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MULTIPLE INTEGRALS

LECTURE 1. 
                                 Double Integral

1.1.    Definition of a Double Integral 

Let 
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 be a closed domain in the 
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which is called the integral sum. Hereinafter, we shall call the maximum distances between points of a figure as its norm. For instance, the norm of a rectangular (or parallelepiped) is its diagonal, the norm of a ring is a diameter of its outer circumference. The norm of subdomain 
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Definition. If the limit of the integral sums sequence when the maximum of 
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The quantity 
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 is called the differential area element in Cartesian coordinates. 

Theorem 1. (Integrability Theorem)  If 
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 and if it is continuous there except on a finite number of smooth curves, then 
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The double integral is a definite integral and has properties similar those of a definite integral of a single variable function. Let us note ones the most important:

Property 1. The linearity of a double integral
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Property 2. The additivity of a double integral 

If domain 
[image: image36.wmf]D

 is divided into two subdomains 
[image: image37.wmf]'

D

 and 
[image: image38.wmf]'

'

D

 such that 
[image: image39.wmf]'

'

D

'

D

D

È

=

, 
[image: image40.wmf]=

Ç

'

'

D

'

D

( then


[image: image41.wmf]òò

D

dxdy

y

x

f

)

,

(



EMBED Equation.3[image: image42.wmf]+

=

òò

'

)

,

(

D

dxdy

y

x

f



EMBED Equation.3[image: image43.wmf]òò

'

'

)

,

(

D

dxdy

y

x

f

,
(4)

Property 3. The mean-value theorem for a double integral 

There exists in the domain 
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where 
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 is the area of the domain 
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These properties may be proved on the base of definition of a double integral in Eq. 2.

Note. Let us consider a cylindrical solid bounded below by plane 
[image: image50.wmf]0

=

z

, above by the surface 
[image: image51.wmf])

,

(

y

x

f

z

=

, and laterally by a cylindrical surface whose directrix is the boundary of the domain 
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 gives an approximate value of the volume of the concerned cylindrical solid. The exact value of this volume one obtains through the limit as in Eq. (2). Thus, geometrically a double integral of a nonnegative function over a closed bounded domain determines the volume of the cylindrical solid restricted by the graph of this function and 
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1.2.  Calculation of a Double Integral 

Let us call the domain 
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 regular in direction of a coordinate axis, if any straight line parallel to this axis and passing through its interior point intersects its boundary at two points only, and regular, if it is regular in directions of both axes. An example of a domain regular in direction of
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-axis, is shown in Fig. 1.
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Theorem 2. If the double integral 
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then the definite integral


[image: image69.wmf]ò

ò

ò

=

)

(

)

(

2

1

)

,

(

)

(

x

x

b

a

b

a

dy

y

x

f

dx

dx

x

I

j

j

 
(7a)

(which is called the twofold iterated integral) also exists and 
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To prove this theorem, let us consider a cylindrical solid bounded below by the 
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-plane, above by the surface 
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 in which the solid is projected (Fig. 3.). The domain 
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Due to the arbitrariness of 
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. Integrating it over this segment as in Eq. (7a), we find that the integral in the left-hand side of this equation gives the volume of the concerned cylindrical solid. On the other hand, the same volume is determined by double integral of function 
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Here in Eq. (7b) the integral over 
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If the domain 
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 is regular, the equations Eq. (7b) and Eq. (8) are valid simultaneously so that 
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This equality is known as a formula of changing the integration order.
Thus, the calculation of a double integral is reduced to sequential calculation of two definite integrals. Let us consider this procedure in detail, supposing the domain 
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 is regular and has the form shown in Fig.4. Projecting the domain 
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entirely describe the domain 
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 and their extreme values are the limits of the twofold iterated integral in Eq. (7b). 
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Projecting in the same manner the domain 
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 on the 
[image: image117.wmf]-

y

axis, we obtain inequalities
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which give the limits of the twofold iterated integral in Eq. (8). In practice, the choice of variable of the external integral depends on the structure of the domain boundaries. For example, if the domain 
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 has the form shown in Fig. 5, the choice of 
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 as the variable of the external integral will make us divide the domain 
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 into two parts by the line 
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 and consider two twofold iterated integrals instead of one when the variable 
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 is chosen. Let us note in conclusion that in the case of a rectangular domain of integration with sides parallel to the coordinate axes the limits of both the external and internal integrals are constant and the order of integration is insignificant.

LECTURE 2.
2.1.  Change of Variables in a Double Integral

The change of variables in a double integral is produced with the aims: a) to simplify the domain of integration, b) to simplify the integrand. 

Let the Cartesian coordinates 
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 and 
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 be functions of new variables 
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The functions 
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 in which the domain 
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 is converted under transformation Eq. (12). Then the change of variables in a double integral is produced by means of the following formula
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where 
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is the functional determinant which is also called the Jacobian of transforming from Cartesian coordinates 
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2.2    Double Integral in Polar Coordinates

The Cartesian coordinates 
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 are connected with the polar ones by the equations


[image: image142.wmf]î

í

ì

=

=

,

sin

y

cos

x

j

r

j

r

     
[image: image143.wmf]¥

<

£

<

£

r

p

j

0

,

2

0


(15)

where 
[image: image144.wmf]r

 is the radius and 
[image: image145.wmf]j

 is the polar angle. Calculating the partial derivatives and composing the Jacobian, we find 
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and in accordance with Eq. (13) obtain the double integral in polar coordinates:
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To transform this integral to a twofold iterated one it is necessary to convert the equations of boundaries of the domain 
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 to polar coordinates and to determine limits of variation of the variables 
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2.3. Geometric Applications of a Double Integral 

a). The area of a closed bounded domain. Let 
[image: image171.wmf]D
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If the domain 
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 is described by inequalities from Eqs. (10), then
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One can easily see that the right-hand side of this equation is a usual definite integral determining the area of a plane domain.

If the plane domain is given in polar coordinates by Eq. (18), the switching of variables in Eq. (21) gives:
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b).  The volume of a cylindrical solid. If a cylindrical solid is bounded by surfaces: below by plane 
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The generalization in the case of a solid restricted below and above by surfaces 
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Thus, the integration of 
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 over the surface 
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 is reduced to the integration of 
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If the equation of the surface is 
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where 
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2.4. Physical Applications of a Double Integral

Let 
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Similar arguments may be brought regarding the formulas given below.
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are static moments of a plate with respect to the 
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are coordinates of the center of mass of a plate.
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are inertia moments of a plate with respect to the 
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is an inertia moment of the plate with respect to the coordinate system origin.

LECTURE 3.    

Examples
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Solution. The domain 
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Using the additivity property of a double integral, we obtain
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It is evident, the first way is more practical. (
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Solution.  The shape  of  the domain 
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 is shown in Fig. 10 and it is convenient to calculate the double integral on the base of Eq. (4). In this case inequalities describing the domain 
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Example 3. Change the order of integration in the twofold iterated integral
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Solution. Let 
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Example 4., Calculate the double integral 
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Solution. The equation of the circumference in polar coordinates is 
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Using them in Eq. (19), we obtain
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Example 5. Calculate the area of a plane domain 
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Solution. The shape of the domain 
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 is  shown  in Fig. 13. Owing to symmetry with respect to the 
[image: image328.wmf]-

x

axis, its area 
[image: image329.wmf]S

 is equal to 
[image: image330.wmf]1

2

S

S

=

 where 
[image: image331.wmf]1

S

 is the area of the upper part of the figure. The initial value of the angle 
[image: image332.wmf]j

 for both curves, bounding this part of figure, is the same and equal to 
[image: image333.wmf]0

=

j

. The terminal values we find from condition 
[image: image334.wmf]0

=

r

: 
[image: image335.wmf]0

cos

=

j

 
[image: image336.wmf]2

p

j

=

Þ

,  
[image: image337.wmf]0

cos

1

=

+

j

 
[image: image338.wmf]p

j

=

Þ

. Inasmuch as these values are different, the whole interval must be divided into two parts


[image: image339.wmf]p

j

p

p

j

£

£

È

£

£

2

2

0

.

In the first of these, as one can see in Fig. 13, the variable 
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 varies between given curves whereas in the second it varies from zero up to the outer curve. Thus we have
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and therefore 
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Example 6. Calculate the volume of a solid bounded by surfaces 
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Solution. This solid is bounded below by the surface 
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and using the Eq. (24), for the volume 
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 of the solid in question, we obtain
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Example 7. Calculate the area of part of the paraboloid 
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Solution.  The paraboloid given is symmetric with respect to the plane 
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and the integrand in Eq. (27) is
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Because of the symmetry also with respect to the plane 
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, the required surface area may be calculated as the quadruple area of the part of this surface located in the first octant, as it is shown in Fig. 15. That is,
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Example 8. Calculate the static moments of homogeneous lamina with respect to the coordinate axes. The lamina is bounded by lines 
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Solution. The problem is solved whereby Eqs. 31, which in the case of the homogeneous lamina have the form 
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 is the mass density. The shape of the lamina is shown in Fig. 16.
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LECTURE 4. 

Triple Integral

4.1. Definition of a Triple Integral 

Let us consider in space a certain domain [image: image388.wmf]V

 enclosed by a surface [image: image389.wmf]S
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Definition. If the limit of the integral sums sequence when the maximum  of  [image: image400.wmf]k
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The quantity [image: image407.wmf]dxdydz
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 is called the differential volume element in Cartesian coordinates. 

Theorem 1. . (Integrability Theorem)) Any function [image: image408.wmf])
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 continuous in a closed domain [image: image409.wmf]V

 is integrable in this domain.

A triple integral has properties similar those of a double one.

4.2. Calculation of a Triple Integral

A triple integral is reduced for calculation to the threefold iterated one. Let [image: image410.wmf]V

 be a regular domain, bounded by surfaces: [image: image411.wmf])
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Let us transform the double integral in Eq. 5 to twofold iterated one. The domain 
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Thus, the formula for the triple integral calculation takes the form
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The integrals in the right-hand side of this equation are called the threefold iterated integral.

4.3.      Exchange of Variables in a Triple Integral

As well as in the case of a double integral, the change of variables in a triple integral is realized for aims: a) to simplify the domain of integration, b) to simplify the integrand. 
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4.4.   Triple Integral in the Cylindrical Coordinates

In cylindrical coordinates, the position of an arbitrary point [image: image459.wmf]M

 is determined by the set of tree numbers [image: image460.wmf](
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which are easily obtained from Fig. 18. Evaluating the partial derivatives and composing the Jacobian, we find
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and, in accordance with Eq. (9), we obtain
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The quantity [image: image472.wmf]dz
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 is the differential volume element in cylindrical coordinates.

To reduce this integral to the threefold iterated one it is necessary to rewrite the equations of surfaces bounding the volume in cylindrical coordinates and to determine the limits of their variation. If the domain [image: image473.wmf]W

 is described by inequalities
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we have
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4.5. Triple Integral in the Spherical Coordinates

The position of an arbitrary point [image: image477.wmf]M

in spherical coordinates is determined by the set of three numbers [image: image478.wmf](
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The Jacobian of transformation to the spherical coordinates is calculated in accordance with Eqs. (10) and  (17)  and is equal to
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So that, the differential volume element in spherical coordinates is 
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As usual, to convert the triple integral in spherical coordinates to the threefold iterated one it is necessary to transform in spherical coordinates the equations of the surfaces bounding the volume and to find the limits the variables [image: image493.wmf],
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 vary in.

LECTURE 5.

5.1.  Applications of a Triple Integral 

a). Calculation of a solid volume. If [image: image495.wmf]dV

 is the differential volume element in the chosen coordinate system, the volume of a certain solid occupying in the space a domain [image: image496.wmf]V

 can be find whereby integrating [image: image497.wmf]dV

 over the domain [image: image498.wmf]V

, that is
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In particular, in the coordinate systems above considered we have
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in the Cartesian coordinate system,
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in the cylindrical coordinate system, and
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in the spherical coordinate system.

b). Some physical applications.

Let [image: image503.wmf]V

 be a certain solid occupying the domain [image: image504.wmf]V

 given in the Cartesian coordinate system and let there in [image: image505.wmf]V

 be distributed mass with the volume mass density [image: image506.wmf])
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is mass of a solid [image: image511.wmf]V

;
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are static moments of a solid with respect to the coordinate planes [image: image515.wmf]Oxy
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 correspondingly.
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are coordinates of the center of mass of a solid.
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are inertia moments of a solid with respect to the coordinate planes [image: image522.wmf]Oxy

,

Oyz

,

Ozx

 correspondingly. 
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are inertia moments of a solid with respect to the coordinate system axes.
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is a solid inertia moment with respect to the coordinate system origin.
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is Newton's potential of the gravity field of a solid at the point [image: image528.wmf])
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5.2.    Examples
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Example 1. Calculate the triple integral I=[image: image533.wmf]òòò
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Solution. The domain [image: image536.wmf]V

 is shown in Fig. 20. Laterally it is bounded by cylindrical surfaces with generatrix parallel to [image: image537.wmf]z

-axis, that is, the boundaries of the domain [image: image538.wmf]D
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Example 2. Calculate the volume of the solid bounded by surfaces: [image: image554.wmf]2
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Solution. The surfaces given are paraboloids of revolution. Because of the axial symmetry of the solid , the calculation is convenient to realize using the cylindrical coordinates. In accordance with Eq. (21), the volume of solid in this case is determined by integral
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Example 3. Calculate the mass of the spherical layer between the surfaces [image: image580.wmf]1
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Solution.  The mass density is apparently described whereby function
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 is the dimensional factor of proportionality. Due to the symmetry of the solid with respect to the coordinate planes, we can write
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 is the part of the solid located in the first octant. The integral is convenient to be calculated in spherical coordinates. The equations of surfaces bounding the solid in this system of coordinates are [image: image587.wmf]1

r

=

 and [image: image588.wmf]2

r

=

. Therefore, 

[image: image589.wmf]{

}

2

r

1

,

2

/

0

,

2

/

0

:

)

r

,

,

(

W

1

£

£

£

£

£

£

=

p

q

p

j

q

j


The mass density in the spherical coordinates is [image: image590.wmf]r

r

q

j

g

k

)

,

,

(

=

 and we obtain

[image: image591.wmf]=

=

òòò

j

q

q

d

d

sin

dr

r

r

k

8

M

2

W

1

[image: image592.wmf]k

6

rdr

d

sin

d

k

8

2

0

2

0

2

1

p

q

q

j

p

p

=

ò

ò

ò

.  (
Example 4. Calculate the coordinates of the center of mass of homogeneous solid bounded by surfaces[image: image593.wmf]0
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Solution. The coordinates of the center of mass of the solid are determined by [image: image598.wmf],
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Designating the volume occupied by the solid by [image: image611.wmf]V
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Thus, the coordinates of the center of mass of the solid are [image: image617.wmf]÷
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