

УТВЕ	РЖДАК)			
Проректор-директор: <u>ФТИ</u>					
		В.П.Кривобоков			
«	»	2010 г			

ЯДЕРНАЯ ФИЗИКА

Рабочая программа для направления <u>140</u>	<u>300 «Ядер</u>	ная физика и технологии»
специальности 140305 Ядерные реакторы и з	нергетиче	еские установки
0181, 0182		
(номер и название направления, спец	иальности,	специализации)
Институт физико-технический (ФТИ)		11011110)
(полное название и сокращею Обеспечивающая кафедра <u>Физико</u>		
Курс <u>третий</u>	опортоти	TOOKING YOTATIOBKIT
Семестр <u>шестой</u>		
Учебный план набора <u>2008</u> года с изм	иенениями	1 года
Распределение уче	•	
Лекции	60	_ часов (ауд.)
Лабораторные занятия	17	_ часов (ауд.)
Практические (семинарские) занятия	34	_ часов (ауд.)
Всего аудиторных занятий	111	_ часов
Самостоятельная (внеаудиторная)	102	_ часов
работа		
Общая трудоемкость	213	_ часов
Экзамен в <u>6</u> семестре		

Предисловие

1. Рабочая программа составлена на основе ГОС по направлению 140300 (651000) «Ядерная физика и технологии», специальности 140305 (070500) Ядерные реакторы и энергетические установки, утвержденного 02.03.2000 г. приказом МО РФ № 866. Номер государственной регистрации 150 тех/дс от 17.03.2000 г.

РАССМОТРЕНА и С)ДОБРЕНА на зас	едании обеспе	ечивающей	
кафедры <u>ФЭУ</u> <u></u>		_ протокол №	<u> </u>	
(наименование кафед	ры) (дата)			
2. Разработчик(и)	_			
<u>доцент</u>	<u>фЭУ</u>		<u>Ю.В.Данейкин</u>	
(должность)	(кафедра)	(подпись)	(И.О.Фамилия)	
2 00- 0500-000-000	uaŭ vada - naŭ do	\	D И Гаўна	
3. Зав. обеспечивающей кафедрой <u>ФЭУ</u> <u>В.И.Бойк</u>				
A Dofound aportona	~ COEUVCODVIIV	(подпись)	(И.О.Фамилия)	
4. Рабочая программ				
кафедрами спец	циальности; СОС	TBETCTBYET	действующему	
плану.				
	·		DIAE ~	
Зав. выпускающей	и кафедрои <u>ФЭУ</u>	(В.И.Бойко	
Документ:		(подпись)	(И.О.Фамилия)	
докуметт. Дата разработки				
,				
			 	

УДК

Ключевые слова: атомные ядра, радиоактивный распад, деление и синтез ядер, ядерные реакции, взаимодействие излучения с веществом.

Ядерная физика — это физика атомных ядер и элементарных частиц. Она находится на переднем крае науки с самого своего зарождения. Изучение радиоактивных превращений, ядерных реакций, свойств и моделей атомных ядер, процессов взаимодействия частиц ионизирующего излучения с веществом, элементарных частиц и т.д. обогатило науку новыми концепциями и позволило глубже проникнуть в законы природы.

Ядерная физика изучает свойства и взаимодействия атомных ядер. Но результаты открытий, сделанных в этой области, оказали и продолжают оказывать огромное влияние на все сферы человеческой деятельности. Идеи И факты, установленные при изучении субатомных явлений, меняют наши представления об окружающем мире. Концепции, развитые в ядерной физике, позволили нам понять, как образовались химические элементы, откуда берется энергия Солнца, как устроены нейтронные звезды. Ядерная энергия может стать основным источником энергии в будущем. Наличие арсенала ядерных бомб оказывает влияние на политические процессы. Пучки элементарных частиц МОГУТ стать эффективным медицинским инструментом. Использование меченых атомов и ядерных эффектов позволяет получать информацию о структуре твердых тел и о физикохимических процессах в химии, биологии, металлургии и геологии.

Ядерная физика должна стать достоянием не только физиков, но также инженеров и ученых других специальностей.

«Ядерная физика» является обязательной дисциплиной специальностей 140305 «Ядерные реакторы и энергетические установки», 140309 «Безопасность и нераспространение ядерных материалов»

Изучение ЯФ базируется на знаниях следующих дисциплин: математика, общая физика, атомная физика; кроме того, использует знания по математической и теоретической физике.

Цели и задачи учебной дисциплины

Целью курса «Ядерная физика» является приобретение знаний, умений и навыков из области ядерной физики, необходимых для научно-исследовательской, проектной, технологической и производственной деятельности.

Задачи курса определяются требованиями к специалисту. **Специалист должен иметь представление:**

- о строении атомного ядра;
- о видах и закономерностях радиоактивного распада;
- об эффективных сечениях и способах их измерений;
- о закономерностях прохождения излучения через вещество;
- о механизмах протекания ядерных реакций и их типах;
- о физических основах использования свойств ядер и ядерных излучений в науке и технике;
- об основных закономерностях деления и синтеза ядер.

Специалист должен знать и уметь использовать:

- основные законы и явления микромира;
- основные методы ядерно-физических исследований;
- типы ядерных реакций и их закономерности;
- законы прохождения излучения через вещество;
- источники и детекторы ядерных излучений.

Специалист должен уметь:

- использовать полученные знания в практической деятельности
- проводить оценочные и инженерные расчеты результатов ядерных превращений;
- работать с ядерно-физической аппаратурой.

Цели и задачи учебной дисциплины реализуются в следующих формах деятельности:

- **лекции**, направленные на получение базовой интегральной ин формации, которая позволит оптимизировать все виды учебной деятельности;
- практические занятия, нацеленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения практических и проблемных задач;
- лабораторные занятия призваны способствовать получению навыков НИР, умению работать с ядерно-физической аппаратурой, закреплению теоретических знаний;
- самостоятельная внеаудиторная работа направлена на приобретение навыков самостоятельного приобретения

знаний, решения задач, анализа и аргументации полученных результатов;

- **консультации**, нацеленные на ускорение, индивидуализацию и диверсификацию образовательного процесса;
- **текущий контроль** за деятельностью студентов осуществляется во всех формах учебного процесса с целью его оптимизации и непрерывности;
- рубежный контроль включает контрольные работы, защиту лабораторных работ, самостоятельных заданий, рефератов;
- контроль деятельности студентов проводится в рамках рейтинговой системы ТПУ, при этом количество баллов, получаемых студентом по каждому виду контроля, определяется рейтинг-планом дисциплины. К экзамену допускаются студенты, набравшие не менее 550 баллов по всем видам контроля.

Содержание теоретического раздела дисциплины

(лекции 60 часов аудит.)

ВВЕДЕНИЕ (2 часа)

Предмет ЯФ. Место значение ЯΦ В современном естествознании. Основные задачи, программа и структура курса. развития ЯФ. Виды фундаментальных Основные этапы взаимодействий. Масштабы и единицы измерений физических дисциплин. Особенности физических явлений в микромире.

СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР (8 часов)

Основные статические свойства ядер: массовое число, электрический заряд, состав, размеры, энергия связи, спин, момент количества движения, магнитный момент, квадрупольный момент. Свойства ядерных сил. Основы теории ядерных сил. Модели атомных ядер.

РАДИОАКТИВНОСТЬ (4 часа)

Виды радиоактивности, радиоактивные семейства. Законы простого и сложного радиоактивного распада. Закономерности альфабета- и гамма-распада.

ДЕЛЕНИЕ И СИНТЕЗ ЯДЕР (6 часов)

Условия и стадии деления ядер. Энергия и продукты деления ядер. Мгновенные и запаздывающие нейтроны. Спонтанное деление. Элементарная теория деления. Ядерные реакции синтеза. Термоядерные реакции во Вселенной и в лабораторных условиях. Проблемы управляемого термоядерного синтеза.

ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ (10 часов)

Ионизирующее излучение. Общие закономерности взаимодействия ионизирующего излучения с атомами вещества. Взаимодействие тяжелых заряженных частиц с веществом. Взаимодействие электронов и гамма-квантов с веществом. Пробеги частиц ионизирующего излечения в веществе.

ЯДЕРНЫЕ РЕАКЦИИ (10 часов)

Классификация ядерных реакций. Законы сохранения в ядерных реакциях. Механизмы и параметры ядерных реакций. Особенности ядерных реакций, протекающих при воздействии частиц, имеющих различные параметры (энергетические, массовые, зарядовые, корпускулярно-волновые).

ИСТОЧНИКИ ЧАСТИЦ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ (6 часов)

Источники заряженных частиц и гамма-квантов. Источники нейтронов и других нейтральных частиц.

ДЕТЕКТОРЫ ЧАСТИЦ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ (6 часов)

Принципы обнаружения, радиометрии и спектрометрии в ЯФ. Регистрация заряженных и нейтральных частиц различных энергий. Газовые, полупроводниковые, сцинтилляционные и трековые детекторы.

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ (4 часа)

Открытие и классификация элементарных частиц. Античастицы. Модели частиц и античастиц.

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ЯДЕРНОЙ ФИЗИКИ (4 часа)

Ядерная химия. Ядерная астрофизика. Проблемы термоядерной физики. Нерешенные проблемы ядерной физики.

Содержание практического раздела дисциплины

(51 час аудит.)

ТЕМАТИКА ПРАКТИЧЕСКИХ (СЕМИНАРСКИХ) ЗАНЯТИЙ (34 часа аудит.)

1.	Масштабы и единицы измерения величин	2 часа
2.	Статические свойства атомных ядер	2 часа
3.	Энергия связи	2 часа
4.	Особенности энергии связи	2 часа
5.	Основной закон радиоактивного распада	2 часа
6.	Сложный радиоактивный распад	2 часа
7.	Произвольные цепочки ядерных превращений	2 часа
8.	Ионизационные потери заряженных частиц	2 часа
9.	Радиационные потери заряженных частиц. Пробег.	2 часа
10.	Закон ослабления гамма-излучения	2 часа
11.	Выходы и сечения ядерных реакций	2 часа
12.	Энергия ядерной реакции	2 часа
13.	Законы сохранения энергии и импульса	2 часа
14.	Кинематика ядерных реакций	2 часа
15.	Деление ядер	2 часа
16.	Синтез ядер	2 часа
17.	Детекторы ионизирующего излучения	2 часа

Для каждой темы практических занятий разработаны задания с теоретическими вопросами, задачами и упражнениями. Часть объема практической работы выполняется в аудитории, а часть во время самостоятельных занятий. Объем заданий определяется временем, отведенным студенту учебным планом.

ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ РАБОТ (17 часов аудит)

Цикл лабораторных работ по основам детектирования ядерных излучений: 2 часа

- 1. Газонаполненные детекторы;
- 2. Сцинтилляционные детекторы;
- 3. Полупроводниковые детекторы
- 4. Другие типы детекторов.

Цикл лабораторных работ на радиоактивный распад: 3 часа

- 1. Распределение вероятностей случайных величин, наблюдаемых в ядерно-физических экспериментах, и оценка их параметров;
- 2. Определение периодов полураспада искусственных радиоактивных нуклидов;
- 3. Определение периодов полураспада смеси двух изотопов.
- 4. Ядерная изомерия. Определение периодов полураспада изомеров родия;

Цикл лабораторных работ по изучению бета распада: 4 часа

- 1. Определение бета-активности тонких препаратов известного радионуклида с помощью торцевого счетчика (абсолютным и относительным методом);
- 2. Измерение бета-активности толстого препарата известного радионуклида с помощью торцевого счетчика;
- 3. Определение максимальной энергии бета спектра;
- 4. Измерение спектра электронов бета-распад.

Цикл лабораторных работ по изучению альфа распада: 4 часа

- 1. Измерение энергетического спектра альфа-частиц от источника;
- 2. Определение энергии альфа-частиц по их пробегу в воздухе;

Цикл лабораторных работ по изучению гамма-излучения ядер: 4 часа

- 1. Определение энергии гамма-излучения с помощью сцинтилляционного спектрометра;
- 2. Определение энергии гамма-излучения методом поглощения.

Подготовка к лабораторным работам проводится в часы самостоятельной работы. Объем заданий определяется временем, отведенным студенту учебным планом.

Программа самостоятельной познавательной деятельности (102 часа)

- 1. Самостоятельное изучение теоретического материала Внеаудиторная работа студентов СОСТОИТ В проработке лекционного материала, подготовке к теоретическим коллоквиумам и контрольным работам. Часть теоретического материала предлагается самостоятельного изучения студентам ДЛЯ представлением С реферата и презентации на тему реферата выполненной в MS Power Point. Общее время самостоятельной работы для планируется в количестве 30 часов.
- 2. Выполнение самостоятельных практических заданий Преподавание дисциплины предполагает выполнение домашних практических заданий в часы самостоятельной работы 34 часа.
 - 3. Подготовка к выполнению лабораторных работ

Подготовка к лабораторным работам, обработка результатов измерений и составление итогового отчета по лабораторной работе осуществляется студентом в часы самостоятельной работы, для этих целей планируется 38 часов.

Примечание: банк материалов текущего и итогового контроля результатов изучения дисциплины, а также банк задач представлены в виде отдельного учебно-методического документа.

Учебно-методическое обеспечение дисциплины

Основная литература:

- 1. Мухин К.Н. Экспериментальная ядерная физика. Физика атомного ядра. М.: ЭА, 1983. 616 с.
- 2. Широков Ю.М., Юдин Н.П. Ядерная физика. М.: Наука, 1972. 672 c.
- 3. Сивухин Д.В. Атомная и ядерная физика (Часть 2. Ядерная физика). М.: Наука, 1989. 416 с.
- 4. Михайлов В.М., Крафт О.Е. Ядерная физика. Изд-во ЛГУ, 1988, 328 с.
- 5. Валантэн Л. Субатомная физика: ядра и частицы. Т.1,2. М.: Мир, 1986.
- 6. Иродов И.Е. Сборник задач по атомной и ядерной физике. М.: ЭА. 1984.
- 7. Дюдерштадт Дж., Мозес Г., Инерциальный термоядерный синтез, М., ЭАИ, 1984.

Учебные пособия

Дополнительная литература:

- 1. Фрауэнфельдер Г., Хенли Э. Субатомная физика. М.: Мир, 1979. 736 с.
- 2. Климов А.Н. Ядерная физика и ядерные реакторы. М.: ЭА, 1985. 352 с.
- 3. Абрамов А.И. Основы ядерной физики. М.: ЭА, 1983. 256 с.
- 4. Абрамов А.И., Казанский Ю.А., Матусевич Е.С. Основы экспериментальных методов ядерной физики. М.: ЭА, 1985. 488 с.
- 5. Беденко С.В, Данейкин Ю.В., Нестеров В.Н. Лабораторный практикум по ядерной физике. Методические рекомендации к лабораторным работам. Томск: Изд-во Томского политехнического университета, 2007. 50 с.

Электронные образовательные ресурсы

- 1. Беденко С.В, Нестеров В.Н., Данейкин Ю.В. Ядерная физика: Электронный учебник [Электронный ресурс]. Томск: ТПУ, 2007. с., http://e-le.lcg.tpu.ru/public/JDF_iep2/index.html
- 2. Ядерная физика в интернете НИИ ЯФ МГУ http://nuclphys.sinp.msu.ru
- 3. Ядерная физика http://fizikishutjat.ru