, if the gain of an electronic amplifier reduces to a value K1 

from the designed value K its performance may have to be considered un-

suitable for a control system application but may still be quite acceptable for 

consumer electronics equipment. 

In the probability context, satisfactory performance is directly connected 

to the concepts of failure or malfunction. The relation between these two is 

that of mutually exclusive events-which means the equipment when in opera-

tion, is either operating satisfactorily or has failed or malfunctioned. Some-

times, it may be simpler to specify first what is regarded as failure and satis-

factory performance is then every other operating condition which is not 

a failure. The frequency at which failures occur is called the failure rate (λ). 

It is usually measured in number of failures per unit operating hour. Its recip-

rocal value is called the mean time between failures (m) and this is meas-

ured in hours. 

It is true that only in some simple cases, where devices of the go-no-go 

type are involved, the distinction between adequate performance and failure 

is a very simple matter. For instance, a switch either works or does not work 

– it is good or bad. But there are many more cases where such a clear-cut de-

cision can not be made so easily and a number of performance parameters 

and their limits must first be specified. 

Since reliability is a yardstick of capability to perform within required lim-

its when in operation, it normally involves a parameter which measures time. 

This may be any time unit which is preferable in cases where continuous opera-

tion is involved; it may be number of cycles when the equipment operates only 

sporadically, in regular or irregular periods, or a combination of both. It is 

meaningful to speak of the operating hours of an engine, generator, aircraft, etc. 
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But for a switch or relay it may be more meaningful to speak of the number of 

operations which such a device has to perform. The probability that no failure 

will occur in a number of operations (cycles) may in these cases tell much more 

than the probability of no failure in a number of hours. Thus, a switch measures 

its time in cycles of operation rather than in hours. Similarly, a vehicle may 

more meaningfully measure its time in miles or kilometers rather than in hours. 

In addition to the conventional systems approach to reliability studies, 

we also frequently use Failure mode and effects analysis (FMEA), and 

Fault tree analysis (FTA) approaches. Failure mode and effects analysis is 

a preliminary design evaluation procedure used to identify design weakness 

that may result in safety hazards or reliability problems. The FMEA proce-

dure may be termed a what if approach in that it starts at component level 

and asks what if this component fails. The effects are then traced on to sys-

tem level. Any component failures that could have a critical effect on the sys-

tem are identified and either eliminated or controlled, if possible. Fault tree 

analysis begins with the definition of an undesirable event and traces this 

event down through the system to identify basic causes. In systems parlance, 

the FMEA is a bottom-up procedure while the FTA is a top-down technique. 

Thus, reliability theory deals with the interdisciplinary use of probability, 

statistics, and stochastic modeling, combined with engineering insights into the 

design and the scientific understanding of the failure mechanisms, to study the 

various aspects of reliability. As such, it encompasses issues such as (i) reliability 

modeling, (ii) reliability analysis and optimization, (iii) reliability engineering, 

(iv) reliability science, (v) reliability technology, and (vi) reliability management. 

Reliability modeling deals with model building to obtain solutions 

to problems in predicting, estimating, and optimizing the survival or perfor-

mance of an unreliable system, the impact of the unreliability, and actions to 

mitigate this impact. 

Reliability analysis can be divided into two broad categories: (i) quali-

tative and (ii) quantitative. The former is intended to verify the various fail-

ure modes and causes that contribute to the unreliability of a product or sys-

tem. The latter uses real failure data in conjunction with suitable mathemati-

cal models to produce quantitative estimates of product or system reliability. 

Reliability engineering deals with the design and construction of sys-

tems and products, taking into account the unreliability of its parts and com-

ponents. It also includes testing and programs to improve reliability. Good 

engineering results in a more reliable end product. 

Reliability science is concerned with the properties of materials and the 

causes for deterioration leading to part and component failures. It also deals 

with the effect of manufacturing processes (e. g., casting, annealing) on the 

reliability of the part or component produced. 
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Reliability management deals with the various management issues in 

the context of managing the design, manufacture, and/or operation of reliable 

products and systems. Here the emphasis is on the business viewpoint, as un-

reliability has consequences in cost, time wasted, and, in certain cases, the 

welfare of an individual or even the security of a nation. 

“The soundness of management is reflected in the quality of products 

produced and in customer satisfaction. Reliability is merely one quality of the 

product; others might be performance, style, convenience, economy and so 

on.” (Lloyd and Lipow, 1962). 

2.10. Product life cycle 

A product life cycle (for a consumer durable or an industrial product, 

e. g. an electrical installation), from the point of view of the manufacturer, is 

the time from initial concept of the product to withdrawal of the product from 

the marketplace. It involves several stages, as indicated in Fig. 2.11. 

 

 

Fig. 2.11. Product life cycle 
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The process begins with an idea to build a product to meet some customer 

requirements, such as performance (including reliability) targets. This is usual-

ly based on a study of the market and potential demand for the product being 

planned. The next step is to carry out a feasibility study. This involves evaluat-

ing whether it is possible to achieve the targets within specified cost limits. If 

this analysis indicates that the project is feasible, an initial product design is 

undertaken. A prototype is then developed and tested. It is not unusual at this 

stage to find that achieved performance levels of the prototype product are be-

low the target values. In this case, further product development is undertaken 

to overcome the problem. Once this is achieved, the next step is to carry out 

trials to determine performance of the product in the field and to start 

a preproduction run. This is required because the manufacturing process must 

be fine tuned and quality control procedures established to ensure that the 

items produced have the same performance characteristics as those of the final 

prototype. After this, the production and marketing efforts begin. The items are 

produced and sold. Production continues until the product is removed from the 

market because of obsolescence and/or the launch of a new product. 

The life cycle for more specialized industrial products is similar. Here, 

the product requirements are supplied by the customer and the manufacturer 

builds the product to these specifications. 

We focus our attention on the reliability of the product over its life cy-

cle. Although this may vary considerably, a typical scenario is as shown in 

Fig. 2.12. A feasibility study is carried out using the specified target value for 

product reliability. During the design stage, product reliability is assessed in 

terms of part and component reliabilities. Product reliability increases as the 

design is improved. However, this improvement has an upper limit. If the 

target value is below this limit, then the design using available parts and 

components achieves the desired target value. If not, then a development 

program to improve the reliability through test-fix-test cycles is necessary. 

Here the prototype is tested until a failure occurs and the causes of the failure 

are analyzed. Based on this, design and/or manufacturing changes are intro-

duced to overcome the identified failure causes. This process is continued un-

til the reliability target is achieved. 

The reliability of the items produced during the preproduction run is usu-

ally below that for the final prototype. This is caused by variations resulting 

from the manufacturing process. Through proper process and quality control, 

these variations are identified and reduced or eliminated and the reliability of 

items produced is increased until it reaches the target value. Once this is 

achieved, full-scale production commences and the items are released for sale. 

The reliability of an item in use deteriorates with age. This deterioration 

is affected by several factors, including environment, operating conditions, 
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and maintenance. The rate of deterioration can be controlled through preven-

tive maintenance, as shown in Fig. 2.12. 

 

 

Fig. 2.12. Reliability over the product life cycle 

It is worth noting that if the reliability target values are too high, they 

might not be achievable with development. In this case, the manufacturer 

must revise the target value and start with a new feasibility study before pro-

ceeding further. 

The changing nature of reliability of a product over its life cycle has im-

plications for both the manufacturer and the buyer (owner-user). 

2.11. Reliability and the System Life Cycle 

Reliability activities should span the entire life cycle of the system. 

Fig. 2.13 shows the major points of reliability practices and activities for the 

life cycle of a typical system. The activities presented in Fig. 1.6 are briefly 

explained in the following sections. 

Step 1: Need. The need for reliability must be anticipated from the be-

ginning. A reliability program can then be justified based on specific system 

requirements in terms of life-cycle costs and other operational requirements, 

including market competitiveness, customer needs, societal requirements in 

terms of safety and public health, liability, and statutory needs. 

Step 2: Goals and Definitions. Requirements must be specified in 

terms of welldefined goals. 

Step 3: Concept and Program Planning. Based on reliability and other 

operational requirements, reliability plans must be developed. Concept and 
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program planning is a very important phase in the life cycle of the system. 

Fig. 2.14 illustrates that 60…70 % of the life cycle may be determined by the 

decisions made at the concept stage. Thus, the nature of the reliability pro-

grams will also determine the overall effectiveness of the total program. 

 

 

Fig. 2.13. Reliability (and quality management related activities)  

during system life cycle 

 

Fig. 2.14. Conceptual relationship of life-cycle cost 

and different phases of life cycle 
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Step 4: Reliability and Quality Management Activities. The plans 

developed in step 3 are implemented, and the total program is continuously 

monitored in the organization for the life-cycle phases. An organizational 

chart for the implementation of these plans must exist with well-defined re-

sponsibilities. Some guiding principles that can be used for any reliability 

program and its processes and management include: 

 Customer Focus. Quality, and reliability as one of its qualities, is 

defined and evaluated by the customer, and the organization has a constancy 

of purpose to meet and/or exceed the needs and requirements of the customer 

(We use the word customer in a very broad sense. Anything the system af-

fects is the customer. Thus, in addition to human beings and society, the envi-

ronmental and future impacts of the product are considered in the program). 

 System Focus. Emphasis is on system integration, synergy, and the 

interdependence and interactions of all the parts of the system (hardware, 

software, human, and other elements). All the tools and methodologies of 

systems engineering and some of the developments in Design for Six Sigma 

(DFSS) are an integral part of this focus. 

 Process Focus. Design and management of reliability processes 

should be well developed and managed using cross-functional teams using 

the methodology of concurrent design and engineering (Fig. 2.15). 

 

 

Fig. 2.15. Process development 

 Structure. The reliability program must understand the relationships 

and interdependence of all the components, assemblies, and subsystems. 

High reliability is not an end in itself but is a means to achieve higher levels 

of customer satisfaction, market share, and profitability. Thus, we should be 

able to translate reliability metrics to financial metrics that management and 

customers can understand and use for decision-making processes. 

 Continuous Improvement and Future Focus. Continuous, evolu-

tionary, and breakthrough improvement is an integral part of any reliability 

process. The organization should have a philosophy of never-ending im-

provement and reliance on long-term thinking. 

 Preventive and Proactive Strategies. The real purpose of reliability 

assurance processes is to prevent problems from happening. Throughout the 
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book, we will present many design philosophies and methodologies to 

achieve this objective. 

 Scientific Approach. Reliability assurance sciences are based on 

mathematical and statistical approaches in addition to using all the other sci-

ences (such as the physics, chemistry, and biology of failure). We must un-

derstand the causation (cause–effect and means–end relationships), and we 

should not depend on anecdotal approaches. Data-driven and empirical meth-

ods are used for the management of reliability programs. 

 Integration. Systems thinking includes broader issues related to the 

culture of the organization. Thus, the reliability program must consider the 

integration of cultural issues, values, beliefs, and habits in any organization 

for a quality and productivity improvement framework. 

Step 5: Design. Reliability is a design parameter, and it must be incor-

porated into product development at the design stage. Fig. 2.16 illustrates the 

importance of design in terms of cost to address or fix problems in the future 

of the life cycle of the product. 

 

 

Fig. 2.16. Conceptual illustration of cost to fix problems versus product life cycle 

Step 6: Prototype and Development. Prototypes are developed based on 

the design specifications and life-cycle requirements. The reliability of the de-

sign is verified through development testing. Concepts, such as the design and 

development of reliability test plans, including accelerated testing, are used in 

this step. If the design has deficiencies, they are corrected by understanding the 

root failure causes and their effect on the design. After the product has 

achieved the required levels of reliability, the design is released for production. 

Step 7: Production and Assembly. The product is manufactured and 

assembled based on the design specifications. Quality control methodologies, 

such as statistical process control (SPC), are used. One of the objectives 
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of quality assurance programs during this phase of the system is to make sure 

that the product reliability is not degraded and can be sustained in the field. 

Step 8: Field and Customer Use. Before the product is actually shipped 

and used in the field by customers, it is important to develop handling, service, 

and, if needed, maintenance instructions. If high operational availability is need-

ed, then a combination of reliability and maintainability will be necessary. 

Step 9: Continuous System Evaluation. The product in the field is 

continuously evaluated to determine whether the required reliability goals are 

actually being sustained. For this purpose, a reliability monitoring program 

and field data collection program are established. 

Step 10: Continuous Feedback. There must be continuous feedback 

among all the steps in the life cycle of the product. A comprehensive data 

gathering and information system is developed. A proper communication sys-

tem is also developed and managed for all the groups responsible for the var-

ious steps. This way, all field deficiencies can be reported to the appropriate 

groups. This will result in continuous improvement of the product. 

2.12. Framework for solving reliability related problems 

As can be seen from the list of problems of interest to buyers and to 

manufacturers, the study of product reliability requires a framework that in-

corporates many interrelated technical, operational, commercial and man-

agement issues. We list some important issues in each of these areas. 

Technical issues: 

 Understanding of deterioration and failure (material science). 

 Effect of design on product reliability (reliability engineering). 

 Effect of manufacturing on product reliability (quality variations and 

control). 

 Testing to obtain data for estimating part and component reliability 

(design of experiments). 

 Estimation and prediction of reliability (statistical data analysis). 

Operational issues: 

 Operational strategies for unreliable systems (operations research). 

 Effective maintenance (maintenance management). 

Commercial issues: 

 Cost and pricing issues (reliability economics). 

 Marketing Implications (warranties, service contracts). 

Management issues: 

 Administration of reliability programs (engineering management). 

 Impact of reliability decisions on business (business management). 

 Risk to individuals and society resulting from product unreliability 

(risk theory). 
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 Effective management of risks from a business point of view (risk 

management). 

The uncertain nature of deterioration and failure implies the need for 

a suitable framework in which to formulate and solve these problems. The 

systems approach provides an integrated framework for effectively address-

ing the issues raised. Fig. 2.17 shows many of the important issues and the 

disciplines involved in their analysis in a diagrammatic manner. 

 

 

Fig. 2.17. Framework for the study of reliability 

The Systems Approach 

The systems approach to problem solving in the real world involves sev-

eral stages. These are shown in Fig. 2.18. The execution of each stage requires 

a good understanding of concepts and techniques from many disciplines. 

The key step is characterization of the system in such a way that the details 

of the system that are relevant to the problem being addressed are made appar-

ent and appropriately modeled. The variables used in the system characteriza-

tion and the relationships between them depend on the problem. If the problem 

is to understand system failures, then the variables of the system characteriza-

tion are from the relevant engineering sciences; if the problem is to study the 

impact of reliability on sales, then one would use variables from the theory of 

marketing and economics in the system characterization; and so forth. 

For reliability related problems, most of the variables used in the system 

characterization are dynamic (changing with time) and stochastic (changing in 

an uncertain manner). The mathematical formulations needed for modeling re-

liability are obtained from statistics, probability theory, and stochastic process-

es. It is important to ensure that the model used is adequate for solving the real 

problem and that adequate and relevant data can be obtained. If not, then the 

analysis will yield results that are of limited use for solving the problem. In 

general, obtaining an adequate model requires an iterative approach, wherein 

changes are made to the simplification and/or the mathematical formulation 
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during each iteration. Adequate and relevant data are obtained by proper test-

ing as well as from other sources. Statistical methods are used in test design 

and for both parameter estimation and model validation. 
 

 

Fig. 2.18. Systems approach 

Once an adequate model is developed, techniques from statistics, prob-

ability theory and stochastic processes and optimization theory are needed 

for analysis and optimization. Reliability theory provides the concepts and 

tools for this purpose. 

2.13. Consequences of Failure 

There is always a risk of a product failing in the field. For some prod-

ucts, the consequences of failure can be minor, while for others, it can be cat-

astrophic. Possible consequences include financial loss, personal injury, and 

various intangible costs. Under U.S. law, consequences of product failure 

may also include civil financial penalties levied by the courts and penalties 

under statutes, such as the Consumer Product Safety Act, building codes, and 

state laws. These penalties can include personal sanctions such as removal of 

professional licenses, fines, and jail sentences. 
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Financial Loss 

When a product fails, there is often a loss of service, a cost of repair 

or replacement, and a loss of goodwill with the customer, all of which either 

directly or indirectly involve some form of financial loss. Costs can come in 

the form of losses in market share due to damaged consumer confidence, 

increases in insurance rates, warranty claims, or claims for damages result-

ing from personal injury. If negative press follows a failure, a company’s 

stock price or credit rating can also be affected. 

Often, costs are not simple to predict. For example, a warranty claim 

may include not only the cost of replacement parts, but also the service infra-

structure that must be maintained in order to handle failures (Dummer et al. 

1997). Repair staff must be trained to respond to failures. Spare parts may be 

required, which increases inventory levels. Service stations must be main-

tained in order to handle product repairs. 

The cost of failure also often includes financial losses for the customer 

incurred as a result of failed equipment not being in operation. For some 

products, this cost may greatly exceed the actual cost of replacing or repair-

ing the equipment. 

Breach of Public Trust 

The National Society of Professional Engineers notes that “Engineers, 

in the fulfillment of their professional duties, shall hold paramount the safety, 

health, and welfare of the public” (National Society of Professional Engi-

neers 1964). In many cases, public health, safety, and welfare are directly re-

lated to reliability. 

Legal Liability 

There are a number of legal risks associated with product reliability and 

failure. A company can be sued for damages resulting from failures. A com-

pany can also be sued if they did not warn users of defects or reliability prob-

lems. In extreme cases of negligence, criminal charges can be brought in ad-

dition to civil damages. 

Most states in the United States operate on the theory of strict liability. 

Under this law, a company is liable for damages resulting from a defect for 

no reason other than that one exists, and a plaintiff does not need to prove 

any form of negligence to win their case. Companies have a duty to exercise 

“ordinary and reasonable care” to make their products safe and reliable. If 

a plaintiff can prove that a defect or risk existed with a product, that this de-

fect or risk caused an injury, that this defect or risk was foreseeable, and that 

the company broke their duty of care, damages can be assessed. A defect, for 

legal purposes, can include manufacturing flaws, design oversights, or inade-

quacies in the documentation accompanying a product. Thus, almost every 

job performed by a designer or an engineer can be subjected to legal scrutiny. 
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Intangible Losses 
Depending on the expectations that customers have for a product, rela-

tions with customers can be greatly damaged when they experience a product 
failure. Failures can also damage the general reputation of a company. A repu-
tation for poor reliability can discourage repeat and potential future customers 
from buying a product, even if the causes of past failures have been corrected. 

In some cases, the effects of a lack of reliability can hurt the national 
psyche, for example, failures in space, military, and transportation applica-
tions. The higher the profile of a failure event, the greater the effect is on so-
ciety. Failures that affect public health and the environment can also create 
discontent with government and regulatory bodies. 

Suppliers and Customers 
The rapid pace of technological developments and the globalization of sup-

ply chains have made customers dependent upon worldwide suppliers who pro-
vide parts (materials), subassemblies, and final products. When customers have to 
wait until they receive their parts, subassemblies, or products to assess if they are 
reliable, this can be an expensive iterative process. An upfront evaluation of sup-
pliers is a beneficial alternative. Measuring the reliability capability of a supplier 
yields important information about the likelihood that a reliable product can be 
produced (Tiku et al., 2007). Reliability capability can be defined as follows. 

Reliability capability is a measure of the practices within an organiza-
tion that contribute to the reliability of the final product, and the effectiveness 
of these practices in meeting the reliability requirements of customers. 

To obtain optimal reliability and mutually beneficial results, suppliers 
and customers in the supply chain should cooperate. The IEEE Reliability 
Program Standard 1332 (IEEE Standards Project Editors 1998) identifies 
three reliability objectives between suppliers and customers: 

 The supplier, working with the customer, should determine and un-
derstand the customer’s requirements and product needs so that 
a comprehensive design specification can be generated. 

 The supplier should structure and follow a series of engineering ac-
tivities so that the resulting product satisfies the customer’s requirements and 
product needs with regard to product reliability. 

 The supplier should include activities that assure the customer that 
reliability requirements and product needs have been satisfied. 

Summary 
Reliability pertains to the ability of a product to perform without failure 

and within specified performance limits for a specified time in its life-cycle 
application conditions. Performance and quality are related to reliability. Re-
liability engineering deals with preventing, assessing, and managing failures. 
The tools of reliability engineers include statistics, probability theory, and 
many fields of engineering and the sciences related to the problem domain. 
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Chapter 3  
QUANTITATIVE RELIABILITY 

The term reliability of power supply system is generally used to relate to 

the ability of this system to perform its intended function which is to supply 

electricity to a customer. The term is also used in a more definite sense as one of 

the measures of reliability and indicates the probability of not failing by the end 

of a certain period of time, called the mission time. In this book, this term will 

be used in the former sense unless otherwise indicated. In a qualitative sense, 

planners and designers are always concerned with reliability, but the qualitative 

sense does not help us understand and make decisions while dealing with com-

plex situations. However, when defined quantitatively it becomes a parameter 

that can be traded off with other parameters, such as cost and emissions. 

There can be many reasons for quantifying reliability. In some situations, 

we want to know what the reliability level is in quantitative measures. In pow-

er system applications, we want to know what the reliability actually is, as we 

are risking lives. In commercial applications, reliability has a definite trade-off 

with cost. So we want to have a decision tool for which reliability needs to be 

quantified. The following example will illustrate this situation. 

Example 3.1. A system has a total load of 500 MW. The following op-

tions are available for satisfying this load, which is assumed constant for 

simplicity: 

5 generators, each with 100 MW; 

6 generators, each with 100 MW; 

12 generators, each with 50 MW. 

The question we need to answer in terms of design and operation aspect 

is: Which of these alternatives has the best reliability? 

A little thinking will show that there is no way to answer this question 

without some additional data on the stochastic behavior of these units, which 

are failure and repair characteristics. After we obtain this data, models can be 

built to quantify the reliability for these three cases, and then the question can 

be answered. 

3.1. General characteristics of quantitative reliability  

Most of the applications of reliability modeling are in the steady state do-

main or in the sense of an average behavior over a long period of time. If we de-

scribe the system behavior at any instance of time by its state, the collection of 

possible states that the system may assume is called the state space, denoted by S. 
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In reliability analysis, one can classify the system state into two main 

categories, success or failure states. In success states the system is able to do 

its intended function, whereas in the failed states it cannot. We are mostly 

concerned with how the system behaves in failure states. The basic indexes 

used to characterize this domain are as follows. 

Probability of failure 

Probability of failure, denoted by pf, is the steady state probability of the 

system being in the failed state or unacceptable states. It is also defined as the 

long run fraction of the time that system spends in the failed state. The prob-

ability of system failure is easily found by summing up the probability of 

failure states as shown in (3.1): 

 
f i

i Y

p p


 , (3.1) 

where pf system unavailability or probability of system failure; Y set of fail-

ure states, Y ⊂ S; S system state space. 

Frequency of failure 

Frequency of failure, denoted by ff, is the expected number of failures 

per unit time, e. g., per year. This index is found from the expected number of 

times that the system transits from success states to failure states. This index 

can be easily obtained by finding the expected number of transitions across 

the boundary of subset Y of failure states. 

Mean cycle time 

Mean cycle time, denoted by Tf, is the average time that the system 

spends between successive failures and is given by (3.2). This index is simply 

the reciprocal of the frequency index: 

 
1

f

f

T
f

 . (3.2) 

Mean down time 

Mean down time, denoted by TD, is the average time spent in the failed 

states during each system failure event. In other words, this is the expected 

time of stay in Y in one cycle of system up and down periods. This index can 

be found from (3.3): 

 f

D

f

p
T

f
 . (3.3) 

Mean up time 

Mean up time, denoted by TU, is the mean time that the system stays in 

the up states before system failure and is given by (3.4): 

 U f DT T T  . (3.4) 

Должно быть "pf – system unavailability"

Должно быть "S – system state space"

Должно быть "Y – set of failure states"
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There are several other indices that can be obtained as a function of the 

above indices. 

There are also applications in the time domain, say [0, T]. For example, 

at time 0, we may be interested in knowing the probability of not having suf-

ficient generation at time T in helping decide the start of additional genera-

tion. The following indices could be used in such situations: 

1. Probability of failure at time T. This indicates the probability of 

being in the failed state at time T. This does not mean that the system did not 

fail before time T. The system may have failed before T and repaired, so this 

only indicates the probability of the system being in a failed state at time T. 

2. Reliability for time T. This is the probability that the system has 

not failed by time T. 

3. Interval frequency over [0, T]. This is the expected number of fail-

ures in the interval [0, T]. 

4. Fractional duration. This is the average probability of being in the 

failed state in interval [0, T]. 

The most commonly computed reliability measures can be categorized 

as three indices as follows. 

1. Expected value indexes: These indices involve Expected Power 

Not Supplied (EPNS) or Expected Unserved Energy (EUE). 

2. Probability indices such as Loss of Load Probability (LOLP) 

or Loss of Load Expectation (LOLE). 

3. Frequency and duration indices such as Loss of Load Frequency 

(LOLF) or Loss of Load Duration (LOLD). 

3.2. Basic Approaches  
for Considering Reliability in Decision-Making 

Having quantified the attributes of reliability, the next step is to see how 

it can be included in the decision process. There are perhaps many ways of do-

ing it, but the most commonly used are described in this section. It is important 

to remember that the purpose of reliability modeling and analysis is not always 

to achieve higher reliability but to attain the required or optimal reliability. 

Reliability as a constraint 

Reliability can be considered a constraint within which other parameters can 

be changed or optimized. Until now this is perhaps the most common manner in 

which reliability considerations are implemented. For example, in generation reli-

ability there is a widely accepted criterion of loss of load of one day in 10 years. 

Reliability as a component of overall cost optimization 

The conceptual relationship between cost and reliability can be appreciated 

from Fig. 3.1. The overall cost is a combination of the investment cost and the 

cost of failures to the customers. The investment cost would tend to increase if we 
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are interested in higher levels of reliability. The cost of failures to the customers, 

on the other hand, tends to decrease with increased level of reliability. If we com-

bine these costs, the total cost is shown by the solid curve, which has a minimum 

value. The reliability at this minimum cost may be considered an optimal level; 

points to the left of this would be dominated by customer dissatisfaction, while 

points to the right may be dominated by investment cost considerations. 

 

 

Fig. 3.1. Trade-off between reliability and cost 

It can be appreciated that in this type of analysis we need to calculate 

the worth of reliability. In other words, how much do the customers think that 

interruptions of power cost them? One way of doing this is through customer 

damage function, like the one shown in Fig. 3.2. 

 

 

Fig. 3.2. Customer damage function 
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The customer damage function provides the relationship between the 

duration of outage and the interruption cost in $/kW. The damage function is 

different depending on the type of customer. The damage function is clearly 

nonlinear with respect to the duration, increasing at much higher rates for 

longer outages. The frequency and duration indices defined earlier can be 

combined to yield the cost of interruptions using (3.5): 

 
1

( )
n

i i i i

i

IC L f c d


 , (3.5) 

where n – number of load points in the system; Li – load requirement at load 

point i in kW; fi – failure frequency at load point i in number of occurrence 

per year; ci(di) – customer damage function at load point i in $ per kW in 

terms of outage duration di; di – outage duration at load point i in hours. 

Multi objective optimization and pareto-optimality 

Generally there are conflicting objectives to be satisfied or optimized. 

For example, cost and reliability are conflicting objectives. Multi objective-

optimization, also known as multi criteria or multi attribute optimization, is 

the process of simultaneously optimizing two or more conflicting objectives 

subject to certain constraints. In multi objective optimization, Pareto-

optimal solutions are usually derived, where the improvement of an objec-

tive will inevitably deteriorate at least another one. An example can be seen 

in Fig. 3.3 – given that lower values are preferred to higher values, point C 

is not on the Pareto frontier because it is dominated by both point A and 

point B; and points A and B are non inferior. 

 

 

Fig. 3.3. Multi objective optimization 
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3.3. Random Variables 

A random variable is a real-valued function that assigns numerical 

values to all outcomes in the state space. A random variable can take on ei-

ther countable real values or continuous real values. We call the random vari-

ables with countable values discrete random variables, and those with contin-

uous real values continuous random variables. For example: 

Discrete random variable: Number of failed transmission lines in the 

system with the state space of two transmission lines shown in Fig. 3.4. 

 

 

Fig. 3.4. Example of discrete random variable 

Since each outcome is associated with a probability measure, we can as-

sign probabilities to any possible value of the random variable. For example, 

consider the system of two transmission lines if the random variable is the 

number of failed transmission lines and the probability of the outcomes is the 

same as given in Example 1.3. Then 

P{X = 0} = P({(1U, 2U)}) = 0.81, 

P{X = 1} = P({(1U, 2D), (1D, 2U)}) = 0.9 + 0.9 = 0.18, 

P{X = 2} = P({(1D, 2D)}) = 0.01. 

Note that P{X = 0} + P{X = 1} + P{X = 2} = 1. 

Continuous random variable: Time to failure of a generator shown 

in Fig. 3.5. 
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Fig. 3.5. Example of continuous random variable 

3.4. Probability Density Function 

A discrete random variable assumes only countable values of x1, x2, …, 

xn from the set of real numbers. The function that gives probabilities associat-

ed with all possible values of a discrete random variable, X, is called proba-

bility mass function, denoted by 

 p(x) = P{X = x}. 

The following are the properties of probability mass function of 

a discrete random variable: 

1. 0 ≤ p(xi) ≤ 1, i = 1, 2,…, n. 

2. p(xi) = 0 if i ∉ {1, 2,…, n}. 

3. 
1 1

( ) { } 1.i i

i i

p x P X x
 

 

     

A graphical representation of a probability mass function is shown in 

Fig. 3.6. In this example, a discrete random variable can assume any of the 

values of 1, 2, 3, 4 or 5 with 0.1, 0.2, 0.3, 0.3 and 0.1 probabilities accordingly. 

 

 

Fig. 3.6. Example of probability mass function  

of a discrete random variable 
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Similarly, for a continuous random variable X, we define a non negative 

function, f(x), called a probability density function or pdf, for all real num-

bers x ∈ (−∞, ∞). A function f(x) has to satisfy the criteria that for any set A 

of real numbers x ∈ A, 

 ( ) { }
A

f x dx P X A  . (3.6) 

A continuous random variable assigns real values to all outcomes in the 

state space; thus the probability of all real values has to add up to one, which 

is given as 

 ( ) { ( , )} 1f x dx P X





     . (3.7) 

Example 3.2. Let X denote a continuous random variable representing 

time to failure (in days) of a generator by probability density function f (x); 

what is the probability that a generator will fail during the 2nd and 3rd days, 

A = [2, 3]? 

This probability can be found from 

 
3

2

{ [2,3]} {2 3} ( )P X P X f x dx      . 

Note that with this definition, the probability that a continuous random 

variable will assume any particular value a will be zero since  P X a   

( ) 0

a

a

f x dx  . 

3.5. Probability Distribution Function 

A random variable can also be characterized by a cumulative distribution 

function or distribution function or cdf, denoted by F(a), which gives the prob-

ability that a random variable takes on value less than or equal to a real number a. 

 F(a) = P{X ≤ a}. (3.8) 

For a discrete random variable, 

 ( ) { } ( )
i i

i i

x a x a

F a P X x p x
 

    . (3.9) 

A graphical representation of a distribution function is shown in 

Fig. 3.7. In this example, a discrete random variable can assume values of 1, 

2, 3, 4 or 5 with corresponding probabilities of 0.1, 0.2, 0.3, 0.3 and 0.1. 

For a continuous random variable, 

 ( ) { ( , )} ( )

a

F a P X a f x dx


     . (3.10) 
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Fig. 3.7. Example of distribution function of a discrete random variable 

From the above expression, a distribution function F(a) is a non decreasing 

function of a, lima→∞F(a) = F(∞) = P{X ∈ (−∞, ∞)} = 1 and lima→−∞F(a) = F(−∞) = 

= P{X ∈ (−∞,−∞)} = 0. 

Example 3.3. Let X denote a continuous random variable representing 

time to failure (in days) of a generator by a distribution function F(x); what is 

the probability that a generator will fail during the 2nd and 3rd days, A = [2,3]. 

This probability can be found from P{X ∈ [2, 3]} = P{2 ≤ X ≤ 3} = 

= P{X ∈ (−∞, 3)} − P{X ∈ (−∞, 2)} = F(3) − F(2). 

From (3.10), if we differentiate both sides, we have 

 
( )

'( ) ( )
dF a

F a f a
da

  . (3.11) 

This means that the probability density function can be found from dif-

ferentiating the distribution function. Equivalently, we can also write 

 
0 0

( ) ( ) { }
( ) lim lim

a a

F a a F a P a X a a
f a

a a   

      
 

 
. (3.12) 

3.6. Survival Function 

Consider a continuous random variable representing, for example, time 

to failure of a component. The probability density function f(x) of this ran-

dom variable can give the probability of failure at a certain time. The proba-

bility distribution function F(a) gives the probability that it will fail within 

time a. In reliability analysis, it is sometimes more interesting to know the 

probability that the component will fail beyond a specified time. In this case 

it is more convenient to work with the complementary of the distribution 

function called survival function. 
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Survival function, denoted by R(a), gives the probability of a component 

surviving beyond time a. 

 R(a) = P{X > a}, (3.13) 

when X is a random variable of time to failure of the component. 

Survival function can be determined from either the probability density 

function or the probability distribution function, as shown below: 

 R(a) = P{X > a} = 1 − P{X ≤ a} = 1 − F(a); (3.14) 

 ( ) { )} ( )
a

R a P X a f x dx



    . (3.15) 

It follows from (3.11) that 

 
(1 ( ))

'( ) ( )
d R a

R a f a
da


   . (3.16) 

Any one of the density function, distribution function or survival func-

tion can be determined from the others. In other words, we can denote 

a random variable with one of the three functions interchangeably. 

3.7. Hazard Rate Function 

The failure of a population of products (electrical equipment) can arise 

from inherent design weaknesses, manufacturing- and quality control-related 

problems, variability due to customer usage, the maintenance policies of the 

customer, and improper use or abuse of the product. The hazard rate, h(t), 

is the number of failures per unit time per number of nonfailed products re-

maining at time t. An idealized (though rarely occurring) shape of the hazard 

rate of a product is the bathtub curve (Fig. 3.8). A brief description of each of 

the three regions is given in the following: 

1. Infant Mortality Period. The product population exhibits a hazard 

rate that decreases during this first period (sometimes called “burn-in,” “in-

fant mortality,” or the “debugging period”). This hazard rate stabilizes at 

some value at time t1 when the weak products in the population have failed. 

Some manufacturers provide a burn-in period for their products, as a means 

to eliminate a high proportion of initial or early failures. 

2. Useful Life Period. The product population reaches its lowest haz-

ard rate level and is characterized by an approximately constant hazard rate, 

which is often referred to as the “constant failure rate.” This period is usually 

considered in the design phase. 

3. Wear-Out Period. Time t2 indicates the end of useful life and the 

start of the wear-out phase. After this point, the hazard rate increases. When 

the hazard rate becomes too high, replacement or repair of the population 

of products should be conducted. Replacement schedules are based on the 

recognition of this hazard rate. 
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Fig. 3.8. Idealized bathtub hazard rate curve 

Optimizing reliability must involve the consideration of the actual life-

cycle periods. The actual hazard rate curve will be more complex in shape 

and may not even exhibit all of the three periods. 

Thus, hazard rate function, denoted by h(a) is widely used to describe 

a random variable X representing time to failure of a component. 

A hazard rate function is a function that gives a rate at time a at which 

a component fails given that it has survived for time a. This function is the 

rate of a conditional probability of failure at time a and is given by (3.17): 

 
0

{ | }
( ) lim

a

P a X a a X a
h a

a 

    



. (3.17) 

As Δa → 0, the hazard rate function can be written as h(a)Δa = 

= P{a ≤ X ≤ a + Δa|X > a}. This gives a conditional probability of a random 

variable taking a value in the interval [a, a + Δa] given that the value is great-

er than a. When X represents time to failure of a component, h(a)Δa gives the 

probability that a component will fail during interval [a, a + Δa] given that it 

has been working (not failed) up to time a. 

Depending on the context of usage, a hazard rate function is known by 

a variety of names, such as age specific failure rate, failure rate, repair rate 

and force of mortality. We can find this function from the density and surviv-

al function as follows. Using conditional probability rule, 
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 (3.18) 

Using (3.16), we have 

  
'( )

( ) ln ( )
( )

R a d
h a R a

R a da

 
  . (3.19) 
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Integrating (3.19) yields 

 0

( )

( )

a

h x dx

R a e


 . (3.20) 

In addition, 

 0

( )

( ) ( )

a

h x dx

f a h a e


 . (3.21) 

Equations (3.20) and (3.21) allow us to uniquely determine the probabil-

ity density function and survival function from the hazard rate function. All 

three functions can be used to calculate one another. Their mathematical rela-

tionship can be derived and is shown in Fig. 3.9. 

3.8. Jointly Distributed Random Variables 

The previous sections only consider a single random variable. Sometimes 

we need to consider the joint probabilities behavior of two or more random 

variables. As an example, consider a power system consisting of generators 

and transmission lines. In this case, both generating capacity and transmission 

line capabilities exhibit probabilistic behavior. If we need to find out the total 

available capacity of the system, we therefore need to describe the two uncer-

tainties using two random variables with some distribution functions. This 

leads us to consider the situation of two or more random variables. 

 

 

Fig. 3.9. Triangle defining relationship between density function,  

survival function and hazard rate function 

Consider two random variables X and Y. We define a joint probability 

distribution function of these two random variables as follows: 
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 F(a, b) = P{X ≤ a, Y ≤ b}, (3.22) 

where a, b ∈ (−∞, ∞). 

Similar to the single random variable cases, we define the joint probabil-

ity density function as follows. For discrete case random variables X and Y, 

the joint probability density function is given below: 

 p(x, y) = P{X = x, Y = y}.  (3.23) 

For continuous random variables X and Y, we define a non negative 

joint probability density function, f(x, y), for all real numbers x, y ∈ (−∞, ∞). 

A function f(x, y) has to satisfy the criteria that for any set A, B of real num-

ber x ∈ A, y ∈ B, 

 ( , ) { , }
B A

f x y dxdy P X A Y B    . (3.24) 

If we know the joint probability density function of X and Y, we can find 

a probability density function of X since y ∈ (−∞, ∞), we have 

 ( ) ( , )f x f x y dy





  . (3.25) 

Similarly, a probability density function of Y is 

 ( ) ( , )f y f x y dx





  . (3.26) 

If the two random variables are independent, then from (3.27) we can 

write F(a, b) = P{X ≤ a, Y ≤ b} = P{X ≤ a   Y ≤ b} = P{X ≤ a}P{Y ≤ b}, 

which also implies f(x, y) = f(x)f (y). 

3.9. Expectation, Variance, Covariance and Correlation. 
MTTF and MTBF 

A random variable can be expressed by density function, survival func-

tion or hazard rate function. These functions yield the probability associated 

with a real valued variable representing different outcomes in the state space. 

It is sometimes of interest to represent a random variable X by a single value. 

This value is called expectation or expected value, denoted by E[X] or μ. 

An expected value is an average of real possible values that a random 

variable assumes randomly for a long run experiment. For a discrete random 

variable X, we have 

 [ ] { }i i

i

E X x P X x  . (3.27) 

This expectation is therefore the weighted sum of all discrete real val-

ues xi, each xi weighted by the probability of X assuming the value xi. 
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For a continuous random variable X having density function f(x), we have 

 [ ] ( )E X xf x dx





  . (3.28) 

It can be verified from both (3.27) and (3.28) that for a random varia-

ble X, E[aX + b] = aE[X] + b. The expected value of a summation of random 

variable can be found as follows: 

  i i

i i

E X E X
 

 
 
  . (3.29) 

Suppose that we want to calculate the expected value of a function g(.) 

of a random variable X. Then this function is also a random variable, g(X). 

We can find the expected value of g(X) as follows. 

For a discrete random variable, 

 [ ( )] ( ) { }i i

i

E g X g x P X x  . (3.30) 

For a continuous random variable 

  ( ) ( ) ( )E g X g x f x dx





  . (3.31) 

The expected value only gives a single real value to describe a random 

variable, but the two random variables having the same expected value may 

exhibit different behavior of variability. Variance, denoted by Var(X) or σ2 

of a random variable X, is measured as a squared distance of a real value 

from its expected value E[X]. A formula for Var(X) is as follows. 

 Var(X) = E[(X − E[X])2].  (3.32) 

For a discrete random variable, 

 2[ ] ( [ ]) { }i i

i

Var X x E X P X x   . (3.33) 

For a continuous random variable, 

 2[ ] ( [ ]) ( )Var X x E X f x dx





  . (3.34) 

From (3.32), we can also find the variance from the following 

Var(X) = E[X2] − 2E[XE[X]] + E[(E[X])2] = 

= E[X2] − 2E[X]E[X] + (E[X])2
 = E[X2] − (E[X])2. 

(3.35) 

Variance is a measure of weighted deviations from the average value 

of a random variable. If the random variable assumes real values that move 

away from μ with high probability, the variance will be large. On the other 

hand, the variance will be small if the random variable assumes real values 

that lie closer to the average value μ. 

"g" без (.)

Должно быть ":"

Должно быть ":"

Должно быть ":"

for

for
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The square root of a variance is called standard deviation, denoted by σ. 

We can also find the expected value of the jointly distributed random varia-

bles. Consider two random variables X and Y with a joint probability density 

function f(x, y). We can calculate the expected value of a function g(X, Y) of 

the two random variables as follows. 

For discrete X and Y, 

 [ ( , )] ( , ) { , }i j i i

i j

E g X Y g x y P X x Y y   . (3.36) 

For continuous X and Y, 

 [ ( , )] ( , ) ( , )E g X Y g x y f x y dxdy

 

 

   . (3.37) 

If g(X, Y) = aX + bY, we can find the expectation from (3.39): 
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( , ) ( , )

( ) ( ) .

E g X Y ax by f x y dxdy

axf x y dxdy byf x y dxdy

a xf x dx b yf y dy aE X bE Y

 

 

   

   

 

 

  

  

   

 

   

 

 (3.38) 

In general, for n random variables we can write: 

 E[a1X1 + a2X2 +…+ anXn] = a1E[X1] + a2E[X2] +…+ anE[Xn]. (3.39) 

If g(X, Y) = XY, we have: 

 [ , ] ( , ) .E X Y xyf x y dxd

 

 

    (3.40) 

If X and Y are independent, then f(x, y) = f(x)f(y), and the expectation 

will be as follows: 

 

   

[ , ] ( ) ( )

( ) ( ) .

E X Y xyf x f y dxdy

xf x dx yf y dy E X E Y

 

 

 

 

 

  
   
  

 

 

 (3.41) 

In the case of two random variables X and Y with a joint probability 

density function f(x, y), we are also interested in seeing the deviations of the 

two random variables from their respective expected value. This measure is 

called covariance, denoted by Cov(X, Y). We can find the covariance from 

the following expression: 

 Cov(X, Y) = E[(X − E[X])(Y − E[Y])]. (3.42) 

Должно быть ":"

for

for

Никитин Д.С.
Выделение
,
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Equivalently, 

 Cov(X, Y) = E[(X − E[X])(Y − E[Y])] =  

 = E[XY − YE[X] − XE[Y] + E[X]E[Y]] =  

 = E[XY] − E[X]E[Y] − E[Y]E[X] + E[X]E[Y] =  

 = E[XY] − E[X]E[Y]. 

(3.43) 

Note that if X and Y are independent, E[XY] = E[X]E[Y], and Cov(X, Y) = 0. 

For jointly discrete random variables, 

   ( , ) [ ] [ ] ) { , }i j i i

i j

Cov X Y x E X y E Y P X x Y y     . (3.44) 

For jointly continuous random variables 

   ( , ) [ ] [ ] ( , )Cov X Y x E X y E Y f x y dxdy

 

 

    . (3.45) 

The covariance gives the tendency that the two variables will vary to-

gether. This means that if X and Y move in the same direction, both devia-

tions will be in the same sign, either positive or negative, and the resulting 

covariance will be positive. If X and Y vary in the opposite direction, then the 

deviation of each variable will be in different sign, and the covariance will be 

negative. However, when X and Y are independent, the covariance will be ze-

ro. It should also be noted from (3.32) that Var(X) = E[(X − E[X])2]; this 

means that Var(X) = Cov(X, X). 

For any random variables X, Y and Z we can also write 

 Cov(X, Y + Z) = E[X(Y + Z)] − E[X]E[Y + Z] =  

 = E[XY] + E[XZ] − E[X]E[Y] − E[X]E[Z] =  (3.46) 

 = Cov(X, Y) + Cov(X, Z). 

We can use this property to calculate variance of sum of random varia-

bles Xi as follows: 

 

 

   

   

, ,

, 2 ,

2 , .

i i i i i

i i j i j

i i i j

i i j i

i i j

i i j i

Var X Cov X Y Cov X Y

Cov X X Cov X X

Var X Cov X X





  
    

   

  

 

   

 

 

 (3.47) 

Note that when all Xi are independent, then Cov(Xi, Xj) = 0, and 

i

i

Var X
 

 
 
  .i

i

Var X  
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We can use another dimensionless quantity called correlation coeffi-

cient to measure the tendency of two random variables. The correlation coef-

ficient, denoted Corr(X, Y) or ρX,Y, is defined below: 

 
( , ) ( , )

( , )
( ) ( ) X Y

Cov X Y Cov X Y
Corr X Y

Var X Var Y
 

 
. (3.48) 

It can be shown from Cauchy-Schwarz inequality that the correlation coeffi-

cient lies in the range [−1, 1]. The correlation coefficient can be thought of as the 

covariance of two random variables being normalized by the product of standard 

deviation of the two random variables. The correlation coefficient can only indi-

cate linear dependence of two random variables. If the two random variables are 

independent, the covariance will be zero and the correlation coefficient will also 

be zero. However, the reverse is not true i.e. if the correlation coefficient is zero, it 

does not imply that the two random variables are independent. 

For a given underlying probability density function, the mean time 

to failure (MTTF) is the expected value for the time to failure. It is defined as 

 
0

[ ] MTTF ( ) .E T tf t dt



    (3.49) 

It can also be shown that MTTF is equivalent to 

 
0

MTTF ( ) .R t dt



   (3.50) 

Thus, E[T] is the first moment or the center of gravity of the probability 

density function (like the fulcrum of a seesaw). E[T] is also called the mean 

time between failures (MTBF), when the product exhibits a constant hazard 

rate; that is, the failure probability density function is an exponential. 

The MTTF should be used only when the failure distribution function is 

specified, because the value of the reliability function at a given MTTF de-

pends on the probability distribution function used to model the failure data. 

Furthermore, different failure distributions can have the same MTTF while 

having very different reliability functions. 

The first few failures that occur in a product or system often have the 

biggest impact on safety, warranty, and supportability, and consequently on 

the profitability of the product. Thus, the beginning of the failure distribution 

is a much more important concern for reliability than the mean. 

3.10. Moment Generating Function 

It can be seen that the expectation E[X] and variance, Var(X) = E[X2] − 

(E[X])2, of a random variable can be computed from the expected value of 

a simple function g(X) = X
k of a random variable when k = 1 and 2. The ex-
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pectation of this function g(X) is called kth initial or raw moment of X, de-

noted by μk and is given by 

 μk = E[Xk]. (3.51) 

For a discrete random variable X, we have 

 { }.k

k i i

i

x P X x    (3.52) 

For a continuous random variable X having density function f(x), we have 

 ( )k

k x f x dx





   . (3.53) 

The first initial moment, μ1 = E[X], is the expected value of a random 

variable. Similarly, we define the kth central moment of X, denoted μ′k, as 

 μ′k = E[(X − E[X])k]. (3.54) 

For a discrete random variable X, we have (2.54): 

 ' ( [ ]) { }k

k i i

i

x E X P X x    . (3.55) 

For a continuous random variable X having a density function f(x), we 

have: 

 ' ( [ ]) ( )k

k x E X f x dx





   . (3.56) 

The second central moment, μ′2 = E[(X − E[X])2], is the variance of 

a random variable. 

If a random variable is symmetrical around its expected value, the odd 

central moments will be zero. The effect of asymmetry of the distribution can 

be detected from the odd central moments and is assessed by the following 

expression, called skewness: 

 3

3

2

'

'
Skew





. (3.57) 

We can convert the raw moment to central moment and vice versa. We 

can also find a moment of two or more random variables Xi, i = 1, 2, …, n in 

a similar manner: 

 (k1, k2,…, kn) = E [ 1

1

kX , 2

2

kX ,…, nk

тX ]; (3.58) 

     1

11 2 1[ [ ], , , n

k
X E Xk k k E   ,  2

2 2[ ]
k

X E X ,…, [ ]
nk

n nX E X ]. 

The moment is a powerful tool used to match two distributions. It can also 

be used for fitting a distribution to the raw data or when approximating 

a discrete distribution with a continuous distribution. We can generate moments 

of a random variable X using a moment generating function, denoted by ϕ(t). 



 

68 

The moment generating function is defined as: 

 ϕ(t) = E[etX]. (3.59) 

Let us differentiate this function one time with respect to t, 

 '( ) ( ) tX tX tXd d d
t t E e E e E Xe

dt dt dt

 
            

 
 (3.60) 

and then differentiate this function one more time with respect to t, 

 
2

2''( ) ( ) tX tX tXd d d
t t E Xe E Xe E X e

dt dt dt

 
            

 
. (3.61) 

If we let t = 0, we have ϕ′(0) = E[X], and ϕ′′(0) = E[X2]. This means that the 

moment generating function allows us to simply calculate the successive mo-

ments by differentiating the moment generating function and substitute t = 0. 

Generally 

 E[Xk] = ϕ
(k)(0). (3.62) 

We can use the moment generating function to calculate the moments of 

summation of two independent random variables, X + Y. The moment gener-

ating function of this summation is given by (3.63): 

 ϕX+Y(t) = E[et(X+Y)] = E[etXetY] = E[etX]E[etY] = ϕX(t)ϕY(t). (3.63) 

In general, the moment generating function of the summation of inde-

pendent random variables, Xi, i = 1, 2,…, n…, n, can be found as follows. Let 

i

i

Y X ; then 

 ( ) ( )
i

i i i

i

t X
tX tX

Y X

i i i

t E e E e E e t
   

           
  
   . (3.64) 

It is important to note that the moment generating function uniquely de-

termines the distribution function. 

In reliability analysis, we often deal with a random variable X represent-

ing time. This means that the random variable will only assume value from 

zero to infinity. In this case, we can calculate its moments from its density 

function, f(x), using Laplace transformation. The Laplace transformation of 

the density function is denoted ( )f s , where s is a complex variable: 

  
0

( ) ( ) ( ) sx sXL f x f s f x e dx E e



       . (3.65) 

This expression is similar to the definition of the moment generating func-

tion shown in (3.59). The only difference is the negative sign of the variable s. 

We can use Laplace transformation of the density function to calculate 

for the kth initial moments from 

 
( )

( 1) (0)
kk kE X f     . (3.66) 
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We can also use the moments to help us construct a distribution func-

tion. Using Taylor’s expansion to (3.65) and 
0 !

k

k

a
e

k





 , we have: 
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 (3.67) 

If we have information about the moments of a random variable, we can 

use (3.67) to construct a distribution function. 
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Chapter 4  
FUNCTIONS OF RANDOM VARIABLES 

We examine in this section some random variables, both discrete and 

continuous, that are commonly used in power system reliability applications. 

4.1. Bernoulli Random Variable 

A Bernoulli random variable, X, is a discrete random variable whose out-

come can only be either success or failure. This is also called a Bernoulli trial. 

In power system reliability analysis we usually use this distribution to represent 

a status of a transmission line, which can be either up or down. This can be denoted 

by a discrete random variable assuming 0 if it is down and 1 if it is up. The follow-

ing probability mass function is used to characterize a Bernoulli random variable: 

 P{X = 0} = 1 – p; (4.1) 

 P{X = 1} = p,  (4.2) 

where probability p is between 0 and 1, which denotes probability of success. 

It can be seen that this distribution is only concerned with two possible 

outcomes of a component. The next distribution considers outcomes of mul-

tiple components. 

4.2. Binomial Random Variable 

Consider a generation system with n identical generators, and each gen-

erator is working independently and has probability of working (success) of 

p, thereby having a failure probability of 1 − p. We are interested in knowing 

the number of unit(s) that is (are) working. Let X be number of working (suc-

cess) unit(s) among n generators, taking value of 0, 1, 2, …, n. 

A random variable X is said to have binomial distribution with pa-

rameter (n, p). The probability mass function of this discrete random variable 

is given by: 

 { } (1 )a n a
n

P X a p p
a

 
   

 
, (4.3) 

where 
!

!( )!

n n

a a n a

 
 

 
. 

The expected value of X, E[X] = np, and variance is Var[X] = np(1 − p). 

Example 4.1. For a system of three identical and independent genera-

tors, each having probability of success of 0.9, let us find the probability that 

two generators are working. 
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In this example, X is a binomial random variable with parameter (3, 0.9). 

The probability that two generators are working can be found as follows: 

 
3

{ 2} 0.9 (1 0.9) 0.243
2

aP X
 

    
 

. 

In general, binomial distribution is used to describe n independent trials, 

each trail resulting in either success with probability p or failure with proba-

bility 1 − p. Then, a binomial random variable, X, denotes the number of suc-

cess in n independent trials. 

Consider a case when number of trials reaches a very large quantity, and 

the probability of success is small. Let Λ be number of successes in n inde-

pendent trials. We can approximate the success probability by p = Λ/n. Then 
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. (4.4) 

As n → ∞, using binomial series, 
0

(1 ) a

k k






 
    

 
 , and Taylor’s ex-

pansion, 
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 , we have the following approximation: 
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 (4.5) 

Then, the probability is written as: 
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 (4.6) 

As n → ∞, n(n − 1) …(n − a + 1) ≈ na, we have (4.7): 

 { }
!

a

P X a e
a


  . (4.7) 

Expression (4.7) shows that when a number of trials is very large, we 

can calculate the probability that the trial will be successful a times by using 

the average number of successes, Λ, over a long-run trial. This leads us to the 

next distribution, called Poisson distribution. 
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4.3. Poisson Random Variable 

A Poisson random variable X is a discrete random variable taking val-

ue 0, 1, 2,… with a parameter Λ, for some Λ > 0. The probability mass func-

tion of this random variable is given in (2.74): 

 { }
!

a

P X a e
a


  . (4.8) 

The expected value of X, E[X] = Λ and variance is Var[X] = Λ. 

A Poisson random variable is widely used to describe the number of oc-

currences (either failures or successes) in a fixed time given that an average 

or expected number of occurrences is Λ. For example, in reliability analysis it 

is commonly used to describe number of failures of a component within a cer-

tain time period given that the number of failures on average, Λ, is known. 

Example 4.2. A transmission line fails on an average two times per 

year. If the number of failures can be described by Poisson distribution, what 

is the probability of having two failures in 5 years? What is the probability of 

having three failures in 10 years? 

We first let X5 be a Poisson random variable representing the number of fail-

ures in 5 years; its expected or average number of occurrences is Λ5 = 2 × 5 = 10 

failures in 5 years. Then, the probability mass function of this random variable is 
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5

10
{ }

!

a

P X a e
a

  . 

The probability of having two failures in 5 years is  

5{ 2}P X  
2

10 0.00227
10

2!
e  . 

Similarly, let X10 be a Poisson random variable representing number of 

failures in 10 years; its average number of occurrences is Λ10 = 2 × 10 = 20 fail-

ures in 10 years. Then, the probability mass function of this random variable is 

 
20
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20
{ }

!

a

P X a e
a

  . 

The probability of having three failures in 5 years is  10 3P X    

0 7
3

2 0
20

4.
3!

12 1e   . 

If, after a long experiment, we found out that within a time period, t, we 

have a number of failures equal to Λ; the average number of failures is 

λ = Λ/t; this number is the average number of occurrences per unit time inter-

val. The probability mass function can be rewritten as: 
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{ }
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a
tt

P X a e
a


  . (4.9) 
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If number of failure in this time interval is zero, then 

 { 0}P X e  . (4.10) 

We will see later in this chapter that (4.10) gives a widely known distri-

bution function of a continuous random variable called exponential. 

4.4. Uniform Random Variable 

A continuous random variable is uniformly distributed on interval (α, β) 

if the probability density function is given as: 

 

1
if ;

( )

0 otherwise.

x
f x


   

  



 (4.11) 

The probability distribution function is given as: 

 

0 if ;

( ) if ;

1 if .

a

a
f x a
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 (4.12) 

This distribution is frequently used for generating random numbers for 

Monte Carlo simulation. 

4.5. Exponential Random Variable 

An exponential random variable, X, is a non negative random variable 

on [0, ∞) whose probability density function is given by (4.13) for some posi-

tive constant, λ > 0: 

 f(x) = λe−λx. (4.13) 

The probability distribution function is given in: 

 F(a) = 1 − e−λa. (4.14) 

If we take Laplace transformation as follows, we can find the momentssj 

from the following moment generating function: 
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( 1) (0)
kk kE X f     , (4.15) 

where 
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  . (4.16) 

The expected value is the first moment given by: 
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moment
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Similarly, the second moment is given by: 
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2
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. (4.18) 

Then, the variance is found from (4.20): 

   
22

2

1
( )Var X E X E X     

. (4.19) 

If X denotes time to failure of a component, the expected value of X 

gives the expected value of time to failure of the component, and λ is called 

failure rate of the component. The survival function is shown in: 

 ( ) ( ) a

a

R a f x dx e



  . (4.20) 

The hazard rate function can be found using 

 
( )

( )
( )

f a
h a

R a
   . (4.21) 

Recall that the hazard rate function gives the rate of a conditional probabil-

ity of failure at time a given that the component has survived up to time a. As Δa 

→ 0, the hazard rate function can be written as h(a)Δa = P{a ≤ X ≤ a + Δa|X > 

a}. When the hazard rate function is constant, it implies that a component 

will fail at a constant rate irrespective of how long it has been in operation. 

This property is known as memoryless property and can be proven by find-

ing the residual lifetime of a component. 

When X is a random variable denoting time to failure of a component, as-

sume that a component has operated up to time t without failure. Let Y = X − t 

denote residual lifetime of this component. Then, 

 FY(a) = Pr{Y ≤ a|X > t}. (4.22) 

The equation (4.22) gives the distribution function FY(a) of a random 

variable Y, representing a residual lifetime of this component. Using condi-

tional probability rule, we can find 
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  (4.23) 

Since X is exponentially distributed, FX(a) is given by (4.14), which is 

exactly the same as above. This means that Y, the residual lifetime, is also 

exponentially distributed. The distribution of residual lifetime is independent 

of the time that a component has been in operation. It will not fail because 
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of the gradual degradation of the component itself but from the random failure; 

in other words, this component does not age. Since the hazard rate function 

uniquely determines the distribution function, it follows from (4.18) that the 

exponential distribution is the only distribution that has memoryless property 

There is a connection between Poisson distribution and exponential 

distribution. Recall that Poisson distribution is used to describe the number 

of occurrences (either failures or successes) in a fixed time t given that 

an average or expected number of occurrences is Λ. Let X denotes = number 

of failures in this time interval (0, t), and X is a Poisson random variable. 

The average number of failures within this time interval is λ = Λ/t. We 

found out from (4.10) that when number of failures is zero during this time 

interval, the probability is P{X = 0} = e
−λt. In other words, a system has been 

operated in the time (0, t) and no failure happens, which implies that 

a system will fail at a time greater than t. 

Let Y denote time to failure of this system; then Pr{Y > t} = e
−λt, and we 

can write 

 FY(t) = Pr{Y ≤ t} = 1 − Pr{Y > t} = 1 − e−λt. 

This shows that the random variable Y is exponentially distributed. 

Thus, we can conclude that for a Poisson random variable X, if we focus on 

time between failures and denote this time by a continuous random variable 

Y, this time is exponentially distributed. 

4.6. Normal Random Variable 

A normal random variable, X, is a continuous random variable on (−∞, 

∞) with parameter μ and σ2, whose probability density function is given by 

(4.24). We can write X ∼ N(μ, σ2). 
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 ( , )x   . (4.24) 

The normal distribution is bell-shaped and has symmetry around μ, 

which is its mean value. The variance of this random variable is Var[X] = σ
2. 

The probability distribution function is given by: 
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Let 
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z





, dx = σdz. We can write: 
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. (4.26) 
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The integral in (4.26) cannot be expressed explicitly. Numerical integration is 

used to obtain the value of this integral in a tabular form. 

We can also use the moment generating function to calculate for mean 

and variance as follows: 
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 . (4.27) 

Let 
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 and dx = σdz. We can write 
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Let w = z − σt and dw = dz. We have 

  
2 2 2 2 2
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t e e dw e

 
  



 

 . (4.28) 

The first and second moments are found from ϕ′(0)
 = E[X] = μ and 

ϕ′′(0)
 = E[X2] = μ

2 + σ2. The mean and variance are the same as previously 

stated. 

This function leads to the special case of normal random variable when 

the mean value is zero and variance is one, Z ∼ N(0, σ2). This random varia-

ble Z is called standard normal random variable, which has the following 

density function: 
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. (4.29) 

It should be noted that normal random variable can take any value in the 

real axis. When we use this random variable, X ∼ N(μ, σ2), to represent oper-

ating time of a component, the function needs to be modified to reflect the 

fact that the operation time can only be positive. This is done by truncating 

the normal distribution by: 
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, (4.30) 

where α is a normalizing parameter and 
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2
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x
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 . 

The survival function and hazard rate function can be found from (3.15) 

and (3.19). It should be noted that the hazard rate function of the normal dis-

tribution is monotonically increasing, as shown in Fig. 4.1. 
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Fig. 4.1. Characteristics of a normal random variable 

4.7. Log-Normal Random Variable 

A log-normal random variable, X, is a continuous random variable 

on (0, ∞) with parameter μ and σ2, and if Y = log X is normally distributed with 

parameter μ and σ2. Since a logarithm is a non-decreasing function, we can write 

 FX(x) = Pr{X ≤ x} = Pr{log X ≤ log x} = Pr{Y ≤ y} = FY (y). 

Using chain rule, we have 

 
1

( ) ( ) ( ) ( ) (log ) (log ).X X Y Y Y Y

d d dy dy
f x F x F y f y f x f x

dx dx dx dx x
      

The probability density function of X is 
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. (4.31) 

The mean and variance of this random variable can be found from mo-

ment generating function. Since Y = log X is normally distributed with the 

moment generating function shown in (4.28), and X = e
Y, we can write: 

 E[X] = E[eY]. (4.32) 

From  
2 2

2   
t

t
tY

Y t E ee




    , let t = 1, and we have  
2

2 E eX


 , 

the mean value of X. Similarly, E[X2] = E[e2Y], let t = 2, and we have 
222 2 E X e     . The variance can be found from: 

   
2 222 2( )( )Var X E X E X e e       . (4.33) 

 

 

Fig. 4.2. Characteristics of a log-normal random variable 
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The hazard rate function of log-normal is shown in Fig. 4.2, which 

demonstrates that the function is not monotonically increasing and does not 

seem to model a lifetime of a physical component. However, in several cases, 

it shows reasonable fit for repair times. 

4.8. Gamma Random Variable 

A gamma random variable, X, is a continuous random variable on [0, ∞) 

with parameter λ > 0 and α > 0, whose probability density function is given 

by (4.34): 
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, (4.34) 

where Γ(α) is a gamma function and is defined as: 
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     . (4.35) 

Note that when α is a positive integer, we can write Γ(α) = (α − 1)!, thus 

Γ(1) = Γ(2) = 1; using integration by parts, we can write Γ(α + 1) = αΓ(α). 

The probability distribution function is found from 
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Substitute z = λx and dz = λdx and we have: 

 1

0

1
( )

( )

a

zF a e z dz



 
   . (4.36) 

When α is integer, we can use integration by parts to find the distribu-

tion function. 
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We can compute the kth moment of X directly as follows: 
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Substitute z = λx and dz = λdx and we have 
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      . (4.38) 

The first and second moment is found from the following: 
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. (4.40) 

The mean value is α/λ, and the variance of this random variable is 

Var[X] = α/λ2. 

The survival function is shown in: 
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The hazard rate unction of a gamma random variable is 
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Let z = x − a and dz = dx; then, 
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. (4.42) 

Note that if α = 1, then 
0

ze dz



   , which is a constant value. If α > 1, 

the hazard rate function will be increasing; if 0 < α < 1, the hazard rate func-

tion will be decreasing, as shown in Fig. 4.3. 

 

 

Fig. 4.3. Characteristics of a gamma random variable 

4.9. Weibull Random Variable 

A Weibull random variable, X, is a continuous random variable on (0, ∞) 

with parameter λ > 0 and α > 0, and if Y is exponentially distributed with pa-

rameter λ, then 
1

X Y   or Y X  . This means that an exponential random 

variable is a special case of a Weibull random variable with α = 1. Since α > 0, 

we can write 

 ( ) { } { } { } ( )X YF x Pr X x Pr X x Pr Y y F y        . 

без знака
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Thus, the probability distribution function is: 

 ( ) 1 1 , (0, )y x

XF x e e x
       . (4.43) 

Using chain rule, we have 

 
1( ) ( ) ( ) ( ) ( ) ( )X X Y Y Y Y

d d dy dy
f x F x F y f y f x x f x

dx dx dx dx

        . 

The probability density function of X is (2.110), which can also be 

found from differentiating (4.43): 

 1( ) , (0, )xf x x e x
    . (4.44) 

For a Weibull random variable, it is simpler to compute the kth moment 

of X directly as follows: 

 1

0

[ ]k k xE X x x e dx




   . 

Substitute z = λxα and dz = αλxα−1dx, and we have 

 
0

1
[ ]

k

k z

k
E X z e dz










 . 

From the previous section, 1

0

( ) zz e dz



     ; we can use gamma func-

tion to calculate the moment as follows: 

 
1

[ ] (1 )k

k

k
E X



  




. (4.45) 

The expected value is found when k = 1, 

 1

1 1
[ ] (1 )E X



  




. (4.46) 

The second moment is when k = 2, 2

2

1 2
[ ] (1 )E X



  




. The variance 

is calculated directly from the first and second moment as follows: 

 

2

2

1 2 2
[ ] 1 1Var X



    
         

     

. (4.47) 

The survival function is shown in: 

 ( ) { } 1 ( ) aR a P X a F a e
     . (4.48) 

Thus, the hazard rate function is: 

 
1

1( )
( )

( )

x

x

f x x e
h x x

R x e





 





    . (4.49) 
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Expression (4.49) shows that if α = 1, the hazard rate function is con-

stant. If α > 1, the hazard rate function is increasing, and if α < 1, the hazard 

rate function is decreasing. With this flexibility, a Weibull random variable is 

often used to model time to failure of a component. The characteristics of this 

distribution are given in Fig. 4.4. 

 

 

Fig. 4.4. Characteristics of a Weibull random variable 
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Chapter 5  
METHODS OF ANALYSIS OF POWER SUPPLY  
SYSTEM RELIABILITY INDICES 

The ultimate goal of reliability calculation of power supply system is the 

quantitative estimation (assessment) of reliability indicators (indices) con-

cerning the certain load nodes (centers) and the development of measures 

based on the results of this estimation aimed at their changes. 

Quantitative characteristics of complex reliability indicators (indices) de-

pend on the system condition (state) at every instant, the power and energy de-

mand in the load centers. The number of discrete states in a complex system is 

rather huge. It is impossible in practice to assess (estimate) the system reliability 

without development of an efficient method of the reduction of the number 

of considered states till acceptable level and the achievement of specific aims. 

The most widespread and detailed methods of reliability indicators (in-

dices) calculation of the system taking into consideration the specific of the 

solved problems (tasks) are considered in simplified version in this chapter. 

The notation conventions of reliability parameters are the same as in the ref-

erences in order to make the understanding of this material easier. 

5.1. Method of analysis of reliability indices using (applying) 
the models of random (stochastic) processes 

The processes of the system state (condition) transitions, which are in-

fluenced by random failures of separate elements, are described by means of 

Poisson random processes. By exponential time distribution between failures 

and exponential distribution of failure states durability there is a chance to 

apply a well developed apparatus of waiting (queuing) theory, and particular-

ly the apparatus of Markovian processes. 

The process is called Markovian, if for every instant the probability 

of any state of the element or system in future depends only on the current 

state (condition) and does not depend on how the element has acquired this 

state (condition). 

Let us consider more detailed the conditions of application of Markovi-

an processes to describe the state transitions of the system consisting of some 

separate elements. 

The occurrence of failures in an element at one time lag (slice) practically 

does not influence the probability of failure occurrence at another time lag 

(slice) (excluding the cascade development of failure in the system). Therefore, 
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the failure flow (stream) of such an element (subsystem) can be viewed as Pois-

son one. This condition can be violated if the element (subsystem) includes not 

very reliable parts (elements). Then the failure flow (stream) will only consist of 

these elements and the conditions that this Poisson flow model corresponds (sta-

tionarity, ordinarity, absence of aftereffects) will not be satisfied. Moreover, the 

failure events in this case can not be considered as rare ones. 

Within the run-in period of the element as well as in the period of inten-

sive aging and wear-out, the failure flow (stream) of the elements also does 

not posses Markovian property (feature). In practice there is an attempt to re-

duce these periods (till commencement of operation) by carrying out trials 

(tests) on separate elements of power system and replacing of the outdated 

(out-of-date), worn equipment by modern one. Therefore, the mathematical 

models that satisfy the normal operating conditions of the elements (sys-

tems), being of interest in practice will be considered further. 

The models of random failure process and power system recovery is 

applied for assessment (evaluation) of complex reliability indices at rela-

tively short time lags (slices), that are comparable with recovery time after 

failure taking into account the initial state of some separate elements. 
The application of the models of random processes in engineering calcu-

lations of power supply systems reliability allows to justify and find the areas 

of applications for more simplified algorithms. As more typical example we 

will consider the concepts of network analyzer mapping (building) for ele-

mentary circuits (diagrams) (redundant and non redundant). 

5.1.1. Processes of failures and recoveries  

of one element circuit (scheme) 

Let us assume that the process of failures and recoveries of the component 

(element) possesses the properties of Markovian random process. If the process 

that takes place in a physical system with countable collection (set) of condi-

tions and continuous time is Markovian one, then it can be described with 

a simple differential equation, where unknown quantity is probabilities of states. 

Let us consider an element (component) that can be in two states: 0 – is fail-

ure free operation, 1 – are states of failure (recovery). Let us define the corre-

sponding probabilities of states of the element (component) Р0(t), Р1(t) at arbi-

trary time t by different initial conditions. This problem we will solve under 

the stipulation that the failure flow is elementary with the failure density (rate) 

 = const and recovery density μ = const, the distribution time law between 

failures (the frequency of failures) is a(t) = λe–λt, the recovery time is also de-

scribed by exponential distribution law with parameters μ, e. g. aB(t) = μe–μt. 

For any instant the probability sum is Р0(t) + Р1(t) = 1 – the probability 

of persistent (sure) event. Let us fix the time t and find the probability 
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Р0(t + t) that at instant t + t the element (component) will be in operation. 

This event will occur by fulfillment of two conditions. 

1. At instant t the element (component) was in 0 state and over the peri-

od t there were no failures. The probability of the elements work (operation) 

is defined in accordance with the rule of multiplication of probability of in-

dependent events. The probability that at instant t the element was in 0 state 

is equal to Р0(t). The probability that over the period t it does not fail is 

equal to е–t. With the accuracy till the value of the higher infinitesimal or-

der it can be presented as follows: 

 
22

λ λ
1 λ ... 1 λ

2

t t
t te

  
        . (5.1) 

Therefore, the probability of this hypothesis is equal to the product 

Р0 (t)(1 – t). 

2. The element (component) was in state 1 (recovery state) at instant t, 

over the period t the recovery was completed and the element went into 0 

state. This probability we will also define in accordance with the rule of multi-

plication of probability of independent events. The probability that the element is 

in the state 1 at instant t is equal to Р1(t). The probability that the recovery was 

completed we will define through the probability of opposite event, e. g. 1 – е–μt 

 μt. Hence, the probability of the second hypothesis is equal to Р1(t) μt. 

The probability of operational state (operating condition) of the element 

(component) at instant (t + t) is defined by the probability sum of independ-

ent events by the fulfillment of both hypotheses.  

 
0 0 1( ) ( )(1 λ ) ( )μP t t P t t P t t      . (5.2) 

or 

 

0 0
0 1

0 0 0

0

( ) ( )
λ ( ) μ ( );

( ) ( ) ( )
.lim

t

P t t P t
P t P t

t

P t t P t dP t

t dt 

  
  



  




 

Hence, the first equation of this state is: 

 0
0 1

( )
λP ( ) μP ( )

dP t
t t

dt
   . (5.3) 

Analyzing in the same way the second state (condition) of the element – 

the failure state (recovery state), it is possible to write down the second equa-

tion of the state: 

 1
1 0

( )
μP ( ) λP ( )

dP t
t t

dt
   . (5.4) 

P
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Thus, to describe the probability of the element (component) state (con-

dition) two combined differential equations were obtained: (5.3) and (5.4). 

It should be noted that dt and μdt play a role of transition probabilities 

of the element in failed (failure) or operational state (condition). The process 

of state change of the considered element can be illustrated by means of the 

graph, which is presented in Fig. 5.1.The element states (0, 1) correspond 

to the graph nodes and the possible transitions from one state into another 

one correspond to the ribs of graph. 
 

 

Fig. 5.1. Transition graph for one element scheme (circuit) 

If there is a directed graph of an element or system state (condition), 

then the combined differential equations for the state probabilities Рk (k = 0, 1, 

2, …) can be written using the following simple rule. The derivative 

dPk(t)/dt is the first member of equation (in the left side of an equation) 

and there are so many members in the right side of an equation as many 

ribs are connected with the given state; if the rib finishes in the given 

state, then the member has plus sign, if it starts from this state it has mi-

nus sign. Every member is equal to the product of event flow rate, that 

transfers the element or system on the specified rib into another state 

(condition), into the probability of the state the rib originates. 

Combined differential equations can be used to define the probability of 

failure free operation of power supply system, the availability function and 

rate, the probability of repair (recovery), average time when system is in any 

state (condition), system failure density at very short time lags, when the ini-

tial state of the element is necessary to take into account. 

Solution of the combined equations describing the state of the element 

by initial conditions Р0(0) = 1; Р1(0) = 0, will be: 

 (λ μ)

0

μ λ
( )

λ μ λ μ

tP t e
  

 
. (5.5) 

The probability of failed state (failure mode) is: 

 
(λ μ)

1 0

λ λ
( ) 1 ( )

λ μ λ μ

tP t P t e    
 

. (5.6) 

1

0

1-dt 1-dt

dt

dt
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If at initial time the element was in failure sate (recovery state, e. g. 

Р0(0) = 0, Р1(0) = 1, then 

 (λ μ)

0

μ μ
( ) ;

λ μ λ μ

tP t e
  

 
 (5.7) 

 (λ μ)

1

λ μ
( )

λ μ λ μ

tP t e
  

 
. (5.8) 

For stationary sate (t  ) the probability of the element operation is 

equal to stationary availability and the probability of failed state (failure 

mode) is equal to forced outage (breakdown) rate: 

 0 g

μ
( ) ;lim

μ λt
v

Т
tP K

Т t

  
 

 (5.9) 

 1

λ
( ) ,lim

λ μ

v
p

t
v

t
tP K

Т t

  
 

 (5.10) 

where Т  is mean time of faultless operation, вt  is mean recovery time. 

The time during which the probabilities Р0(t) and Р1(t) reach their 

steady-state value, depends on degree index, e. g. damping constant (coeffi-

cient) of the exponent. 

If 
вТ t , then the damping constant (coefficient) of the exponent is: 

 в

в в в

1 1 1T t

T Tt t t


      . (5.11) 

The formulae (5.5)–(5.8) for practical calculations can be re-arranged as 

follows: Р0(0) = 1, Р1(0) = 0 (Fig. 5.2, а, c) 

 0 g v( ) exp( / );pt t tP K K    (5.12) 

 1( ) exp( / );p p vt t tP K K    (5.13) 

 Р0(0) = 0, Р1(0) = 1 (Fig. 5.2, c, d); 

 
0( ) exp( / );p g vP t t tK K    (5.14) 

 
1( ) exp( / )p g vP t t tK K   . (5.15) 

The probabilistic system state by t  , e. g. by stationary conditions, 

does not depend on its initial state. 

The availability and forced outage (downtime) coefficients can be inter-

preted as mean probability that the system is in operation sate and failure 

mode (Fig. 5.2, a–d). 

From the analysis of the formulae (5.12)–(5.15) it is clear that the short-

er (less) the mean recovery time of an element (component) (more 1
вμ t
 ) 

is, the more the damping coefficient, and hence, the faster the process tends 

to the steady-state (final) probability value (in absolute time units), i.e. to sta-

tionary values Kg and Kp. 

Со следующей строки, выравнивание по ширине

Со следующей строки, выравнивание по ширине
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Fig. 5.2. Relations between the probability of faultless operation and the 

probability of failure of one-element scheme (circuit) by different initial conditions 

The probabilities of the system state (condition) in the reliability indices 

calculations with high accuracy over relatively long periods (t  (7 – 8)tv) can 

usually be defined by steady-state mean probabilities Р0() = Kg = Р0 

и Р1() = Kp = Р1. This states from the point of view of reliability are called 

limiting (marginal) states. The probabilities of the steady (stationary) states 

(t  ) can be found fairly simple by solving of combined algebraic equa-

tions, that were obtained from combined differential equations by equalization 

of derivatives (left parts) to zero, e. g. dРk(t)/dt = 0, and by change of 

Рk(t) = Рk = const and addition of normalizing condition 
0

1
n

k

k

P


  

Combined equations (set of equations) are of the following form: 

 
0 1

1 0

0

1

P P

P P

   


  
, (5.16) 

where 

 0 g

1

μ

1 1λ μ

v

v

v

t T
P K

T t

T t

   
 



; (5.17) 
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 1

λ

λ μ

v
p

v

t
P K

T t
  

 
. (5.18) 

Thus, the same result was obtained as by the analysis of limiting (mar-

ginal) state by means of differential equations. 

It is to be emphasized, that by 
вT t  the forced outage (downtime) 

is defined very simple:  

 / ( ) / .p v v v vt t T t T tK       (5.19) 

In practical calculations (estimations) it is accepted that  = , therefore the out-

age (breakdown) and operational states are defined in accordance with formulas: 

 в1 вλ ωP t t  ; (5.20) 

 
0 в1 ωP t  . (5.21) 

Hence, the forced outage (breakdown) coefficient (or mean probability 

of failure) is equal to product of failure flow parameter by mean recovery 

time of the element after one failure. 

The same result can be obtained from general reasoning by absence of lim-

its on the types of distribution laws of nonfailure operation and recovery time. 

5.1.2. System, consisting of series connected repairable elements 

(renewable units) 

The system which consists of n subsequent (series) repairable elements, fails 

in the cases when any element (component) fails (the probability of failure of few 

elements, by accepted assumption concerning the properties of failure flow is ne-

glected). Therefore, compound (total) failure flow of all elements possesses practi-

cally the ordinary feature. That allows to neglect simultaneity (synchronism, coin-

cidence) of two or more elements failure. The system consisting of n homogeneous 

elements connected in series have two states (conditions): 0 – all elements are 

in operational state; 1 – one element is in failed state (failure condition). Applying 

the mentioned above method of probability (frequency) definition by different ini-

tial conditions, we will get the following combined equations (set of equations): 

 

0
0 1

1
1 0

( )
λ ( ) μ ( )

( )
μ ( ) λ ( )

dP t
n P t P t

dt

dP t
P t n P t

dt


   


  


 (5.22) 

The probability of the n elements operation over the period dt is defined 

applying both-and rule (product rule) for compatible (joint) events – the op-

eration of elements over the period dt: 

 λ λ λ λ λ... (1 λ )dt dt dt dt n dt n dte e e e e

n

       . (5.23) 

Pv

Pv

Pv
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The recovering probability (probability of repair) of the failed (faulty) el-

ement μdt over the period dt is defined in the same way as for one-element 

(unicomponent) scheme (diagram). By solving the set of differential equations 

(combined equations) by initial conditions Р0(0) = 1, Р1(0) = 0, we will find: 

 ( λ μ)

0

μ λ
( )

λ μ λ μ

n tn
P t e

n n

  
 

; (5.24) 

 ( λ μ)

1

λ λ
( )

λ μ λ μ

n tn n
P t e

n n

  
 

. (5.25) 

By initial conditions Р0(0) = 0, Р1(0) = 1 (the circuit is in failed condition) 

 ( λ μ)

0

μ μ
( )

λ μ λ μ

n tP t e
n n

  
 

; (5.26) 

 ( λ μ)

1

λ μ
( )

λ μ λ μ

n tn
P t e

n n

  
 

. (5.27) 

For stationary condition t   the availability (in-commission rates) 

and breakdown rates are of the following form: 

 0 г

в

μ

λ μ

T
P K

n nt T
  

 
; (5.28) 

 в
0 п

в

λ

λ μ

n nt
P K

n nt T
  

 
. (5.29) 

If the elements (components) of series circuit are heterogeneous, e. g. 

1  2  n, then  

 1 в

1

λ

n

i i

i

tР


 ; (5.30) 

 0 в

1

1 λ

n

i i

i

tР


  . (5.31) 

By calculation of elementary circuits (schemes) with low component 

count (low number of elements) and μ >> , the error by application of these 

formulae is small (insignificant). 

5.1.3. System consisting of parallel connected repairable elements 

(renewable units) 

Parallel connected repairable elements from the standpoint of reliability 

mean, that in the case of failure of one of the elements (components) the system 

keeps functioning, i.e. automatic redundancy of each element with capacity 

(throughput performance) sufficient to satisfy consumers’ power is assumed. 

In a general case, when the system by such redundancy consists of n 

independent elements (components), the number of possible system states 

Никитин Д.С.
Выделение
Pv

Никитин Д.С.
Выделение
Pv
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(conditions) will be 2n assuming that each element (component) can be in 

two states (conditions): in operational and failed (failure condition) state. 

System failure (breakdown) occurs when all elements (components) of the 

system are in failed state (failure condition). 

Let us consider more thoroughly the simplest case, which is commonly 

encountered in power (electrical) systems – parallel connection of two ele-

ments (two circuits of a transmission line, two transformer substations and 

etc.). Such system can be in four states (conditions): 1 – both elements are in 

operational state; 2 – the first element is in failed state (failure condition), and 

the second one is in operational state; 3 – the second element is in failed state 

(failure condition), and the first one is in operational state; 4 – both elements 

are in failed state (failure condition). The corresponding probabilities of these 

states (conditions) will be Р1(t), Р2(t), Р3(t), Р4(t). 

The methodology of differential equations set-up (generation of equa-

tion) and solution of differential equations for this case will be based on the 

principles mentioned above. This methodology is given in 8, 9. We will 

consider only the conclusions (developments) of their solution. 

For stationary (steady) state (when t  ) the mean probability of states 

(conditions) will be as follows: 

 
      

1 21 2
1 g1 g2

1 2 1 v21 21 2

μ μ

μ μλ λ v

Т Т
Р K K

t tТ Т
  

   
; (5.32) 
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t Т
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t tТ Т
  

   
; (5.33) 

 
      

2 v2 11
3 p2 g1

1 2 v2 12 11 2
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μ μλ λ v

t Т
Р K K

t tТ Т
  

   
; (5.34) 

 
      

1 2 v1 2
4 p1 p2

1 2 v1 v21 21 2

λ λ

μ μλ λ

vt t
Р K K

t tТ Т
  

   
. (5.35) 

Stationary availability and steady-state unavailability of the system pro-

vided (given) вii tТ  is: 

 Kg = Р1 + Р2 + Р3; (5.36) 

 4 1 p2 1 2v1 v2λ λp p t tK Р K K   . (5.37) 

This result can be also obtained applying both-and rule (product rule) of 

independent events and without overlapping of the states (conditions) neither 

distribution laws of failure free time nor distribution laws of recovery time. 

In fact, the system consisting of two independent mutual redundant (back-

ing up) elements will fail in case of intersection of two events when both ele-

ments fail. The probability of this phenomenon is equal to the product of mean 

probabilities of failed state (failure condition) of each of this element – q1 and q2. 
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As the mean probabilities of failed sate (failure condition) are approximately 

equal to the product of the number of failures λiby mean recovery time 
Bit , then 

 1 1 v11
,λpq tK   2 v2p22 λKq t  . 

Hence, 

 p1 p2 1 2v1 v21 2 λ λp q q t tK K K   . (5.38) 

When considering one-element (unicomponent) system it was shown 

that the exponent damping constant (attenuation coefficient) is inversely pro-

portional to mean recovery time of the element by 1
в в: (λ μ) .Т t t

    

In the system under consideration the probabilities of all states (conditions) 

are described by superposition of exponents with constant components, that can 

be approximately replaced (substituted) by one exponent with equivalent damp-

ing constant (attenuation coefficient), that is inversely proportional to equivalent 

recovery time of the system from the failed state into operational state, e. g.  
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 , (5.40) 

where  

 1 2

1 2

v v
vm

v v

t t
t

t t



, (5.41) 

has the meaning of equivalent recovery time of two parallel connected elements. 

Considering the multiplex (redundant) system as one equivalent compo-

nent (element) we can represent it as follows 

 п с вctK   , 

where  

 
1 2v1 v2 v1 v2

с 1 p2 2 p1

vm v1 v2

( )λ λ
λ λ λ

pK t t t t
KК

t t t


    . (5.42) 

Thus, failure rate of a system consisting of two elements that back up 

(reserve) each other is equal to the product of failure rate of the first element 

multiplied by mean probability of failed state of the second element and fail-

ure rate of the second element multiplied by mean probability of the failed 

state of the first element. 

The obtained algorithm of failure rate definition of the multiplex (re-

dundant) system is of great practical importance due to its simplicity and 

clearness (visualization). 

Failure rate of a system can be approximately assessed (estimated) 

without superposition of distribution function of failure free operation and 

elements renewal (recovery). 

Pvs
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Let us study two independent hypotheses concerning possible system 

failures (breakdowns) analyzing its state (condition) over sufficiently long 

period (interval) T. 

1. The number of systems failures over the interval T in the process 

of recovery of the first element is equal to the product of number of failures 

of the second element multiplied by mean probability of failed sate q1 of the 

first element. 

 N1 = 2Tq1 = 2TKp1. (5.43) 

2. The number of systems failures over the interval T in the process of 

recovery of the second element is equal to the product of number of failures 

of the first element multiplied by mean probability of failed sate q2 of the 

second element. 

 N2 = 1Tq2 = 1TKp2. (5.44) 

Total number of failures is equal to the sum of failures by two hy-

potheses: 

 N = N1+ N2 = (2Kp1 + 1Kp2)Т. (5.45) 

Average number of systems failures per time unit (failure rate) is defined as: 

 с = N/Т = 1Kp2 + 2Kp1. (5.46) 

In other words, the summands 1Kp2 and 2Kp1 have sense of average 

number of failures during the failed state period of the second and first 

elements correspondingly. 

In the systems where redundancy is carried out are called systems with 

reliability redundancy (excess) (redundancy on reliability). Two parallel con-

nected elements, where each element is capable of functioning (to transmit re-

quired capacity (power)) form (comprise) an elementary (simplest) system 

with redundancy (excess) on reliability (reliability redundancy (excess)). It is 

necessary to mention the important feature of such systems. If failure flow and 

flow of renewals (recoveries) that are included in the system with reliability 

redundancy (excess) (redundancy on reliability) possess the properties (fea-

tures) of a simplest (elementary) Markovian process, then the failure rate and 

flow rate of renewals (recoveries) considered as equivalent element with suffi-

cient for practical purposes accuracy can be also regarded as possessing these 

properties (features), i.e. stationary and absence of aftereffects. This failure 

flow of systems with reliability redundancy (excess) (redundancy on reliabil-

ity) will be Poisson one, as the probability of systems failure (breakdown) is 

considerably less than the probability of failure of separate (certain) elements. 

The obtained practical algorithm for failure rate definition of the system 

with redundancy (renewals) can be applied for the case, when n elements 

back up each other (parallel connection in terms of reliability). 
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In order to define the failure rate of this system it is necessary to consid-

er as many summands as many elements are there in the system, e. g.  

 с в
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  ; (5.47) 
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In a particular case, when the elements (components) have the same re-

liability indices: 
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For two similar (identical) mutual backing up elements 

 
2 2

с в вc в вc2 / ;      / 2;        / 2λ t t t tT T T   . (5.52) 

The obtained approximate algorithm of reliability indices definition can 

be used for systems of any complexity with free (arbitrary) (in terms of relia-

bility) connection of elements, if the complete failure (breakdown) indices 

are defined for the system. 

The failure rate of a system consisting of n independent elements 

(components) is equal to the sum of productions of failure rate of each el-

ement multiplied by mean probability of subsystems failure, which is left 

(remained) after this element was removed. If the failure of the element 

under consideration leads to systems failure, then the probability of re-

mained (left) subsystem (part) failure is assumed as equal to 1 (unity) (for 

example series in terms of reliability connection of elements). 

By increasing the number of elements (components) in the calculating 

system the number of its possible states (conditions) grows rapidly (for ex-

ample, in the system with n elements without regard for deliberate elements 

cutoff (disconnection) the number of states (conditions) is N = 2
n). Therefore, 

the application of Markovian process theory for reliability evaluation (as-

sessment) using the complete differential combined equations (set of differ-

ential equations), their analysis and solution presents some difficulties. 

The solution of the problem using the values i, μi, Рk(0) makes the re-

sult acquisition (obtaining) considerably easier, but does not exclude (elimi-

tvs

tv

λs

Ts

tv

λs

v

λc

Ts

tv

:

Highlight



 

94 

nate) symbolic manipulations (transformations) that are necessary by deter-

minant calculation. Therefore, in the case, when it is necessary to research 

(study) the system reliability over short periods (intervals) the number of 

states N is limited, integrating the element group in one element with equiva-

lent reliability indices (э, μ and etc.), that can be approximately estimated 

(assessed) by the mentioned above methods. 

5.1.4. Reliability indices calculation (estimation) taking  

into consideration repair state and deliberate cutoff (disconnection)  

of elements (components) 

Timely and reasonable preventive equipment repair (maintenance work) 

allows not only to increase the technical capability (characteristics) of the op-

erating system and improve their reliability indices, but also to reduce 

maintenance (operating) costs. However, preventive repair and complete 

overhaul of the equipment is connected with elements cutoff (disconnection), 

switching scheme (commutation scheme) changes, that leads to the change of 

power supply reliability level at this period. 

Power equipment repair volume and schedule are determined by annual 

agenda (plan). As a rule preventive repair and overhaul schedule are planned 

to reduce the possible losses (damage) from undersupply of energy. Besides, 

the equipment and apparatuses repair that is directly linked (coupled) with 

technological apparatuses is carried out as far as possible together with the 

repair of the latest one. 

Intentional (deliberate) cut off (disconnection) of elements (compo-

nents) is carried out not only for preventive repairs and complete overhauls, 

but on the demand of different enterprises. Outage (cut off) frequency and 

duration of power supply elements (components) in general depend on ran-

dom factors. Therefore, in reliability calculations the intentional cut off (out-

age) is reasonable to set the flow parameter of intentional (deliberate) outage 

(cut off, disconnection) dt and their average time prt .  

Average time of preventive repair and complete overhaul is mainly de-

fined by engineering instruction (operational regulations). Deviation from the 

average time is determined by the influence of weather conditions, repair base 

(service station) condition, availability of replacement components and etc. 

Intentional element cutoff (disconnection) duration is usually compared 

with emergency repair (maintenance) duration. Therefore, the reliability indi-

ces calculations on the short intervals by taking into consideration intentional 

cutoffs (disconnection) are necessary to carry out taking into account initial 

states (conditions) of the elements. On the basis of these concepts the theory 

of Markovian processes for assessment (evaluation) of state probability can 

λe
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be applied with some assumptions (as the intentional cutoff (disconnection) 

duration is distributed not in accordance with exponential law and flow pa-

rameter of intentional cutoffs (disconnection) of the elements varies with 

time). Moreover, if the states of intentional cut off (disconnection) of the el-

ements is described by differential equations, then their total number for 

a system consisting of n elements will increase by 3n, that considerably com-

plicates the solution obtaining. 

In practical reliability calculations over sufficiently longer intervals 

 вt t  mean probabilities are usually used, and the record (calculation) 

of initial states (conditions) is kept simplified, where such concepts (terms) 

as “element” and “system” are conditional. If the system is excessive (sur-

plus) on reliability, then by intentional cut off (disconnection) of the element 

under consideration the remained (left) part of the system (within the solving 

problem) is considered as one equivalent element with equivalent reliability 

indices. The reliability indices are calculated by taking into account the initial 

conditions of operation, as it is assumed that at the moment (at instant) of in-

tentional cut off (disconnection) of the given element i the equivalent element 

was in operational state. 

The main point of this method is that the probability of emergency 

shutoff (disconnection) overlapping of one element on the intentional cut off 

(disconnection) of another element (but not vice versa) was defined taking 

into account the initial (starting) conditions. Hence, the probability of emer-

gency (breakdown) of the equivalent element over the period of intentional 

cut off (disconnection) of the given element is lower (smaller) than the mean 

probability of its emergency cut off (disconnection). Thus, in accordance 

with formula (5.6) the probability of failure of the equivalent element during 

the intentional cut off (disconnection) of i element is: 

    
1 ve

t
e e te e

te pe pe

e ee e

t е еР K K
   

   
   

. (5.53) 

If we will assume that the intentional cut off (disconnection) duration is 

equal to prit , then  

  1 1
pri

ve

t

te pe pe prit еР K K K
    

 
. (5.54) 

Where Kпpi is coefficient that depends on the relation between recovery 

time of the back up (redundant) equivalent element and the period of inten-

tional cut off (disconnection) of i element (Fig. 5.3). This coefficient takes 

into account the fact of decrease of probability coincidence of the intentional 

cut off (disconnection) of one element and emergency cut off (disconnection) 

of another back up (redundant) element. 
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For steady-state probability (t  ), the coefficient that takes into ac-

count the probability of failure overlapping (superposition) of back up (re-

dundant) element on intentional cut off (disconnection) of i element, can be 

accepted as equal to: 

  /pri pri pri vet t tK   . (5.55) 

If the system consists of n elements with arbitrary switching scheme 

(setup sheet; commutation diagram), then to calculate (estimate) the reliabil-

ity indices it is necessary to consider n hypotheses; in every of these hypothe-

ses the intentional cut off (disconnection) of element is planned (supposed). 

The resulting index is defined on base of reliability indices of the whole sys-

tem at each hypothesis.  

 

 

Fig. 5.3. Relation (Dependence) of Kdt from the ratio  

of intentional cut off time and recovery of the remained part 

 The system with series connected elements (components). In order 

to reduce the number of probabilities of off state (open position) and power 

supply interruption (interruption of the mains supply) in the system with se-

ries connected elements there is a tendency to combine the intentional cut off 

(disconnection) of the elements for preventive repair and complete overhaul. 

For approximate calculations, particularly for design, the forced outage coef-

ficient of such system is defined in accordance with the following formula: 

  ps нб
1

λ λ

n

i vivi pri

i

K t t


  . (5.56) 

Where  п прλ i it  is the largest probability of intentional cut off (discon-

nection) of one of the n system elements. 

Net (total) failure rate (cut off rate) and equivalent recovery time are equal to: 

 с п.нб
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  ; (5.57) 
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. (5.58) 

Where λп.нб is the maximum cut off (outage) frequency of one element 

from n elements of the system. 

The more precise (accurate) method of intentional (deliberate) cut off 

(disconnection) of such circuits (schemes) is used in analysis technique of 

system state probability. 

 The system with parallel connected elements (components). Firstly, 

let us consider a scheme (diagram) with two back up (redundant) elements 1 

and 2. The coefficient of forced outage (mean probability of off state) of this 

system in accordance with the mentioned above principles is: 

 пс 1 2 пр1 пр1 2 пр2 пр2 1v1 v2 пр1 v2 пр2 v1λ λ λ λ λ λt t t t t tK K K   , (5.59) 

where 
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Failure rate (failure flux parameter) of the system and equivalent recov-

ery time are equal: 

    с 2 пр2 2 пр11 пр2 пр12 1 1v2 v1 ;λ λ λ λ λ λ λ λt t t t     (5.60) 
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. (5.61) 

This method is easily applied to the system with n mutual back up (re-

dundant) elements:  
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   ; (5.63) 

 пс свс / λt K . (5.64) 

Example: The consumer (C) is supplied with power from two power 

sources P1 and P2 (Fig. 5.4). Each circuit can conduct all necessary power. 

tvc, λpi, tpr i, Kps, ts, λp nb
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Fig. 5.4. Power supply scheme (circuit) 

The failure rate (failure flux parameter) and intentional (deliberate) dis-

connection (cut off) of the elements of power supply system, mean recovery 

time and intentional (deliberate) cut off (disconnection) duration are present-

ed in Table 5.1. 
 

Table 5.1  
Reliability parameters of elements 

Parameter 
Elements 

Sw11 L1 Sw12 Sw21 L2 Sw22 

0, 1/(km) 0,099 0,023 0,048 0,137 0,019 0,137 

L, km – 80 – – 30 – 

t в , hours 10 30 10 15 30 15 

pr, 1/year 0,4 0,3 0,4 0,4 0,3 0,4 

tpr, hours 60 50 60 80 20 80 
 

It is necessary to define failure rate of power supply system, average 

time of failure free operation, mean probability of failure, mean recovery 

time and also undersupply of energy per year, assuming that average annual 

consumer’s power is 30 MWP  . 

By calculation it is to assume that intentional (deliberate) cut off (dis-

connection) of series connected elements (components) of the circuits coin-

cide (superpose) on time. The reliability of power sources is not taken into 

consideration. 

The flow rate of the first and the second circuits (schemes), where each 

of these circuits consists of three series connected elements (components) in 

accordance with the formula (5.57) will be as follows: 

I оl1 1 v11 v12 prv11

II оl2 2 v21 v22 prv21

0,023 80 0,099 0,048 0,4 2,387 1 / year;λ λ λ λ λ

0,019 30 2 0,137 0,4 1,244 1 / year.λ λ λ λ λ

L

L

         

         
 

The failure rate of a system is defined as for a system consisting of two 

parallel connected elements (components) in accordance with (5.60) and tak-

ing into account that superposition (overlapping) of emergency (accident) 

tv
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of the remained (left) part of the scheme (circuit) on the deliberate (intention-

al) cut off (disconnection) of the j element is possible to find: 

    с I II I prv11 II prv21II прII prIλ λ λ λ λ λ λI
q q q q      , 

where 

 

В11 л1 В12вВ11 вл1 вВ12I В11 л1 В12

3

3

II В21 л2 В22

λ λ λ

(0,099 10 1,84 30 0,048 10) / 8760 6,47 10 ;

(0,137 15 0,57 30 0,137 15) / 8760 2,43 10 .

q q q q t t t

q q q q





      

       

          

 

Intentional (deliberate) circuit opening is taken into account by the ele-

ment parameters В11 and В2, relatively qdtI and qdtII. 

 с = 2,387  2,43  10–3 + 1,244  6,47  10–3 + (0,844  0,4  60 + 

 + 1,987  0,4  80)/8760 = 23,41  10–3 1/year. 

Mean time of failure free operation is  

 
3

сс 1/ 1/ 23,41 10 42,7 λТ     years. 

where a = 0,1 9 is estimated time of failure free operation  

 
с с (1 α) 0,105 4,48 mТ ln Т Т     years. 

Mean time of emergency recovery (fall-back recovery) of the circuits is: 
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The coefficients that take into account the factors of reducing of proba-

bility of intentional (deliberate) cut off (disconnection) of elements (compo-

nents) Sw11 and Sw21,  
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1 1 0,9075;

1 1 0,939.
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Mean probability of failed (failure) state is: 

 



рrI рrIIрrI рrII1 2с I II II I

3 3 3

3 6

λ λ

6,47 10 2,43 10 0,9075 0,4 60 2,43 10

0,939 0,4 80 6,47 10 / 8760 43,93 10 .
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Mean recovery time of a system is: 
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Mathematical expectation of undersupplied energy to consumers is  

 3 6

с с
E 30 10 8760 43,93 10 11542  KVh.E РТq q

            

If in the given example (equation) the deliberate (intentional) cut off 

(disconnection) is not taken into account, then we will get: 

 с = 13,85  10–3 1/year; qс = 15,7  10–6. 

Comparing the calculation data of reliability parameters taking into ac-

count and without taking into account the number of the intentional cut off (dis-

connection) it can be concluded that the intentional cut off has a considerable 

impact on the reliability parameters of power supply scheme (diagram). 

The engineering-and-economical effects (consequences) from under-

supply of energy and outages can be evaluated (assessed) by the obtained 

reliability indices. 

From the mentioned above follows that the power supply system opera-

tion is sufficiently revealed (reproduced) in the model of Markovian process-

es. On basis of analyses of equation solution of this model, fairly simple al-

gorithms for reliability indices calculation of typical power supply schemes 

(diagrams) from the point of view of reliability have been developed. With 

the increase of the number of elements of the system the number (quantity) of 

its possible states also increases sharply. Therefore, the application of Mar-

kovian processes for reliability evaluation (assessment) of repairable (restor-

able) system using the complete system of differential equations (set of dif-

ferential equations), their analysis and solution presents some difficulties. 

Simulation (modeling) of failure and renewal processes by means of 

Markovian processes is justified in the case when it is necessary to keep 

a record of initial states of some (separate) elements, e. g. the reliability indi-

ces are calculated over relatively short periods. To evaluate (assess) the prob-

abilities of system states over sufficiently long period (season, year) much 

simpler asymptotic techniques (methods), based on mean probability values 

of the element state (condition) are mainly used. 

5.2. Methods of reliability indices calculations (analyses)  
of power supply schemes (diagrams)  
on the mean probability values of element state (condition) 

5.2.1. Mean probability values of an element 

In reliability calculation of power supply systems, as well as in any oth-

er systems, there can be a contradiction: on the one hand the desire to have 

a precise model, that most sufficiently describes the failure and renewal pro-

cesses, on the other hand the simplicity of calculations and the provision 

of calculated model by initial data. 

λc

qc

qc
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The most widespread are the reliability calculation methods, which as-

sume that a system consists of independent (separate), in terms of reliability, 

elements. In these methods the element is considered as failed (broken down) 

when its parameters spill over (run over) the tolerable practical standard limits. 

It is assumed, that when the element fails it is disconnected (disrupt) from the 

other part of the system by switching equipment. These calculation methods do 

not take into account functional relationship between the parameters of sepa-

rate elements of power supply system, which can be viewed as one of their 

disadvantages. But taking into consideration the simplicity of calculations, the 

absence of necessary initial data and the possibility to obtain quantitative relia-

bility evaluation (assessment) for modern complicated systems, the application 

of these methods at the current stage of theory development is justified. 

The concepts (notions) “element” and “system” in reliability calculations 

are relative. The unit (object) that is considered as a system in one research can 

be viewed as an element in another research if the unit (object) of a larger scale 

is being studied. For example, if the reliability of power station is researched 

(studied), then the station is considered as a system, where generators, switch-

es, bus bars, switch gears, turbines are regarded as separate elements. If the re-

liability of one generator is studied, then its parts such as a stator, rotor, exciter 

and etc. are considered as elements, and the generator is a system. 

The system division into elements depends on the type of research (study) 

(functional, structural, circuit, operational element (component) and etc.), re-

quired accuracy of the conducted research, level of knowledge about the op-

eration, the availability of statistical data and the scale of the unit (object) in 

whole. For example, when the reliability of a complicated system is analyzed 

(assessed) concerning (relatively to) the load center (node) the set of structural 

components (elements) of connection (joining) (disconnectors, switch with the 

set of relay protection and appropriate part of a bus bar) is regarded as one el-

ement with the same (integrated) reliability index, that includes the failures of 

these apparatuses under static and operating conditions. However, by assess-

ment of chances of failure development in the system such agglomeration (en-

largement) does not allow to solve the problem. In this case it is necessary to 

consider separately the switch failure under static and operating conditions and 

take into account the relay protection failures in them. 

Convention (relativity) of the notions (concepts) “element” and “sys-

tem” enables the wide application of step-by-step reliability calculation 

method (reliability analysis). The main idea of this method is that at the next 

stage of calculation (analysis) the element of the complicated system (station, 

substation, set of transmission lines) can be regarded as a separate system, 

where the reliability indices are specified in consecutive order. Thus, it is 

possible to make reliability calculations of more complicated systems. 
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In order to estimate (to assess) reliability indices on mean probability 

values of the element states (conditions) the following statistical data (infor-

mation) is used: 

1. Failure rate , e. g. average number of failures per time unit (usually 

per year) concerning one element (for simplest failure flow (simple failure 

stream)  = ). For transmission line the failure rate usually concerns 1 km 

line 1/(km year.). 

2. Mean recovery time (replacement, breakdown maintenance) 
вt , 

hour/one renewal. 

3. Failure rate of the intentional deliberate cut off (disconnection) of 

the element n, 1/year. 

4. Mean time of one intentional (deliberate) cut off (disconnection) of 

the element (mainly for preventive repair and complete overhaul of equip-

ment) прt , hour/one disconnection (cut off, outage). 

The unreliability of an element (mean probability of failed state (failure 

condition) is defined by mean probability of its total downtime (idle) as 

a result of forced outage (cut off) due to damages and intentional (deliberate) 

cut off (disconnection) for preventive check (chapter 5.1). 

The probability of forced outage (downtime) 

 
ω

8760

vt
q  . (5.65) 

The probability of intentional (deliberate) cut off (disconnection) 

 
pr

p

λ

8760

pt
q  . (5.66) 

Mean probability of failed state (failure condition) (total) 

 
p

qq q

  . (5.67) 

The probability of operation condition (availability, availability factor) 

is defined in accordance with the following formula 

 р1 1 / 8760
p

Р qq q t
      , (5.68) 

where рt  is failure-free time of the element. 

If the time в,t  рr,t  рt  are measured in years, then  
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 (5.69) 

The mentioned reliability indices can also characterize the entire system. 

For the majority of the problem concerning technical and economic assess-

ment of power supply system reliability there is no necessity to consider the relia-
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bility indices over (on) short intervals. Therefore, it is not necessary to take into 

account the initial conditions (states). Moreover the application of queuing anal-

yses (techniques) (Markovian processes) for these purposes faces great difficul-

ties with calculation, if the system has a great number of repairable elements (re-

newable units) and arbitrary commutation (switching) scheme. Therefore, by reli-

ability indices calculation in time lags (slices) that are equal to a season, year, and 

simpler probabilistic (chance) model, based on mean values of probabilities of 

element state (condition) can be applied. By the specified time lags (slices) the 

reliability calculation algorithms of its main indices (forced downtime rate, failure 

rate and mean recovery time) that were stated in chapter 5.1 provide sufficient ac-

curacy, if the following conditions are carried out: 

1) system element (component)failures are independent; 

2) failure free time and recovery time are exponential distribution laws; 

3) failure flow (stream) of the system element (component) is ordinary; 

4) failure free time is much greater (longer) than the recovery time for 

all elements. 

It is to be noticed, that to justify the possibility of application of algo-

rithms on mean values of reliability indices two last described conditions are 

of great importance. These conditions are usually carried out practically for 

all system elements (components). Even if the distribution law of failure free 

time and recovery time significantly differ from exponential laws, the calcu-

lating error on mean values is small (insignificant). 

Let us consider some dispositions of application of method of analysis 

(computing methods) on mean probabilities of element state (condition) with 

series and parallel connection. 

5.2.2. The probabilities of failed (failure condition)  

and failure free states of a diagram (circuit)  

with series connected elements (components) 

If the design (analytic) model (scheme) on reliability consists of n series 

connected elements (components), then it will be in operating condition when 

all n elements (components) are in operating condition. Complex (compound) 

event – the operation of all elements of a diagram (circuit) is the result of 

events overlapping – the operation of each element (component). Applying 

the probability multiplication theorem of independent events, we will get the 

operation condition of this diagram (circuit): 

 с 1 2 3

1

...
n

n i

i

Р Р Р Р Р P


  . (5.70) 

The probability of failed state (failure condition) is defined as the prob-

ability of the event opposite to operation condition. 



 

104 

 qc = 1 – Рс. (5.71) 

In practical estimations (calculations) another method to define the prob-

ability of failed state (failure condition) of the elements is usually applied. The 

probability of diagram (circuit) failure in this method is defined as the proba-

bility of one element failure. The probability of this event is defined by apply-

ing the formula for the probabilities of the sum of compatible (joint) events: 

  
1

с 1 2 3

1 , , ,

... ...1
n

n

i i j i j k n

i i j i j k

q q q q q q q q q q q




       . (5.72) 

The relations, where qi << 1 is typical for the elements (components) of 

electrical power systems. Therefore, by definition of probability of failed 

state (failure condition) of a system consisting of n series connected elements 

(components) the second, the third and etc. summands of the right side of 

equation of the last equation can be neglected as being the number of higher 

infinitesimal order (order of smallness) (formula (5.30)). Therefore, in practi-

cal calculation the following formula is used: 
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 . (5.73) 

Calculating error does not exceed the value: 
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. (5.74) 

If the circuit (diagram) with series connected elements on reliability corre-

sponds with electrical schematic diagram of elements connection, then if taking 

into consideration that in actual operating conditions the preventive repair of the 

elements of series circuit is carried out simultaneously, then the probability of 

circuit downtime (idle time) can be defined in accordance with formula (5.56): 

 
1

n

cp i p c p

i

q q q q q


    , (5.75) 

where qp is the greatest probability from the probabilities of intentional (de-

liberate) circuit opening consisting of n elements. 

5.2.3. The probabilities of failed (failure condition)  

and failure free states of a diagram (circuit)  

with parallel connected elements (components) 

Let us consider a diagram (circuit) that consists of n parallel connected 

elements on the assumption of the independence of failure of each separate 

element and network capacity of each element sufficient to provide required 

power. This system will be in operating condition provided that only one el-

ement operates. The probability of operating condition (state) of the diagram 
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(circuit) is defined by means of formula for probability sum of compatible 

(joint) independent events – each element operation: 

  
1

1 2

1 , , ,

... ...1
n

n
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i i j i j k
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        . (5.76) 

The definition of probability of system operation applying this formula is very 

time-consuming as it is necessary to calculate and add (sum up) (2n – 1) summands. 

All the summands should be taken into account as their values are close to one 

(unity). Therefore, the probability of reliable system operation is much easier to de-

fine on the probability of failed state (failure condition) of the elements. The system 

will be in failure condition under the assumption that all elements fail. 

The probability of failure condition is defined by means of formula for 

product of independent events – failure of each system element (component): 
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  . (5.77) 

The probability of operating condition of such system is defined as 

probability of opposite event (systems failure (breakdown)) 
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    . (5.78) 

Let us consider the methodology of definition of the probability of fail-

ure condition of the system consisting of n parallels connected elements tak-

ing into account intentional (deliberate) cut off (disconnection) of separate 

elements. Moreover, not more than one element can be disconnected (cut off) 

simultaneously and intentionally and during the emergency recovery (fall-

back recovery) the intentional cut off (disconnection) is not carried out. To 

define the probability of failure condition of this system it is reasonable to 

consider besides the probability of a complex (compound) event – the failure 

of all elements, also the probability of n hypotheses, where the systems fail-

ure is considered by intentional cut off (disconnection) of one element. As 

the hypotheses are independent due to independence of the elements, then the 

probability of systems failure condition (state) is defined as the sum of prob-

abilities of failure conditions at each hypothesis (formula (5.62)). 
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 (5.79) 

By the definition of probability of failure conditions at every hypoth-

esis the reducing (decreasing) coefficient Kpj < 1 is introduced, that takes 

Pc
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qcp
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into account the reduction (decrease) of probability of damage (accident) su-

perposition (overlapping) of the remained (left) part of the diagram (circuit) 

on intentional (deliberate) cut off (disconnection) of j element. The period 

of intentional (deliberate) cut off (disconnection) electric power systems ele-

ments is relatively not long, therefore, by the definition of the probability 

of emergency failure of the remained (left) part of the diagram (circuit) over 

this period it is necessary to take into consideration the initial states (condi-

tions) of the element and simulate (design) the failure and renewal processes 

by means of Markovian processes. The remained (left) part of the diagram 

(circuit) is reasonable to present as one equivalent element with the proper-

ties (features) of the simple failure and renewal stream (simplest flow). Thus, 

the record of intentional (deliberate) cut off (disconnection) and the definition 

of reducing (decreasing) coefficient are necessary to keep according to the 

regulations stated in article (paragraph) 5.1.4. 

When analyzing the algorithms of reliability indices calculation of arbi-

trary systems, it should be mentioned, that one of the most complicated and 

labor intensive and time-consuming task (problem) is repeated (multiple) def-

inition of mean probability of failure of the remained (left) parts of the dia-

grams (circuits) after excluding each element alternately (in turn). In the gen-

eral case, the complex diagrams (circuits) are practically not simplified after 

one element exclusion. By the calculation of forced outage coefficient con-

cerning different load centers (nodes) the calculations are also quite labori-

ous. Labor intensiveness and the number of calculations sharply increase by 

taking into consideration the intentional (deliberate) cutoff (disconnection) of 

the elements in complex (compound) systems. Therefore, one of the main 

tasks of the reliability analysis of electric power systems concerning the load 

centers (nodes) (or set of nodes) is the development of the methods intended 

to define the mean probabilities of their failure and failure free operation. 

With the complication of interconnection (interrelation) between the el-

ements it is impossible to bring the analytical model (design diagram) on re-

liability without applying some special techniques to the diagram (circuit) 

with parallel-series and series-parallel connected elements. For the diagram 

(circuit) of “bridge” type or diagram with a great number of transverse con-

nections (cross-linkages) the conversion (transformation) rules of series par-

allel or parallel series circuits (diagrams) are unsuitable (inapplicable).  

We will consider three basic methods from the analytic probabilistic 

methods of calculation of complex (compound) schemes (circuits) on the 

mean probability of the element (component) state (condition): 

1) the method of analysis of the system state probability with the anal-

ysis of mode parameters in each state (the parameters by partial systems fail-

ures are determined by means of this method); 
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2) the method, that uses the formula of total probability and is based on 

it factorial expansion technique (method); 

3) the method, that uses structural schematic representation, i.e. re-

placement of complex (compound) schemes (circuit) by equivalent ones with 

series-parallel or parallel –series connection of elements concerning the node 

points (centers). 

5.2.4. Method of analysis of the system states probabilities 

By means of this method the relation between modes of some separate ele-

ments and system and the system state probability can be taken into account, i.e. 

to estimate (evaluate) in terms of quantity the influence of capacity (throughput 

performance) limits of the elements on the system reliability indices (on heating 

current, voltage losses and etc.), particularly, on undersupply of energy. 
 

To define the reliability indices of different system states (conditions) 

the calculating (estimated) elements are assigned taking into consideration 

the operation logic of system operation. The actual system elements (compo-

nents) are combined (consolidated) in calculation (estimated) groups, the 

failure of these groups is not localized in them, but leads to cut off (discon-

nection) of related elements. This is as a rule a group of elements that are not 

separated in the scheme (circuit) by automatic switchboard (switching unit). 

In terms of reliability such elements are called series connected one. In ac-

cordance with the reliability indices of actual elements the reliability indices 

of calculation (estimated) elements are defined. 

After that the modes of the system under different states (conditions) are 

analyzed – with one or two emergency disconnected (cut off) elements – and 

with superposition (overlapping) of the emergency condition of another ele-

ment on each intentionally disconnected (curt off) element. The states (condi-

tions) with three or more disconnected (cut off) elements are not considered 

as hardly probable. 

The flow rate and intentional cut of (disconnection) c,i,j and its proba-

bility Qi,j, are defined for each system state (condition). 

Then the modes of element and system operation are estimated (calcu-

lated) and compared with admissible (allowable). After that the switched off 

capacity in nodes of the circuit (diagram) is evaluated (assessed) to ensure the 

mode of operation and minimum total damage from power limitations and 

undersupply of energy to consumers. Undersupplied energy is defined as the 

sum of undersupply at all system states (conditions). 

At present, the method of analysis of system state probabilities is basic 

(common) for large power systems. It allows to show (to reflect) the features 

of different system states and modes in reliability evaluation (assessment). 

However, the calculations made by this method are very time-consuming 
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and laborious, as almost for every state (condition) (and the quantity of states 

can be large) there is a necessity to estimate (calculate) flow distribution. 

More detailed information about the methodology (technique) and body of 

mathematics (mathematical apparatus) of this method you can find in. 

By power supply system reliability evaluation (assessment) it is very of-

ten not necessary to take into account the throughput performance of the ele-

ments, but it is very important to evaluate (assess) structural reliability of the 

scheme (circuit) concerning each load node (center). In this case other types 

of methods are used, that are based on structural analysis of complex (com-

pound) schemes (circuits) and total probability (overall probability) formula. 

5.2.5. Methods with application  

of total probability (overall probability) formula 

These methods allow by means of total probability formula to present 

complex (compound) scheme (circuit) in the form of equivalent series paral-

lel one. Let us consider the main idea of this method by example of certain 

scheme (circuit) without taken into consideration intentional (deliberate) cut 

off (disconnection) of the elements. 

Total (overall) probability formula intended to define reliable scheme (circuit) 

operation is interpreted in the following way. By this hypothesis the probability of 

any event (in the given case the system operation concerning the node) is calculated 

as the sum of product probabilities of incompatible hypotheses (as a hypothesis ei-

ther the operation or failure of any element is considered) and probability of the 

event (event rate) (e. g. the operation of the remained part of the circuit). 

Applying the total probability formula to the probability calculation 

of failure free operation of any scheme (circuit), the so called factorial expan-

sion theorem can be formulated (defined). Circuit reliability with excess (re-

dundancy) is equal to the product probability of failure free operation of i 

element of the circuit (multiplied) by (times) the probability of failure free 

operation of the remained (left) circuit (the termination points of i element 

are closed in a short circuit (are short-circuited) plus the product probabil-

ity of the same i element failure (multiplied) by the probability of failure 

free operation of the remained (left) circuit (termination points of i element 

are open), i.e. for the distinguished element two hypotheses are considered. 

Let us examine the expansion theorem, and hence, total probability for-

mula intended to define reliability indices of complex (compound) scheme 

(circuits) by example of bridge circuit (connection) (Fig. 5.5). There can be 

considered two incompatible hypotheses concerning any circuit element: the 

operation with probability P and its failure with probability q. 

Element 5 is chosen as such element. Then, applying the expansion 

theorem, it is not difficult to reduce the bridge circuit (Fig. 5.5) to the sum 
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of two circuits: parallel-series and series-parallel (Fig. 5.6). The methods 

of calculation (analysis) of these circuits are well developed. The probabil-

ity of failure free operation of this circuit (scheme) concerning the load 

node (center) IV is: 

      5 1 2 3 4 5 1 3 1 3 2 4 2 4
1 1 1с q q q q q q q q q q q q qP P                . 

 

 

Fig. 5.5. Circuit of “bridge” type 

There is probability of failure free operation of the circuit by the first hypothe-

sis – failure free operation of the element 5 in this expression   1 2 3 4
1 1q q q q  ; 

  1 3 1 3 2 4 2 4
1 q q q q q q q q      there is probability of failure free operation 

by the second hypothesis – failure of the element 5; Р5 is the probability of 

the first hypothesis; q5 is the probability of the second hypothesis.  

 

 

Fig. 5.6. Diagram, that illustrates the application of expansion theorem  

for the circuit of “bridge”-type 

The total probability formula and factorial expansion theorem based 

on this formula play a significant role by the reliability analysis of com-

plex (compound) diagram (circuit), as they enable to reduce any complex 

(compound) circuit to aggregate of elementary circuits (schemes). Moreo-

ver, this theorem is necessary to apply many times in a complex (com-

pound) circuit (diagram). 

The method of reliability evaluation (assessment), based on total proba-

bility formula is sufficiently convenient, simple and visual in the calculations 
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even without using a computer of relatively small by volume schemes (cir-

cuits) with small number of nodes and paths, to which the in-plant power sup-

ply diagram refers. The application of this method for this irregular shape 

(complicated configuration) by means of a computer becomes complicated 

due to element choice, concerning which the expansion is carried out. 

For pictorial (visual) presentation of repeated application expansion the-

orem the circuit (diagram) of “double bridge” type will be considered 

(Fig. 5.7). Let us define the probability of failure free operation of this 

scheme (circuit) concerning node IV without taken into consideration the in-

tentional (deliberate) cut off (disconnection) of elements, if the mean proba-

bilities of failed states (failure conditions) of the elements q1, q2, q3, …, q8 are 

known. The failures of node points (centers) are not taken into account. It is 

assumed that all circuit elements are independent in the terms of the probabil-

ity of failures. Elements bandwidth on power is not limited. 

 

 

Fig. 5.7. Circuit of “double bridge) type 

Applying sequentially the expansion theorem, firstly concerning the el-

ement 5 we will define the probability of failure free operation of the re-

mained (left) part of the circuit, i.e. that includes the elements 1, 2, 3, 4, 6, 7, 

8. To assess (estimate) the failure free operation of this remained (left) sub-

circuit (part of the circuit) the expansion theorem concerning the element 8 is 

applied. The circuit (diagram) that explains the consequence of these actions 

is represented in Fig. 5.8. 

The probability of reliable operation of this system can be presented as 

follows: 
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Fig. 5.8. Diagram, that illustrates double application of expansion theorem 

5.2.6. The methods of structural analysis of complex (compound) 

schemes (circuits) and their application  

for reliability evaluation (assessment) 

The application of the methods of structural analysis for power supply 

system diagram (circuit) study allows to study them in general. By reliability 

indices evaluation (assessment) by means of structural diagrams (circuits) not 

all possible states of the diagram (circuit) are analyzed, but only the failure 

free operation states of the minimum set of the elements, that ensure the 

normal operation of the diagram (power transmission) from the power 

source till the load node (center) (minimum path) or failure of this mini-

mum set of the elements, which failure in any of these sets leads to systems 

failure concerning the node (minimal section) under consideration. 

From the definition of minimal paths and sections it follows that unlim-

ited bandwidth of circuit elements concerning each given load node (center) 

is supposed. For example, for the circuit, illustrated in Fig. 5.5 without taken 

into account the reliability of node points (centers) the minimal paths con-

cerning the node IV are {1,3}, {2,4}, {1,5,4},{2,5,3} (Fig. 5.9), and maximal 

sections – sets of elements are {1,2}, {3,4}, {1,5,4}, {2,5,3} (Fig. 5.10). 

By means of minimal paths and sections, obtained as a result of structural 

analysis the probabilities of load node (center) blackout (zeroing) can be defined. 

Let us consider the fundamentals and definitions of graph theory, used in struc-

tural analysis, which purpose is to define minimal paths and maximal sections. 
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Fig. 5.9. Minimal paths for the circuit of “bridge” type 

 

Fig. 5.10. Minimal sections for the circuit of “bridge” type 

The graph is any set A and B, where each element from the set A corre-

sponds to two elements from the set B. A and B are called respectively ribs 

and nodes (points) of graph. The nodes (points) that correspond to a rib are 

called the ends of a rib. The rib is called directed one, if one its end is con-

sidered as the tail of edge (rib) and the other one as the end. The directed rib 

(edge) is illustrated in the circuit (diagram) as a segment with an arrow. The 

ribs (edge), where separate ribs (edges) are directed are called partially-

directed. The graphs, where all ribs (edges) are directed are called directed. 

The graphs without rib (edge) direction are called undirected edges (ribs). 

The research of any diagram (circuit) is equivalent of the research of 

graph structure. 

The graph is called planar (flat) graph if it can be illustrated (figured) 

on the plane without intersection of edges (ribs) in the points that are not the 

graph nodes (points), otherwise the graph is called nonplanar graph. For 

power supply system the planar property as a rule, is carried out, as the line 

transition one over another one is a relatively rare phenomenon.  

The relation analysis by reliability calculations consists first of all in find-

ing and assessment (estimation) the paths between its nodes, e. g. between pow-

er source and load nodes (centers). Graph path is any edge (rib) sequence, where 

the end of any previous edge (rib) coincides with the tail of the next edge. One 

edge path is called direct (immediate), multi-edged paths is called transient. 
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There are many ways (methods) to define the minimal graph paths. 

These methods are divided into analytical and logical-digital methods and are 

based on analytical presentation of the diagram (circuit) in the form of matrix 

of direct (immediate) path. The minimal section can be also defined on the 

graph paths. To plot a structural diagram (network graph) it is necessary in 

advance to convert electrical network system into design (analytic) reliability 

diagram, i.e. into network operation diagram (circuit). Series connected ele-

ments between two nodes are reasonable to replace by one equivalent, which 

parameters are defined in accordance with known formulae. The same tech-

nique is used for elements that are connected in-parallel between two nodes. 

After that the graph edges are assigned the elements of design diagram, 

and the graph nodes are assigned the points of physical connections (bus bars, 

three winding transformers, the points of taps connection to mains (main feeds). 

The reliability of points of physical connection of the elements and switchgear 

(switching equipment) can be taken into account by introduction into the design 

diagram the elements accordingly to the logic of their operation into electrical 

system. Besides the mentioned graph nodes there will be one more singular ver-

tex (node) in the network – vertex (top) of the sources. Power source, if the 

probability of its failure free operation distinguishes from 1, is introduced by de-

signed (calculating) reliability element. All free ends of the elements edges of 

such power sources unite (join) in one node (vertex) – “source”. 

The graph of a network subject to power flow (flux) direction in the el-

ements is usually partially directional (oriented). The direction of network 

graph concerning different load nodes (centers) can be different. Therefore, 

to evaluate (assess) system reliability concerning different load nodes (cen-

ters), the orientation of edges of the initial (reference) graph should be 

checked every time. The construction and scheduling of reference diagram in 

the form of graph enables to simplify the research of system reliability by 

means of algebraic calculation procedure (computational technique). 

The matrix of direct (immediate) path that is constructed in the follow-

ing way is used as analytic image of the graph: 

1. The node (vertex) of the reference graph is numbered. It is recom-

mended to begin the numeration (numbering) with the node (top) of sources. 

The degree (order) of matrix is equal to the number of nodes (vertices) in the 

reference graph. 

2. Matrix rows and columns are numbered by graph nodes (vertices). 

3. The element belonging to i row and j column of matrix A is assigned 

certain number (unity or probability point (value) of reliable operation of the 

element), if there is a path from the node (vertex) i to the node (vertex) j. In 

the case when there is no path zero is set. If the specified element the value 

(number) 1 is given, then such matrix is called adjacency (connectivity) ma-
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trix. When reliability calculations of a very complicated configuration are 

made it is reasonable to divide the diagram (circuit) into some parts to reduce 

the degree (order) of matrix. 

Applying the matrix of direct (immediate) paths A as an analytic image 

of analytical (design) model on reliability the minimal paths and sections in 

a complex (compound) diagram can be defined. There are some methods to 

define (estimate) minimal paths and relatively minimal sections. We will fo-

cus on how by means of minimal paths and sections the reliability indices of 

the reference diagram (circuit) can be calculated (estimated). 

After the definition (estimation) of minimal paths and sections the refer-

ence complex design (calculating) model (diagram) is replaced by the equiva-

lent diagram concerning the node: parallel series one when it concerns sec-

tion and series parallel one when it concerns paths  

This replacement enables to use known calculation techniques, particu-

larly to apply formulae for the sum of probabilities of compatible events- the 

failure free operation or failure of section. It is necessary to take into account 

that the paths and sections in the general case are dependent, as they can be 

made up of the same elements. This relation is necessary to take into consid-

eration by the definition (estimation) of the probability of reliable operation 

of some paths or the probability of failure of some sections in the formula for 

the sum of probability of compatible events on the assumption that each path 

can pass the required power in the load node (center). 

Applying the formula for the sum of probabilities of compatible events 

(the path operation) to the equivalent series-parallel diagram (circuit) we will 

obtain for the probability of failure free operation of the diagram (circuit) 

concerning some node n the following result: 
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 (5.80) 

where k is the number of paths; Пi is the event of operation of i-path; P(Пi) 

is the probability of failure free operation of i path: 
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 , (5.81) 

Pi,j is the probability of failure free operation of j-element in the i-path(en 

route); mi is the number of elements in the i path (en route); 

        1 2 1 2 1 1 2 1... / ... / ...П П П П П П П П П Пk k kР Р Р P   (5.82) 

is the probability of failure free operation of k paths (routs); Р(П2/П1) is the 

conditional chance (probability) of failure free operation of the second path 

PcП - это произведения
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(route) provided that the first path (route) will operate failure free. This prob-

ability can be obtained if in the sequence of the second path (route) the points 

of the elements connection that have been already included in the composi-

tion of the first path (route) are bridged (shorted), e. g. the probability of fail-

ure free operation by the calculation of conditional chance (probability) is ac-

cepted as being equal to one (unity). For example, for the diagram (circuit) 

illustrated in Fig. 5.9, Р(П1) = Р1 Р3; Р(П3/П1) = Р4 Р5.  

By the definition (estimation) of any next conditional chance (proba-

bility) it is necessary to take into consideration the probability of failure 

free operation only of those elements that were not included into the previ-

ous paths (routes). The probability of failure free operation of the elements 

that were included in the in the previous paths (routes) is equal to 1. For ex-

ample, the probability that the paths (routes) П1 and П3 operate without faults 

is equal to Р (П1 П3) = Р (П1) Р(П3/П1) = Р1 Р3 Р4 Р5. Applying this concept to 

k path (route), it can be shown that: 

  1 2 3
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  . (5.83) 

Where r is the number of elements entering the k path, e. g. this proba-

bility is equal to the product probability of failure free operation of all ele-

ments entering this path, where every element is taken into account in the 

product only once, although it can take part in several paths (routes). For the 

diagram presented in Fig. 5.9: 

 Р (П1 П2 П3 П4) = Р1 Р2 Р3 Р4 Р5 

by the definition (estimation) of the probability of circuit (diagram) malfunc-

tion concerning the load node (center), when it is replaced by equivalent par-

allel-series one (minimal sections), the formula of the sum of probabilities of 

compatible events – the section malfunction (failure) is also used (applied). 

The probability of circuit (diagram) malfunction concerning some load node 

(center) is: 
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 (5.84) 

where Сi is the event of failure (malfunction) of i-section; k is the number of 

sections; Q(Ci) is the probability of malfunction (failure) of i-section: 
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 , (5.85) 

where qi,j is the probability of failure (malfunction) of j-element of i-section; 

mi is the number of the elements in i-section; 

П - это произведения

П - это произведения
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        1 2 1 2 1 1 2 1... / ... / ...k k kQ Q Q QC C C C C C C C C C   (5.86) 

the probability of failure of k sections;  2 1/Q C C  is the conditional probabil-

ity of the second section failure (malfunction) by the failure of the first section. 

This probability can be obtained, if in the consequence of the second 

section the points of elements connection (switching), that were included (en-

tered) in the composition of the first section are opened (are disconnected), 

e. g. the probability of their failure by the calculation of the conditional prob-

ability (chance) is accepted as equal to one (unity), for example for the dia-

gram (circuit) illustrated in Fig. 5.10: 

 Q(C1) = q1 q2; Q(C3/C1) = q4 q5. 

By the definition (estimation) of every following (next) probability the 

probability of failure of only the elements that did not enter (were not includ-

ed into) the previous section should be considered. The probability of ele-

ments failure, included into the previous sections is equal to 1. For example 

the probability of failure (malfunction) of the sections С1 and С3 is equal to: 

 Q(C3 C1) = q1 q2 q4 q5 

and correspondingly the probability of failure (malfunction) of all k sections is: 
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 , (5.87) 

where r is the number of elements, included (entered) into k sections, e. g. 

this probability is equal to the product of probabilities of failure of all ele-

ments entering (included) into these sections, where every element is taken 

into account in the product only once. For the circuit (diagram) in Fig. 5.10: 

 Q(C1 C2 C3 C4) = q1 q2 q3 q4 q5. 

This method provides identity of the results, obtained by calculation (es-

timation) of complex (compound) reference (initial) diagrams (circuits) and 

equivalent structural diagrams (circuits). The neglect of this rule, particularly, 

in the definition (estimation) of failure free operation on the paths (en routes) 

leads to intolerably low (poor) accuracy (error).  

Let us consider the features of these methods of determining (estimation) 

of reliability indices on the paths (routes) and sections. The number of sum-

mands in the formula of definition (estimation) of failure free operation with 

the application of paths (routes) is equal to (2k – 1) and not a single summand 

should be neglected (formula 5.80), as all summands are the product of actors 

(factors, multipliers), close to one (unity). By small (minor) complication of 

the diagram (circuit), in particular if the diagram (circuit) is multiply (multivar-

iable) connected with a great number of cross-links, the number of paths 

(routes) increases and the calculations are getting very laborious. 
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The method, that applies (utilizes) the representation of reference (basic) 

diagram (circuit) in the form of minimal sections concerning the load nodes 

(centers) does not have this disadvantage, as in the majority of cases it is pos-

sible to take into account the summands, that consists of not more than three 

actors (multipliers). Approximately it can be assumed, that the probability of 

section failure (malfunction) is equal to the sum of the probabilities of their 

failure (malfunction):  
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   (5.88) 

and it is necessary to introduce into the calculation (estimation) the sections 

with the number of elements not more than two or three depending on special 

object and the required computational accuracy. 

The final (ultimate) result – the calculation of the probability of systems 

failure concerning the specified load node (center) or the probability of failure 

free operation by the representation of the diagram (circuit) in the form of min-

imal sections – can be achieved faster and simpler, than the method of minimal 

paths (routes), but the process of section definition (estimation) is more labori-

ous. At the current stage of development and application of these methods in 

electric power engineering it is not reasonable to oppose one method to anoth-

er one, as for the diagrams (circuits) with extended (long distance) structure 

and low number of cross links the methods of paths will have some ad-

vantages, and for the diagrams (circuits) with concentrated structure and large 

number of cross links the method of sections (cutest method) is preferable. 

Design methods (calculation methods) of reliability indices of complex 

(compound) diagrams (circuits) with minimum paths and sections enables to 

take into account the intentional (deliberate) elements disconnection (cut off) 

sufficiently easy, as by the representation of reference (basic) diagram in the 

form of minimum paths the probability of the failure of Qс.п diagram (circuit) 

concerning the n load node (center) is composed (formed) of the sum of the 

probabilities of two hypotheses: the failure (malfunction) of all paths 
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  on intentional (deliberate) cut off (disconnection) of i el-

ement. Let us assume, that deliberate (intentional) cut off (disconnection) el-

ements are not supposed (do not coincide). 
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where 
1 1
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  – the probability of operation of all paths of the diagram (circuit) is 

defined (estimated) by the formula of the sum of the probabilities of compatible 

events (5.80); ,p i
q  is the probability of intentional (deliberate) disconnection 

(cut off) of i-element of the diagram (circuit); ri is the number of paths (routes) 

where the i element of the diagram (circuit) is included; (k – ri) is the number of 

paths (routes), remained (left) after i element of the diagram (circuit) disconnec-

tion; , 1p iK   – is the coefficient, that takes into account the decrease of failures 

probability due to the probability of superposition (overlapping) of the failure of 

the left (remained) of subcircuit (part of the diagram) on the intentional (deliber-

ate) disconnection (cut off) of I element and not vice versa; m – is the number of 

the elements in a complex (compound) scheme (circuit). 

If the diagram is represented in the form of minimum sections, then the 

failure (fault) probability concerning the n node (center) is:  
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 (5.92) 

where (k – ri) is the number of the sections, remained (left) after the i element 

exclusion (disconnection). The minimum sections in the remained (left) sub-

circuit (part of the diagram) after the i element exclusion is made up of the 

sections of reference (basic) complete diagram (circuit) after the exclusion of 

formed non-minimal sections. 

Similar methods can be used (applied) for reliability calculation of those 

complex (compound) diagrams (circuits) where the combination (superposi-

tion) of intentional (deliberate) disconnection of different elements is possi-

ble. In this case the hypotheses of circuit (diagram) malfunction without tak-

ing into account the deliberate disconnection of elements are considered. 

Example. It is necessary to define (estimate) the probability of systems 

failure for the load node (center) II (Fig. 5.11) taking into account the inten-

tional (deliberate) disconnection of elements, if the following parameters are 

given: the probabilities of each element malfunction qp1, qp2, qp3, qp4, qp5, the 

П - это произведение

Qcp
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probabilities of their intentional (deliberate) disconnection qp1, qp2, qp3, qp4, 

qп5, as well as the coefficients, that take into account the decrease of failure 

probability due to the failure superposition (overlapping) of the left (re-

mained) subcircuit (part of the diagram) on the intentional (deliberate) dis-

connection of the element and not vice versa Kp1, Kp2, Kp3, Kp4, Kp5. The in-

tentional disconnection of the elements is not supposed. 

Let us use the diagram (circuit) representation in the form of minimum 

sections. The failures of node points are not taken into account. 

Solution. The minimum sections of the reference (basic) circuit (diagram) 

will be C1  {1, 2}; C2  {3, 4}; C3  {1, 5, 4}; C4  {2, 5, 3} (see. Fig. 5.11, b). 

The minimum sections after the disconnection (cut off) of the first (1) element 

are obtained from minimum sections of reference (basic) circuit (diagram) ex-

cluding the first element and then by the exclusion the no minimum sections 

of the obtained ones (Fig. 5.11, c). As a result the following sections are ob-

tained: C11  {2}; C12  {3, 4}; C13  {5, 4}. The sections by the disconnection 

of the second, the third, the fourth and the fifth element are defined (estimated) 

in the same way: 1 – the second element) C21  {1}; C22  {3, 4}; C23  {5, 3}; 3 

– the third element) C31  {1, 2}; C32  {4}; C33  {2, 5}; 4 – the fourth element) 

C41  {1, 2}; C42  {3}; C43  {1, 5}; 5 – the fifth element) C51  {1, 2}; 

C52  {3, 4}; C53  {1, 4}; C54  {2, 3} (Fig. 5.11, d, e, f, g). Neglecting the 

probability of failure of more than three elements in the circuit (diagram) and 

applying the mentioned above algorithm for determination (estimation) of dia-

gram (circuit) failure probability concerning the load node (center) taking into 

account the intentional (deliberate) elements disconnection (cut off) we will get 

the circuit (diagram) failure probability concerning the node II. 
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Fig. 5.11. Circuit (diagram) transformation based 

on the minimum section method 
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5.2.7. Drawing up of analytical diagrams 

and the features of reliability calculations  

of complex (compound) electric circuit diagrams  

Modern power supply systems refer to the complex compound systems. 

The complicity of the system is determined not only by the number of its 

components, but by the complicity of functional and logical connections (re-

lations) between separate parts and components of the system. Moreover, un-

like some other engineering systems these systems are systems with a great 

deal of entrances (inputs) and outlets (outputs) (e. g. they have a lot of power 

sources and consumers). These factors determine the high requirements to 

analytic diagram drawing up on reliability intended for one or another sys-

tem. The full accounting of all factors that have an impact on system reliabil-

ity is obviously impossible due to their extreme variety. Therefore, the statis-

tical approach to basic reliability indices calculation (estimation) of power 

system components has recently gained in popularity. 

Before the system reliability calculation the logical diagram is made up. 

The logical diagram can differ from schematic circuit (diagram). For exam-

ple, the parallel connection (shunt connection) of generators at power stations 

corresponds to the series connection in reliability design diagram (analytic 

model), if the question about generation reliability calculation (assessment) 

of the whole power plant output (capacity) arises. 

Except the components of series electric circuit (lines, switch, trans-

former and etc.) the adjacent (related) switches are also introduced into series 

circuits of design diagram on reliability. The failure of the adjacent (related) 

switches can cause the failures of the given circuit (diagram) (for example, 

the switches of all connections, sectionalizing circuit breaker (section switch) 

of the bus bar to which the analyzed (considered) circuit (diagram) is con-

nected. If the main feed with taps, which is not equipped with an automatic 

circuit breaker is analyzed, then the reliability indices of the taps from this 

line are also included into series circuit, but the probability of these indices 

failure is defined (estimated) as the product of failure rate of the taps times 

average switching period (it is assumed that the taps are equipped with dis-

connectors). This concept is fair for those taps, which are electrically 

switched in parallel concerning the analyzed load node (center). If the relia-

bility indices of the load node (center) that are connected to the tap of the line 

are assessed (calculated), then this tap is introduced into calculation by mean 

recovery time. 

The analytic diagram on reliability concerning the load nodes (centers) 

should reflect the operation logic of the reference (basic) of electric circuit. The 

variety of the methods intended for making up the analytic diagrams is justified 
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by the variety of the used power supply diagrams and it is impossible to give 

common recommendations for solution of all possible problems. It is necessary 

to emphasize that power supply circuits (diagrams), where the automatic shut-

down (disconnection) of some separate parts is combined with manual one by 

the redundancy (back up) commissioning (activation) (for example, in the loop 

design (circuit) in networks till 1000 Volts) claim some special attention. In 

these cases the mean failure probabilities of the design components are defined 

(estimated) not only by recovery time of the line section, but also mean switch-

ing time (period) to power backup (standby power supply).  

Usually the aim of the calculations is to determine (estimate) the basic 

reliability indices concerning the load nodes (centers) or certain consumers. 

Therefore, the system is divided into some separate elements, which reliabil-

ity behavior (characteristics) is relatively easy to assess (specify). 

The next stage in calculation is to define the concept (notion) “failure” 

for the whole system and its separate elements (components). The failure 

of the system with limited bandwidth (capacity; output) can be considered, 

for example, as one or another consumers’ power value limit. For some con-

sumers, for example, the fact of no voltage at bus bars even for some split 

second (if the fallback (standby) circuit is switched on by means of reserve 

switching device) can be considered as a system failure. 

Method of reliability analysis (calculation) is chosen depending on the 

certain task (aim) and the time period within which the reliability characteris-

tics (performance) are determined (assessed). The calculations are made on 

mean (average) indices or with taking into consideration the reference (ini-

tial) elements (components) conditions over short periods (in the last case the 

model of random (stochastic) processes is used). 

Drawing up of analytic diagram on reliability for complex (compound) 

power supply systems is very time-consuming and laborious task and can be 

compared by its labor intensiveness with reliability indices calculations. 

If the task is to estimate (evaluate) the reliability indices concerning the load 

nodes (centers), then this process can be formalized on computers, applying 

the method of structural analysis, notably, the method of power transmission 

ways (paths) creation. 

Let us consider more detailed the logic of diagram (circuit) operation. 

Electric diagram (circuit) consists of nodes and branches (taps). As a rule, 

a node is a three winding transformer, bus bars or section of bus bars. A tap 

(branch) can consist of several elements (components): a line, a transformer, 

a switch and etc. 

The failure of element, which is included into the branch (tap) can dif-

ferently influence the operability of the whole branch (tap) and the adjacent 

nodes. The branch (tap) that contains this failed element (component) losses 
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its ability to transmit power over (during) the recovery time of this element вt . 

The nodes that adjoin (border with) this branch (tap) lose their operability 

over the following periods: a) over the automatic disconnection (shutdown) 

time tа of the failed component (element) from the node, if there is a switch 

device (switching unit) that is influenced by relay protection between the 

node and this component (element) (the probability of failure of the switch 

device (switching unit) is not taken into consideration); b) over the period of 

manual commutation (switching) opt  that is required to cut off (disconnect) 

the failed component (element) from the node, if there is a disconnector or 

switch device (switching unit) between the failed component and the node 

that is not equipped by relay protection; c) over recovery time вt  of the failed 

component (element) if it is directly connected with the node. 

It is not difficult to understand, that in the first case the node (center) 

will remain in operation (will function) and in the second and the third cases 

it will be in failed condition (state) over the prorated time. Therefore, the el-

ements (components) that adjoin (border with) the node of branches (taps) 

that comply with conditions “b” and “c” should be introduced into analytic 

diagram on reliability sequentially with this node. These components should 

be introduced into all paths passing through this node. 

The next procedure of calculations can be offered. All the paths (ways) 

for a certain (specified) consumer are formed on electric circuit (diagram) of 

power supply system. The paths (ways) are necessary to complete with other 

elements (components), that lead to the disconnection (cut off) of the node 

over the period vt  or opt . The minimum paths (ways) are obtained, that are 

constructed by analytic diagram on reliability. It should be noted that the 

same element (component) can be included into analytic diagram with the 

probabilities λ vt  и λ opt , where  is failure rate (failure flux parameter). 

By the evaluation (assessment) of reliability indices in the complex 

(compound) circuits (diagrams, network) two main approaches with applica-

tion of different methods can be singled out. 

1. The estimation (definition) of probability of different conditions of 

a complex (compound) system and the probability of power undersupply to 

consumers or complete (total) power supply loss (power supply disruption) of 

some separate consumers. The solution of this problem is concerned with the 

operating conditions (modes) analysis of some separate elements (compo-

nents) in a complex (compound) system, with the estimation of probabilistic 

characteristic of the load in elements (components) and determination of the 

most loaded elements or groups in the circuit (diagram). The estimation of 

the circuit (diagram) state probability and reliability indices by different 

combinations of switched on and off elements (components) is carried out by 

tv

tv

tv

top
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the method of analysis of basic states (conditions) probability. The state 

(condition) with the number of failed elements (components) more than three 

can be neglected. It is necessary to take into account the superposition (over-

lapping) of emergency outages on intentional (deliberate) disconnection 

(opening) of some separate circuits. 

This method is considered as the basic one by the reliability indices cal-

culation (estimation), consumers’ power and energy limiting for the system 

with many inputs (inlets) (power sources) and outputs (outlets) (load nodes) 

and the limitations in elements (components) throughput performance (capac-

ity) in post-fault conditions (states). The drawbacks of this method are the in-

convenience in calculation, the necessity to analyze a great number of circuit 

(network; diagram) states (conditions), the difficulty with algorithmization by 

the application for computer calculations. For example, if the number of the 

calculating (design) elements (components) in a complex (compound) circuit 

(diagram) is n, it is necessary to analyze and calculate the modes for  

  31
5

6
N n n   (5.93) 

circuit conditions even without taken into consideration the superposition 

(overlapping) of emergency outages on intentional ones (neglecting the fail-

ure (fault) probability of more than three elements (components)). The fea-

ture (peculiarity) of this method is that the reliability indices calculation is 

carried out applying the system approach. 

2. Reliability indices assessment sequentially concerning the load node 

(center) by means of formula of total probability or with representation 

of circuits (diagrams) in the form of structural series parallel (path diagram) 

or parallel-series (section diagram) circuits. The most appropriate for algo-

rithmization is the method when the initial (reference) complex (compound) 

circuit (diagram) is presented in equivalent structural form. Moreover, as it 

was mentioned earlier the simpler algorithms of failed (failure condition) and 

failure-free state (condition) probability concerning the load node (center) is 

obtained when the circuit (diagram) is presented in the equivalent parallel-

series (section circuit), although the algorithms for obtaining these sections is 

more complicated, than the algorithms intended to obtain the paths (ways). 

With the increase of the number of elements (components) in a complex 

(compound) system the number of sections and paths (ways) concerning eve-

ry node grows (goes up) very fast. Particularly, the record (accounting) of the 

node point failures leads to a sharp increase of the number of sections with-

out causing the growth of the number of paths (ways) concerning the nodes. 

With the increase of the number of transverse connections (cross-linkages) 

the number of paths (ways) increases as well. 
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The basic feature of reliability indices calculation using the structural 

analysis concerning the nodes is the limit of possibilities of these methods due 

to difficulty of their application (implementation) by bandwidth (throughput 

performance) limitation of some separate elements (components), e. g. the dif-

ficulty to define (evaluate) partial power limiting and consumers’ power. 

The implementation of all these methods as well as the implementation of the 

methods of analysis of probabilities of circuit states (conditions) becomes significant-

ly complicated with the growth of the number of calculated components of the ana-

lytic diagram. One of the ways to simplify the problem solution is to divide the initial 

(reference) circuit (diagram) into subcircuits (subdiagrams) on the node points of the 

network (tie-stations, bus bars, the point of power transformation etc.). The reliability 

indices calculation for the first circuit (diagram) is carried out concerning the points 

of circuit (diagram) division from the power supply (source) side. The points of divi-

sion are the power sources for another circuit (diagram) and are introduced into ana-

lytic diagram by means of estimated (designed) components with the characteristics 

obtained in the calculations of the first sub-circuit (sub-diagram). 

The division into sub-circuits (sub-diagrams) is reasonable to carry out 

thus, that the number of estimated (designed) elements (components) in every 

circuit (diagram) will not exceed 130–450. If the bandwidth (throughput per-

formance) of the elements (components) of any part of the circuit (diagram) 

is limited, then the reliability indices concerning the division points are rea-

sonable to assess (define) using the methods of structural analysis. The calcu-

lation of sub- circuits (sub-diagram) is carried out depending on the certain 

conditions: either by means of the methods of the analysis of state probabili-

ties or applying the structural representation of the circuit (diagram). 

5.2.8. Power supply system operating efficiency evaluation  

and the reliability decision criteria  

Operating efficiency (reliability index (reliability criterion)) is one of the 

main criteria of power supply systems reliability and in quantitative form is 

characterized by relative magnitude (number) called mathematical expecta-

tion of supplied power that is determined (defined) by the analysis techniques 

(methods) of structural and functional reliability diagrams. 

On the basis of the design and maintenance of power supply systems 

some practical criteria in the form of normative standards (regulations) to 

power supply reliability of power collectors are developed. All power collec-

tors are divided into three categories, where the first category is marked out 

as the one that requires higher reliability level. 

The decision-making criterion is the efficiency (objective) expenditure 

function, that includes as the most important component the damage (loss) 

from disrupt service (outage) and undersupply of energy to consumers. 
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The choice of means and measures of reliability level change provides 

for the necessity of quantitative estimation (evaluation) of reliability indices 

(indicators) in the variety of possible options determined by the number of 

collectors connected to the load centers that in general case are different in 

terms of materials costs. 

As the reliability index (indicator) of power system operation is used the 

concept (the term) operating efficiency (reliability index). 

Operating efficiency is the quality measure of intrinsic (self) function-

ing of a unit (facility) or the suitability (appropriateness) of its use to carry 

out the specified functions. In other words, the efficiency is the degree of the 

system suitability (adjustment) to carry out the corresponding functions 

in certain conditions. 

As the efficiency index of an electric system is often accepted relative 

magnitude (number) of mathematical expectation of output effect, i.e. the 

mathematical expectation of supplied power: 
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, (5.94) 

where Э(t) – is mathematical expectation of power of desired quality, that is 

obtained by consumers within the period (0, t);  Э(t) – is mathematical ex-

pectation of undersupplied power and power with quality index (factor) lower 

than required that is supplied to consumers within the period (0, t). 

The modern level of scientific and engineering development allows cre-

ating systems, particularly electric power systems, practically with any relia-

bility level. However, the development of such systems is connected with the 

increase of material and labor expenditures, as well as the increase of back-

ing-up (redundancy) volume and maintenance cost and the application of 

more expensive and state-of-the-art technology and materials for equipment 

production and etc. 

The experience of design and maintenance (service) of power systems 

based on experience generalization has developed some criteria in the form 

of normative requirements to provide reliability of power collectors, which 

are formulated (stated) in state standard specification. Apart from the power 

receivers (collectors) whose normal operation is connected with people’s 

safety (security), the malfunction of other components leads to additional ex-

penditure to compensate them. Therefore, the compulsory component in the 

objective function of expenditure on consumers’ power supply must be also 

expenditure on compensations that deals with negative consequences con-

nected with disrupt service (power outage). This expenditure is called dam-

age from power undersupply, the cost of undersupplied energy can 20…100 

times exceed the cost on its generation. 

Ф - большая греческая буква
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The decision criterion concerned with power supply reliability is as 

follows: 

         min
norm

Z Н р K Н I Н Y Н    , (5.95) 

where Z(H) – current expenditure; K(H), I(H), Y(H) are respectively (capital) 

investments, expenditures, damage depending on the reliability level; рnorm is 

normative efficiency factor (index). 

As the decision criterion for power receivers (collectors) whose opera-

tion is connected with people’s safety are accepted natural reliability indices 

(factors) (safety (security) is as a rule not estimated in monetary units). 

Damages from disrupt service (power outage) and undersupply of energy 

Quantitative characteristic of operating efficiency decrease of national 

economy that is caused by disruption of interconnection of power system 

with other subsystems expressed in cost estimation model (form) is called 

damage from electric power system reliability. The damage to national 

economy can be expressed in two components (constituents): fundamental 

(basic) component that is concerned with underproduction, idle time and 

downtime; additional component, which is concerned with sudden outage, 

when death of equipment, raw materials damage, degradation of finished 

commodity and uneconomical power system mode of operation can occur. 

The increase in national economy efficiency is expressed in national in-

come decrease, which is determined (estimated) by the value (cost) of pro-

duced output aggregate. Therefore, on the basis of relation (ratio) of consumed 

power per year and annual cost (value) of produced goods it is relatively sim-

ple to determine (to estimate) the mean value of specific damage from under-

supply of unit of energy. By the ratio of current annual expenditure on the cre-

ation of enterprise production capacity and consumed power the lower bound 

(limit) of specific damage is estimated (determined). The specific damage re-

flects the minimum expenditure on backup (redundancy) creation only at one 

plant (without regard for connection (relation) with other ones, such as store, 

freezing (blocking) of backup (reserved) goods (output) and etc.  

The technique (procedure) of damage determination, based on the anal-

ysis of the ratio between the energy required and the cost of goods (produc-

tion) manufactured by the plants estimates (evaluates) the limits (bounds) of 

the first constituent (component), i.e. the direct damages (proximate damag-

es). The second constituent (component), e. g. the additional (consequential) 

damage or the damage caused by abrupt disrupt service (outage) is connected 

with backup creation of certain (separate) parts of equipment, materials, raw 

materials, tools, workforce, that are necessary to compensate the consequenc-

es of disrupt service (outage) and possible operating procedure irregularity. 

In general, the additional (extra) damage depends nonlinearly on the time of 
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disrupt service (outage). For complex load (different types of power receivers 

(collectors), that obtain power from the load center) whose disconnection 

(cutoff) is carried out partly (partially) the additional (extra) damage also de-

pends on the depth of limits on capacity.  

This component (constituent) is determined (estimated) by specified (spe-

cific) technological (engineering) characteristics of the plant and its calculation 

provides for thorough analysis of operating procedure (manufacturing process). 

The total damage (mathematical expectation) from disrupt service (outage) of 

load centers (nodes) with different classes of consumers is calculated by formula  

      0
н . v0

1 1
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     , (5.96) 

where 
0iу  is specific direct (proximate) damage; niE  is mathematical expec-

tation of undersupplied energy to i-consumer; 
(0)

.v nу  is specific damage from 

suddenness, that depends on the duration of disconnection (cutoff) tv; jP  is 

relative value of disconnected (switched off) power (capacity); 
j  is power ex-

ponent (index), that is determined by the kind (nature) of j consumer’s produc-

tion; m and n are respectively the number of consumers where the suddenness 

of disrupt service (outage) does not or does influence the value of damage. 

If the consumers’ cutoff (disconnection) is carried out with warning, then 

there is a possibility in many cases to organize the production (manufacturing) 

process in such manner in order to reduce the damage from disrupt service (out-

age). Therefore, the specific damages in the conditions where a warning was 

given are lower then in the cases where disrupt service (outage) took place. 

The development of production all over the world recently causes the in-

crease of environmental pollution. The damages from environmental pollution 

(ecological damage) leads to environmental deterioration and increase of harmful 

substances concentration in air, water and soil, the disturbance of thermal balance, 

landscapes, radiation pollution, the rise of noise level and vibration and etc. 

Ecological damage caused by the equipment failure as well as power sys-

tems failures is an additional (extra) value concerned with ecological damage 

that takes place under normal operation of electrical installations. The total 

value of damage is determined by the sum of two components (constituents). 

To the damages from ecological disturbances, which are caused by 

power supply interruption of some certain plants, belong also expenditures on 

environmental restoration (reclaiming) till the maximum permissible level of 

harmful substances concentration in air, water and soil. 

By such power supply systems failures, as a rule, there is maximum 

(peak) concentration of harmful substances in the environment as a result 

of gas, discharged waters (waste water), dust and other types of emissions. 
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There is also a sudden increase of social factors, caused by environmen-

tal pollution. But the determination (calculation) of social damage from eco-

logical disturbances in cost criterion (form) is one of the most complicated 

problems, which have not been still solved. 

Ecological damage from failures (faults) is reasonable to determine as 

a sum from: extra (additional) expenditure on measures that are aimed at en-

vironmental protection in the condition of system failure; extra (additional) 

expenditure that are concerned with the environmental restoration (reclaim-

ing) in the case of environmental pollution caused by system failures; extra 

(additional) expenditure on the protection of users natural resources and 

compensation from negative consequences, caused by ecological disturb-

ances as the result of power supply system failure (fault). 

The damage from expenditure increase in non-production sector due to 

ecological disturbances caused by power supply system failures (faults) is de-

termined by the expenditure increase in municipal sector of national economy 

on sanitary purification and cleaning of the polluted area, the renovation of 

residential buildings and etc. 

From the mentioned above it can be concluded, that quantitative estima-

tion (assessment) of reliability is to make economically sound decision at dif-

ferent design, construction and maintenance (service) stages of power supply 

system. In general case there are the following goal settings of engineering 

decision making: 

1. To find such engineering tools and technology for reliability growth 

(enhancement), that will correspond with the minimum of modified expendi-

ture (costs). 

2. To select the volume (amount) and sequence of engineering tools 

application for reliability growth (enhancement) as their efficiency will de-

crease. 

3. To choose required engineering tools and technology that ensure 

maximum reliability level by specified limited resources (additional invest-

ment, volume and combination of engineering tools and technology for relia-

bility enhancement, the limit of maintenance personnel). 

4. To ensure (to provide) specified (normative) reliability level for 

power supply system (part of power supply system) or separate consumers 

by minimum of additional expenditure. 
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CONCLUSION 

The main objective of this book is to address the subject of power sup-

ply reliability. Structurally, generating plants supply power to the grid, and 

the distribution system transports power to the end users. Although the relia-

bility principles and models described in this book are universally applicable, 

each segment of the electric industry has developed its own specific and 

sometimes unique methods and metrics. Many professional organizations and 

regulatory entities have recommended and mandated industry practices, and 

continue to do so. The Institute of Electrical and Electronics Engineers has 

contributed to the development of the standards and recommended practices 

mentioned above. These standards and other documents have been developed 

collaboratively by experts from industry and academia and integrate mathe-

matical principles and industry practices. These have been widely adopted by 

industry and by regulatory bodies. 

The late 1990s witnessed a worldwide movement toward restructuring 

the electric utility industry. The restructuring process and policies pro-

duced several unintended consequences, most notably the following: there 

was no clear allocation amongst market participants of operating practices 

that contributed to system reliability; new operating practices caused un-

precedented stresses on an already-aging infrastructure; and system opera-

tors lacked experience with markets and new regulatory and corporate pol-

icies. Regulatory bodies and Independent System Operators have respond-

ed by developing new policies and products (ancillary services). There 

were many other factors that conspired to bring about the August 2003 

blackout, but one of the most significant actions taken in response to this 

event was the formation of the Reliability Functional Model, a document 

that addressed the first of the three issues enumerated above by clearly de-

fining “functional entities,” encompassing standards developers, reliability 

service providers, and system planners and operators, and assigning specif-

ic functions to each functional entity to ensure system reliability. Penalties 

for noncompliance can range from large fines to suspension of an entity’s 

ability to perform the function. 

Regardless of how the grid evolves, now one thing is clear: grid relia-

bility methods and models will be necessary to understand the impact of 

adopting new technologies, operating strategies and planning and operat-

ing decisions. We believe that in the future there will be increased com-

plexities and interdependencies between the various segments of the grid. 



 

131 

Some of the models described here will continue to be used, whereas oth-

ers may need to be modified or enhanced to accommodate the changing 

scenarios. We have placed strong emphasis on the fundamentals so that the 

reader can acquire the capability to perform these modifications and en-

hancements. 
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