Контрольная работа

Определение скоростей и ускорений точек твёрдого тела при плоском движении

Найти для заданного положения механизма скорости точек *В* и *С*, ускорение точки *С*. Схемы механизмов помещены на рис. 1–3, необходимые для расчёта данные приведены в таблице 1.

Примечание: ω_{OA} и ε_{OA} — угловая скорость и угловое ускорение кривошипа OA при заданном положении механизма; ω_1 - угловая скорость колеса I (постоянная); V_A и a_A - скорость и ускорение точки A. Качение происходит без скольжения.

Таблица 1

Номер	Размеры, см								
вари-					ω_{OA} ,	ω_I ,	$arepsilon_{OA},$	V_{A} ,	a_A ,
анта,					рад	рад	<u>pað</u>	con/c	a_A , c_M/c^2
(рис. 1-	OA	r	AB	AC	\overline{c}	\overline{c}	$\frac{1}{c^2}$	CM/C	C.W T C
3)									
1	40	15	_	8	2	_	2	_	-
2	30	15	_	8	3	_	2	-	_
3	20	40	_	40	_	_	_	40	100
4	35	-	_	45	4	_	8	_	-
5	25	-	_	20	1	_	1	_	-
6	40	15	_	6	1	1	0	_	-
7	35	-	75	60	5	_	10	_	-
8	25	_	_	40	_	_	_	50	125
9	10	_	_	5	_	_	_	20	50
10	25	_	80	20	1	_	2	-	_
11	15	10	_	20	2	_	3	-	_
12	10	_	40	20	_	_	_	20	50
13	25	-	60	30	2	_	4	_	_
14	45	15	_	8	3	12	0	-	_

15	40	15	_	8	1	_	1	_	_
16	35	20	_	_	2	-	5	_	_
17	20	_	_	0,5AB	2	-	4	_	_
18	10	_	10	5	2	-	6	_	_
19	20	15	_	10	1	2,5	0	_	_
20	40	15	15	5	2	-	4	_	_
21	40	_	15	15	3	-	8	_	_
22	35	_	60	40	4	-	10	_	_
23	40	15	90	45	-	_	_	20	20
24	25	_	35	15	2	-	3	_	_
25	20	_	70	20	1	-	2	_	_
26	20	15	_	10	2	1,2	0	_	_
27	10	_	40	20	2	-	_	_	50
28	20	_	50	25	1	_	1	_	_
29	16	_	_	20	-	_	_	8	5
30	40	_	_	20	5	-	10	_	_

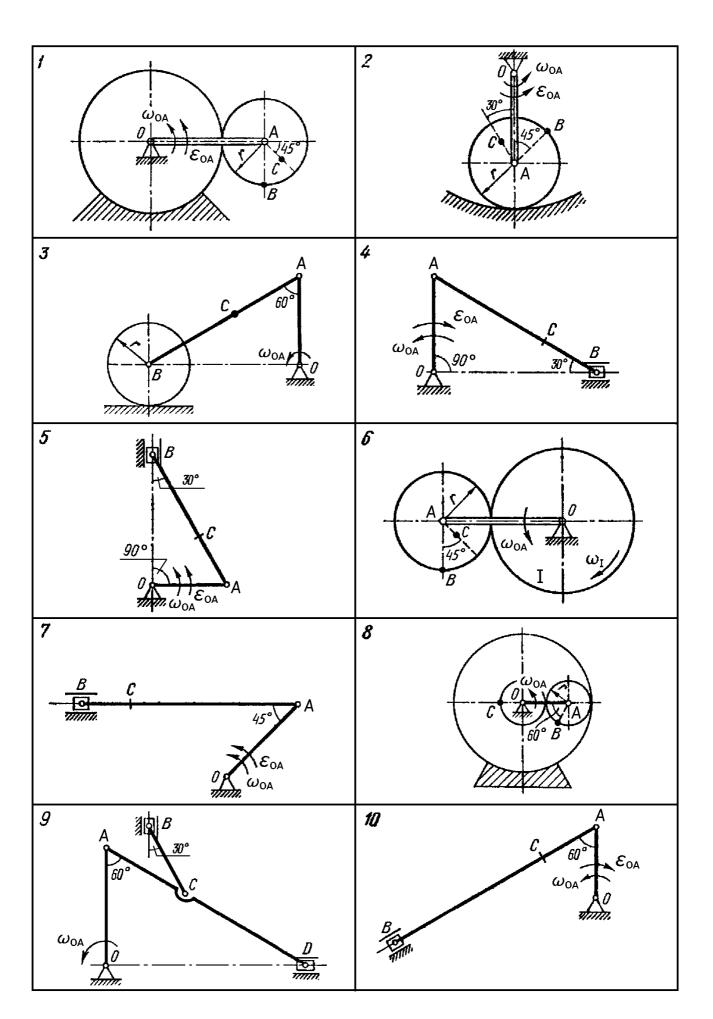


Рис.1

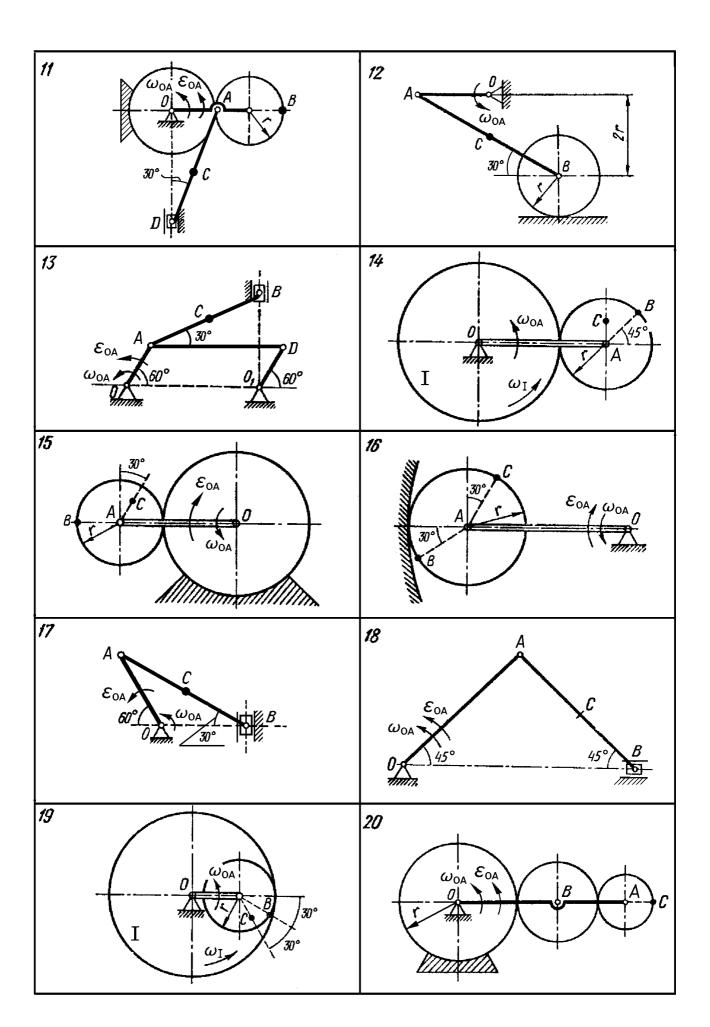


Рис. 2

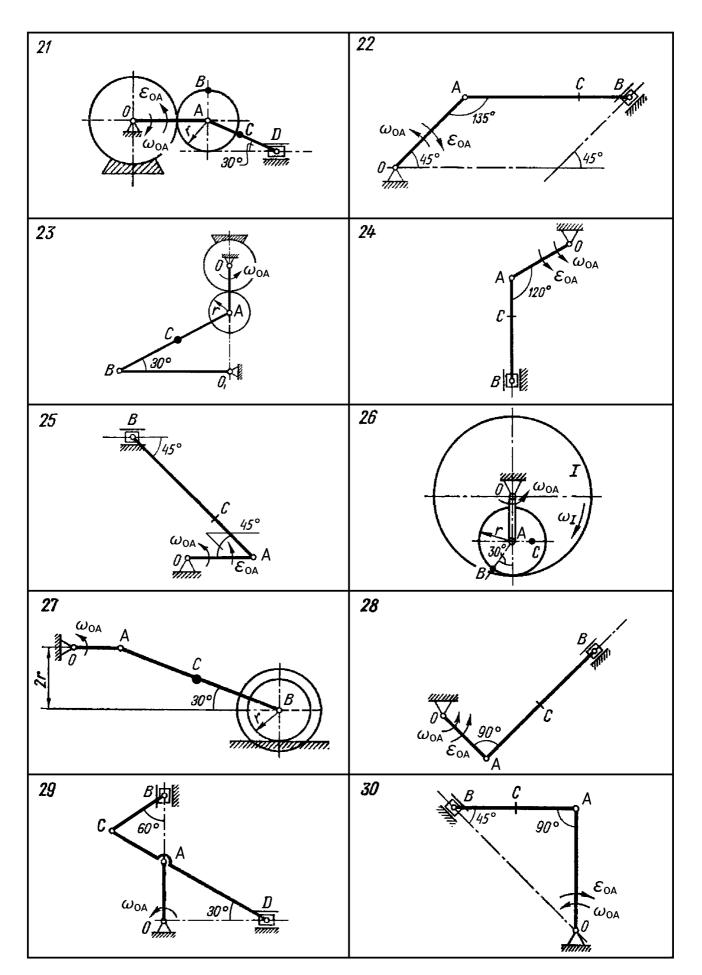


Рис. 3

Пример выполнения задания.

Дано: схема механизма в заданном положении (рис. 4);

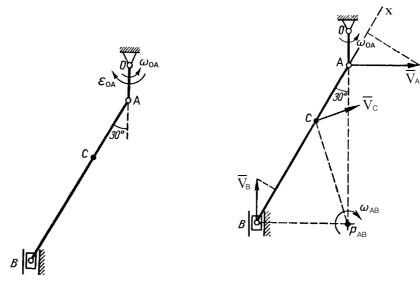


Рис. 4 Рис. 5

Исходные данные:

	Размеры,	СМ	ω_{OA} , $\frac{pa\partial}{}$	ε _{ОА} , рад	
OA	AB	AC	C	$\frac{\rho a \sigma}{c^2}$	
10	60	20	1,5	2	

Решение.

1. Определение скоростей точек (рис. 5). Вычисляем скорость точки *А* кривошипа *OA* при заданном положении механизма:

$$V_A = \omega_{OA} \cdot OA = 1, 5 \cdot 10 = 15 \text{ cm/c}.$$

Скорость точки A перпендикулярна к кривошипу OA. Скорость ползуна B направлена по вертикали.

Мгновенный центр скоростей P_{AB} шатуна AB находится в точке пересечения перпендикуляров, проведённых из точек A и B к их скоростям.

Угловая скорость звена АВ:

$$\omega_{AB} = \frac{V_A}{AP_{AB}} = \frac{15}{60\cos 30^{\circ}} = \frac{1}{2\sqrt{3}} = 0.29 \text{ pad/c}.$$

Скорости точек В и С:

$$V_B = \omega_{AB} \cdot BP_{AB}$$
; $V_C = \omega_{AB} \cdot CP_{AB}$,

где

$$BP_{AB} = AB \cdot \sin 30^{\circ} = 60 \cdot 0, 5 = 30,0 \text{cm};$$

$$CP_{AB} = \sqrt{BC^2 + BP_{AB}^2 - 2BC \cdot BP_{AB} \cos 60^{\circ}} = \sqrt{40^2 + 30^2 - 2 \cdot 40 \cdot 30 \cdot 0, 5} = 36,1 \text{cm}.$$

Следовательно,

$$V_B = 0,29 \cdot 30,0 = 8,7 \text{ cm/c}; V_C = 0,29 \cdot 36,1 = 10,5 \text{ cm/c}.$$

Вектор \bar{V}_C направлен перпендикулярно к отрезку CP_{AB} в сторону, соответствующую направлению вращения звена AB .

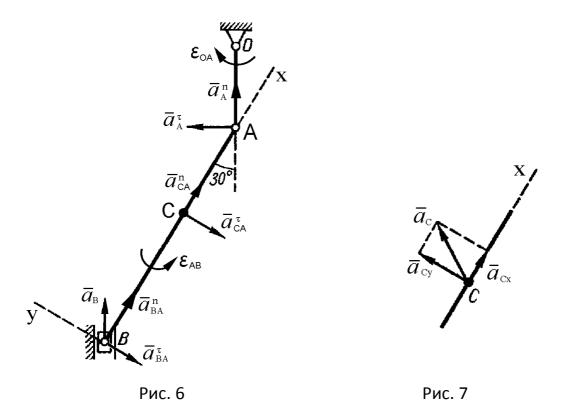
Для проверки определим скорость точки *В* другим способом. Воспользуемся теоремой о равенстве проекций скоростей точек на ось, проведённую через эти точки.

Направим ось x из точки B вдоль шатуна BA. Имеем:

$$V_A \cos(\overline{V}_A, x) = V_B \cos(\overline{V}_B, x).$$

Или, как видно из рис. 28 $V_A \cos 60^{\circ} = V_B \cos 30^{\circ}$.

Отсюда


$$V_B = V_A \cdot \frac{\cos 60^{\circ}}{\cos 30^{\circ}} = \frac{15 \cdot 2}{2 \cdot \sqrt{3}} = 5\sqrt{3} = 8.7 \text{ cm/c}.$$

2. Определение ускорений точек (рис. 6, 7).

Ускорение точки *А* складывается из касательного и нормального ускорений:

$$\overline{a}_A = \overline{a}_A^{\tau} + \overline{a}_A^n$$
,

где
$$a_A^{\tau} = \varepsilon_{OA} \cdot OA = 2 \cdot 10 = 20 \ cm/c^2;$$
 $a_A^n = \omega_{OA}^2 \cdot OA = 1.5^2 \cdot 10 = 22.5 \ cm/c^2.$

Вектор \overline{a}_A^n направлен по AO в сторону точки O.

Вектор $\overline{a}_A^{\, au}$ перпендикулярен вектору $\overline{a}_A^{\, n}$ и направлен в соответствии с направлением углового ускорения $\, arepsilon_{O\!A} \, .$

Ускорение точки B

$$\overline{a}_B = \overline{a}_A + \overline{a}_{BA}^{\tau} + \overline{a}_{BA}^n,$$

или

$$\overline{a}_{B} = \overline{a}_{A}^{\tau} + \overline{a}_{A}^{n} + \overline{a}_{BA}^{\tau} + \overline{a}_{BA}^{n}.$$

$$a_{BA}^{n} = \omega_{AB}^{2} \cdot AB = \frac{1}{12} \cdot 60 = 5,00 \text{ cm/c}^{2}.$$
(1)

Вектор \overline{a}_{BA}^{n} направлен по BA в сторону точки A, а касательное ускорение \overline{a}_{BA}^{τ} точки B перпендикулярно к нему.

Проектируя векторное равенство (1) на оси x и y, получаем:

$$a_B \cos 30^{\circ} = -a_A^{\tau} \cos 60^{\circ} + a_A^{n} \cos 30^{\circ} + a_{BA}^{n}$$
. (2)

$$a_R \cos 60^{\circ} = a_A^{\tau} \cos 30^{\circ} + a_A^{\eta} \cos 60^{\circ} - a_{RA}^{\tau}.$$
 (3)

Из уравнения (2)

$$a_B = \frac{-a_A^{\tau} \cos 60^{\circ} + a_A^n \cos 30^{\circ} + a_{BA}^n}{\cos 30^{\circ}},$$

или

$$a_B = \frac{-20 \cdot 0, 5 + 22, 5 \cdot 0, 866 + 5}{0,866} = 16,7 \ cm/c^2.$$

Из уравнения (3)

$$a_{BA}^{\tau} = a_{A}^{\tau} \cos 30^{\circ} + a_{A}^{n} \cos 60^{\circ} - a_{B} \cos 60^{\circ},$$

или

$$a_{BA}^{\tau} = 20 \cdot 0,866 + 22,5 \cdot 0,5 - 16,7 \cdot 0,5 = 20,2 \ cm/c^2.$$

Ho $a_{BA}^{\tau} = \varepsilon_{AB} \cdot AB$,

отсюда

$$\varepsilon_{AB} = \frac{a_{BA}^{\tau}}{AB} = \frac{20.2}{60} = 0.34 \ pao/c^2.$$

Направление касательного ускорения $\overline{a}_{BA}^{\, au}$ определяет направление углового ускорения ε_{AB} . В данном случае оно противоположно направлению ω_{AB} .

Определяем ускорение точки С:

$$\overline{a}_{C} = \overline{a}_{A} + \overline{a}_{CA}^{\tau} + \overline{a}_{CA}^{n},$$

$$\overline{a}_{C} = \overline{a}_{A}^{\tau} + \overline{a}_{A}^{n} + \overline{a}_{CA}^{\tau} + \overline{a}_{CA}^{n}.$$
(4)

или

Касательное и нормальное ускорения точки C во вращательном движении шатуна AB вокруг полюса A:

$$a_{CA}^{\tau} = \varepsilon_{AB} \cdot AC = 0,34 \cdot 20 = 6,8 \text{ cm/c}^2;$$

$$a_{CA}^{n} = \omega_{AB}^{2} \cdot AC = \frac{1}{12} \cdot 20 = 1,7 \text{ cm/c}^{2}.$$

Вектор $\overline{a}_{\mathit{CA}}^n$ направлен по CA в сторону точки A ,

вектор $\overline{a}_{CA}^{\,\, \tau}$ перпендикулярен к вектору $\overline{a}_{CA}^{\,\, n}$ и направлен соответственно угловому ускорению ε_{AB} .

Ускорение точки C найдём, проектируя равенство (4) на оси x и y

$$a_{Cx} = a_{CA}^n + a_A^n \cos 30^\circ - a_A^\tau \cos 60^\circ,$$

или
$$a_{Cx} = 1,7 + 22,5 \cdot 0,866 - 20 \cdot 0,5 = 11,2 \ c_M/c^2;$$

$$a_{Cy} = a_A^n \cos 60^\circ + a_A^\tau \cos 30^\circ - a_{CA}^\tau,$$
 или
$$a_{Cy} = 22, 5 \cdot 0, 5 + 20 \cdot 0, 866 - 6, 8 = 21, 8 \ cm/c^2;$$

$$a_C = \sqrt{a_{Cx}^2 + a_{Cy}^2} = \sqrt{11, 2^2 + 21, 8^2} = 24, 5 \ cm/c^2 \ \text{(рис. 7)}.$$