3. МОДЕЛИРОВАНИЕ СХЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ ДЛЯ РАСЧЁТА ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ В СЕТИ ВЫШЕ 1000 В В СРЕДЕ ELECTRONICS WORKBENCH

Цель работы: овладение методикой математического моделирования и расчета токов КЗ в сетях выше 1000 В в системе схемотехнического моделирования *Electronics Workbench*.

3.1. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Олной наиболее известных программ ИЗ схемотехнического моделирования является Electronics Workbench (разработка фирмы Interactive *Image Technologies, www.interactiv.com*). *Electronics Workbench* является доступным и удобным инструментом математического моделирования, предоставляющий пользователю большое количество электронных компонент и контрольно-измерительных приборов, по внешнему виду и характеристикам приближенных к их промышленным аналогам. После составления схемы и её упрощения путем оформления подсхем, моделирование начинается щелчком обычного выключателя. При этом от пользователя скрыт сложный математический алгоритм работы программы, и при ее соответствующей настройке, реальные эксперименты может проводить пользователь, имеющий квалификацию электрика, а не программиста.

Программа *Electronics Workbench* может быть использована для построения математической модели системы электроснабжения и расчета токов КЗ.

При построении математической модели системы электроснабжения для расчета токов КЗ в среде схемотехнического моделирования *Electronics Workbench* следует обратить внимание на следующие факторы:

1. По умолчанию тип измерительных приборов в программе установлен на «постоянный ток» – DC. Так как моделирование проводится для системы переменного тока нужно изменить тип используемых измерительных приборов на «переменный ток» – AC. Для этого, открыв двойным щелчком мыши, окно свойств измерительного прибора, выберите вкладку «Value», и в раскрывающимся списке «Mode» установите AC (рисунок 3.1). Для уменьшения погрешности измерений можно выставить величину внутреннего сопротивления амперметра в $1\cdot 10^{-12}$ Ом (Resistance – 1 р Ω).

2. Величина индуктивных сопротивлений в программе задается не в Ом, а в Гн. Для перехода от величины индуктивного сопротивления, заданного в Ом, к индуктивности в Гн нужно воспользоваться известной формулой:

$$L = \frac{x}{2\pi \cdot f},$$

гдеf-частота сети, Гц.

Ammeter Properties	? 🛛
Label Value Fault Display	
Resistance (R): 1 pΩ ♣ Mode: AC ▼ DC AC	
ОК	Отмена

Рисунок 3.1 – Окно свойств амперметра в редакторе *Electronics Workbench*

3.2. ПРИМЕР РАСЧЕТА

Для схемы электроснабжения (лабораторная работа №2, рисунок 2.1) требуется составить схему замещения в редакторе *Electronics Workbench*; определить токи КЗ и составить «сводную ведомость токов КЗ».

Определение сопротивлений

Составляем схему замещения для расчета токов КЗ в абсолютных единицах. Так как трехфазная система симметрична, достаточно составить однолинейную схему замещения одной фазы сети.

1. Сопротивление энергосистемы:

Энергосистема моделируется неизменной ЭДС за индуктивным сопротивлением *х*_{сист}.

Определяем фазную ЭДС энергосистемы:

$$e = \frac{U_{\text{ср.ном}}}{\sqrt{3}} = \frac{37}{\sqrt{3}} = 21,362 \text{ kB}.$$

Определяем сопротивление системы:

$$x_{\text{сист}} = \frac{U_{\text{ср.ном}}}{\sqrt{3} \cdot I_{\text{откл.ном}}} = \frac{37}{\sqrt{3} \cdot 41,5} = 0,515 \text{ Om}.$$

Переходим к индуктивности:

$$L = \frac{x_{\text{сист}}}{2\pi \cdot f} = \frac{0,515}{2\pi \cdot 50} = 1,639 \text{ мГн.}$$

2. Сопротивление воздушной линии 35 кВ:

$$r_{\rm BR} = r_0 \cdot l = 0,27 \cdot 1,5 = 0,405$$
 Ом;
 $x_{\rm BR} = x_0 \cdot l = 0,309 \cdot 1,5 = 0,4635$ Ом,

где = 1,5 км — длина воздушной линии; $r_0 = 0,27$ Ом/км — активное сопротивление провода AC-120 (таблица 6); $x_0 = 0,309$ Ом/км — индуктивное сопротивление провода AC-120 (таблица 12).

Переходим к индуктивности:

$$L = \frac{x_{\text{вл}}}{2\pi \cdot f} = \frac{0,4635}{2\pi \cdot 50} = 1,476 \text{ м}\Gamma\text{H}.$$

3. Сопротивление трансформатора ТДНС-16000/35 кВА:

$$x = \frac{u_{\text{K3}}\%}{100} \cdot \frac{U_{\text{ср. ном}}^2}{S_{\text{ном. тр}}} = \frac{10,5}{100} \cdot \frac{37^2}{16} = 8,984 \text{ Om};$$
$$L = \frac{x_{\text{тр}}}{2\pi \cdot f} = \frac{8,984}{2\pi \cdot 50} = 28,61 \text{ мГн}.$$

где $S_{\text{ном.тр}} = 16 \text{ MBA}$ – номинальная мощность трансформатора; $u_{\text{кз}} = 10,5\%$ – напряжение короткого замыкания трансформатора;

Сопротивления трансформатора приведены к обмотке высшего напряжения.

Примечание: сопротивление трансформатора можно приводить к любой обмотке (высшего или низшего напряжения). Соответственно сопротивления трансформатора в схеме замещения должны находиться на том же напряжении, к которому приведен трансформатор.

Для моделирования силового трансформатора при расчете токов КЗ в среде *Electronics Workbench* удобно использовать его линейную модель, окно свойств которой представлено на рисунке 3.2.

Transformer Properties		? 🛛
Label Models Fault Displ	ay Model ideal pq4-10 pq4-12 pq4-120 pq4-16 pq4-20 pq4-24 pq4-28 pq4-28 pq4-36 pq4-48 pq4-56	<u>N</u> ew Library <u>E</u> dit <u>Copy</u> <u>Paste</u> <u>D</u> elete <u>R</u> ename
	OK	Отмена

Рисунок 3.2 – Окно свойств линейного трансформатора в редакторе *Electronics Workbench*

Определим коэффициент трансформации трансформатора ГПП:

$$k = \frac{U_{\rm cp. hom. BH}}{U_{\rm cp. hom. HH}} = \frac{37}{6,3} = 5,873$$

В окне свойств на вкладке «Models» из предлагаемой библиотеки (Library) трансформаторов выберем силовой (power), из предлагаемой базы моделей (Model) силовых трансформаторов выберем идеальный (ideal) и нажмем кнопку редактирования его свойств – Edit. Откроется окно свойств идеального силового трансформатора (рисунок 3.3), в которое нужно ввести рассчитанный нами коэффициент трансформации (primary-to-secondary turns ratio) $k_{\rm Tp} = N = 5,873$. Остальные значения параметров трансформатора изменять нет необходимости.

Transformer Model 'ideal'		? 🔀
Sheet 1		
Primary-to-secondary turns ratio (N): Leakage inductance (LE): Magnetizing inductance (LM): Primary winding resistance (RP): Secondary winding resistance (RS):	5.873 0.001 5 1e-06 1e-06	Н
[OK	Отмена

Рисунок 3.3 – Окно свойств идеального силового трансформатора в редакторе *Electronics Workbench*

4. Сопротивление кабельной линии 6,3 кВ:

$$r_{\rm kev} = r_0 \cdot l = 0,329 \cdot 0,42 = 0,138 \,\,{\rm Om};$$

$$x_{\text{RH}} = x_0 \cdot l = 0,0602 \cdot 0,42 = 0,0263 \text{ Om},$$

где l = 0,42 км — длина кабельной линии; $r_0 = 0,329$ Ом/км — активное сопротивление кабеля ААШв—(3х95) (таблица 6); $x_0 = 0,0602$ Ом/км — индуктивное сопротивление кабеля ААШв—(3х95) (таблица 5).

Переходим к индуктивности:

$$L = \frac{x_{\text{вл}}}{2\pi \cdot f} = \frac{0,0263}{2\pi \cdot 50} = 0,081 \text{ мГн.}$$

В окне схемотехнического редактора собираем схему замещения для расчета токов КЗ. Для полноты исследования введем в расчетную схему сопротивление нагрузки.

Определим сопротивление нагрузки для одной фазы трансформатора, приняв за коэффициент загрузки силового трансформатора по активной мощности наиболее типичный случай – $K_3 = 0,7$.

$$P_{\phi.\mathrm{rp}} = K_{_{3}} \cdot S_{_{\mathrm{rp},\phi.\mathrm{Hom}}} = \frac{U_{\phi.\mathrm{Hom}}^2}{R_{_{\mathrm{H}}}},$$

откуда $R_{\rm H} = 3,21$ Ом.

Математическая модель схемы электроснабжения для расчета токов КЗ в среде *Electronics Workbench* представлена на рисунке 3.4.

Рисунок 3.4 – Математическая модель схемы электроснабжения для расчета токов КЗ в среде *Electronics Workbench*

Показания амперметра, подключенного между точкой К2 и землей, иллюстрируют установившееся значение тока КЗ в этой точке. Однако, в отличие от линейной математической модели системы электроснабжения, представленной в лабораторной работе №2, данная модель позволяет не только определить установившиеся значения токов КЗ в намеченных точках, но изучить поведение системы в переходных процессах.

Добавим в каждую ветвь изучаемой схемы по одному шунтирующему сопротивлению небольшого наминала (например, 0,001 Ом) и ключ К для замыкания электрической цепи по команде клавиши клавиатуры ПК.

Подключим к шунту электронный осциллограф. Подадим питание на схему и замкнем ключ К.

Модифицированная схема исследований приведена на рисунке 3.5, экран осциллографа с кривой тока КЗ в расчетной точке К4 на рисунке 3.6.

Так как, кривые тока и напряжения на активном элементе совпадают, мы можем визуально наблюдать переходный процесс изменения тока в процессе короткого замыкания. С помощью, имеющихся в арсенале осциллографа визиров (на рисунке 3.6 красная и синие линии), легко определить величину мгновенного значения напряжения на шунтирующем резисторе в произвольный момент времени, а затем определить и величину тока.

Рисунок 3.5 – Математическая модель схемы электроснабжения для исследования переходных процессов КЗ

Рисунок 3.6 – Кривая изменения тока в точке К4 во время переходного процесса К3

3.3. ЗАДАНИЕ

Для схемы электрической сети выше 1000 В (рисунок 2.3) требуется составить схему замещения для определения токов КЗ в программе схемотехнического моделирования *Electronics Workbench*; определить сопротивления элементов схемы электроснабжения; наметить и обозначить на расчетной схеме и схеме замещения точки расчета токов КЗ; определить токи КЗ и составить «сводную ведомость токов КЗ».

Провести исследования переходных процессов изменения токов во время КЗ, определить по осциллографу значения ударного тока КЗ в каждой точке и длительность переходного процесса КЗ. Сравнить и проанализировать результаты моделирования схемы электроснабжения с результатами, полученными в лабораторной работе №2.

3.4. ТРЕБОВАНИЯ К ОТЧЕТУ

Отчет по лабораторной работе должен содержать:

1. Цель и порядок выполнения работы.

2. Расчетную схему и схему замещения с указанием контрольных точек расчета токов КЗ.

3. Результаты расчетов сопротивлений схемы замещения.

4. Результаты расчетов токов КЗ.

5. Сводную ведомость расчета токов КЗ.

6. Выводы.

3.5. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какие математические модели нужно использовать для анализа установившихся и переходных процессов в системах электроснабжения?

2. Назовите основные этапы математического моделирования системы электроснабжения для расчета токов КЗ.

3. Какие математические методы используются в программах схемотехнического моделирования для определения выходных электрических параметров?

4. От каких факторов зависит величина апериодической составляющей тока КЗ и длительность переходного процесса?

5. От каких факторов зависит точность результатов моделирования?

6. Какое действие оказывают токи КЗ на электрооборудование?

7. Способы ограничения токов КЗ в системах электроснабжения.