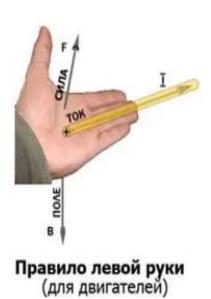
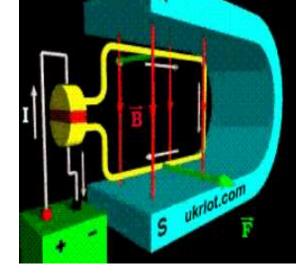
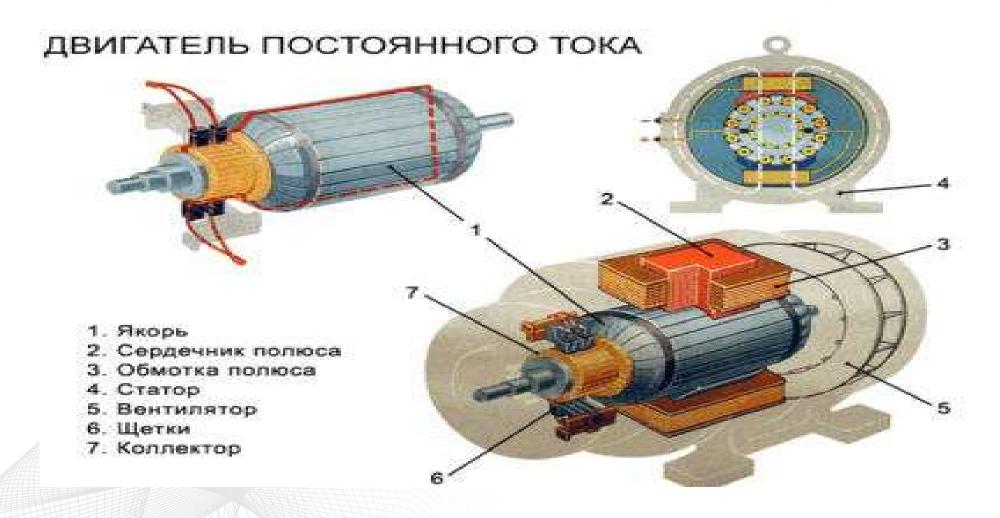

# Двигатели постоянного тока

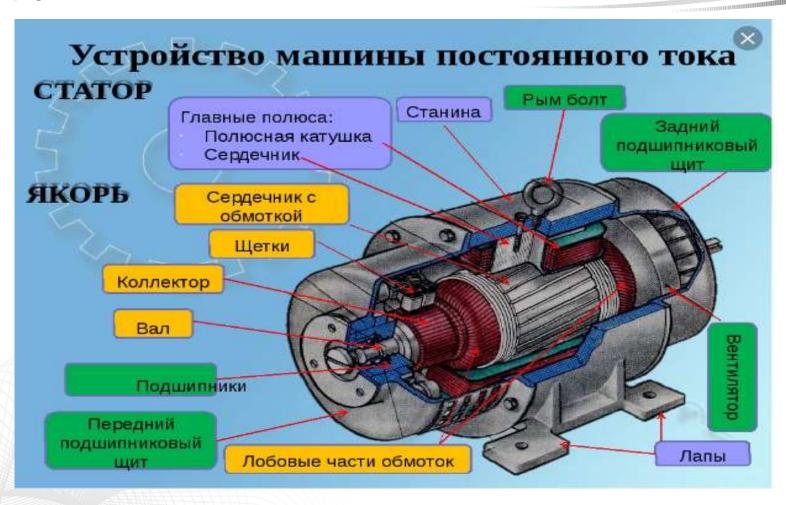

Принцип действия, конструкция, эксплуатация


# Взаимодействие проводника с током и магнитного поля







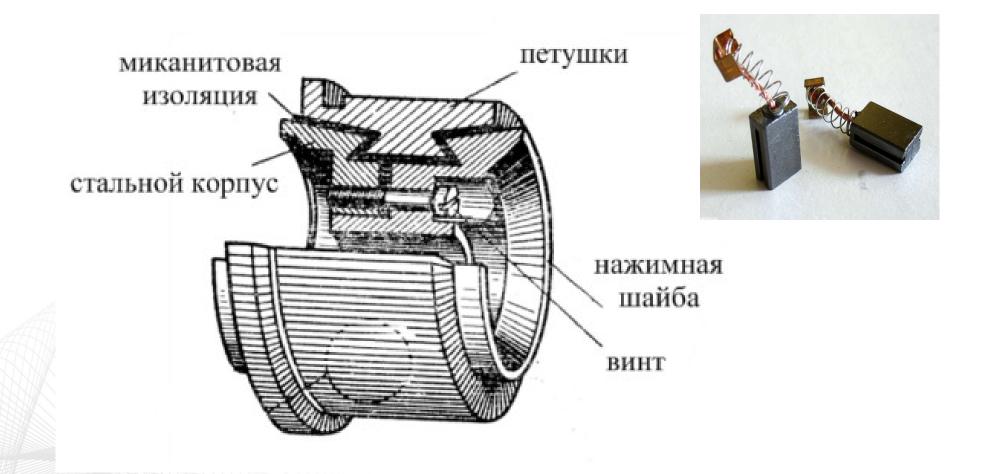



#### Конструкция двигателя постоянного тока




#### Конструкция машины постоянного тока

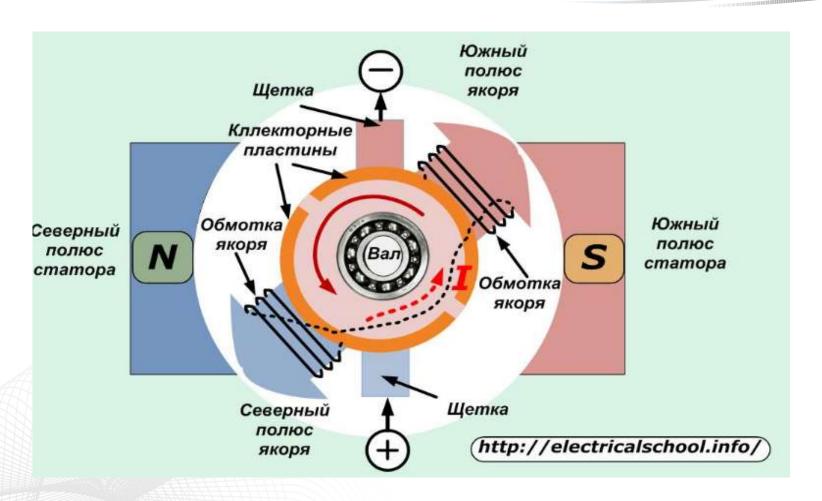



#### Активные части машины постоянного тока



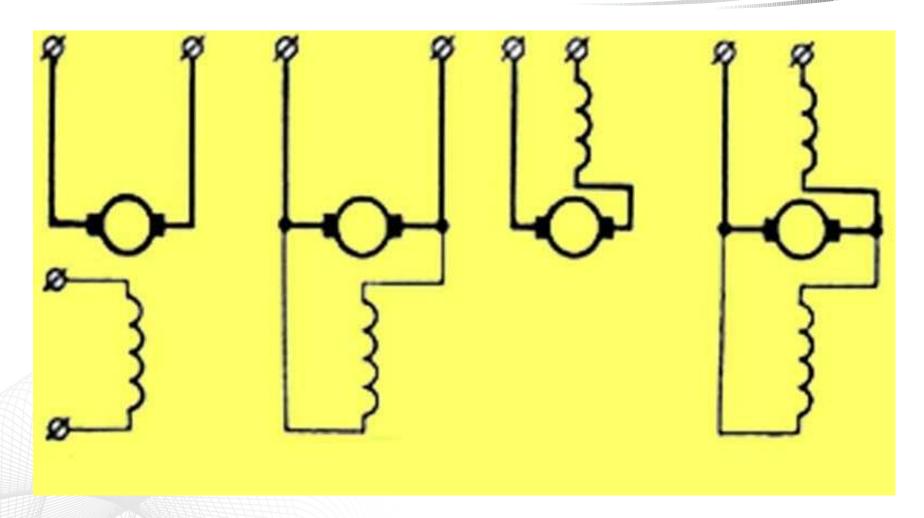
# Ротор (якорь) МПТ




#### Устройство коллектора



# Внешний вид ДПТ




# Принцип действия ДПТ





# Схемы включения ДПТ



# Особенности ДПТ

#### Достоинства:

простота устройства и управления;

практически линейные механическая и регулировочная характеристики двигателя;

легко регулировать частоту вращения;

хорошие пусковые свойства (большой пусковой момент), (наибольший пусковой момент у ДПТ с

последовательным возбуждением);

компактнее других двигателей (если использовать сильные постоянные магниты в статоре);

■ так как ДПТ являются обратимыми машинами, появляется возможность использования их как в двигательном, так и в генераторном режимах.

#### Недостатки:

дороговизна изготовления;

для питания электродвигателя от сети переменного тока необходимо использовать выпрямительные устройства;

необходимость профилактического обслуживания коллекторно-щёточных узлов;

ограниченный срок службы из-за износа коллектора.

(Последние два недостатка на современном этапе развития ДПТ почти не ощутимы).

# Техническое обслуживание ДПТ

- При техническом обслуживании дежурный персонал постоянно следит за нагрузкой и вибрацией электродвигателей, температурой и наличием смазки в подшипниках, отсутствием ненормальных шумов и искрения под щетками.
- Дежурный персонал также производит наружный осмотр и очищает электродвигатель от пыли и загрязнений.
- Периодические осмотры электродвигателейя производят по графику, установленному главным инженером предприятия. Осмотры планируют тем чаще, чем тяжелее условия работы и чем более изношены электродвигатели.

# Условия эксплуатации

- К тяжелым условиям работы относятся: большая продолжительность или высокая частота пусков, высокая температура или запыленность окружающей среды.
- Квалификационная группа лица, производящего осмотр, должна быть не ниже III.
- Целью осмотров является определение технического состояния электродвигателя и выявление объема работ, которые должны быть выполнены при очередном ремонте. Кроме того, при осмотре производят техническое обслуживание подшипников, колец, щеток и выполняют мелкий ремонт без разборки машины.

# Эксплуатация ДПТ

#### Надзор за нагрузкой и подшипниками двигателей

- Надзор за нагрузкой двигателей, температурой подшипников и охлаждающего воздуха, поддержанием уровня масла в подшипниках, а также пуск и остановка двигателей осуществляется персоналом, обслуживающим механизмы. Персонал электроцеха обязан периодически осматривать двигатели и контролировать режим их работы по всем показателям, а также производить ремонт и испытания.
- Надзор и уход состоит в контроле за температурой и отсутствием ненормального шума. В подшипниках скольжения, кроме того, следят за уровнем и чистотой масла, нормальным вращением смазочных колец. При низком уровне масла его доливают. Обычно подливают масло в подшипники один раз в месяц и реже. Чаще доливают масло только при наличии его утечки из подшипников.
- Любая утечка масла, особенно утечка внутрь двигателя это серьезный дефект. Попадая на обмотку, масло разрушает изоляцию, резко снижает её электрическую прочность, что может привести к КЗ в обмотке.
- Смена масла в подшипниках скольжения и смазки в подшипниках качения производится, как правило, один раз в год.

# Охлаждение ДПТ

- В двигателях, забирающих воздух для охлаждения непосредственно из помещений, необходимо следить за тем, чтобы решетки на всасывающих приемах в торцевых крышках не были забиты пылью и грязью. Для этого решетки, как и весь двигатель, систематически очищают.
- Мощные двигатели работают по замкнутой системе охлаждения и имеют водяные воздухоохладители. Для предотвращения конденсации влаги на стенках воздухоохладителя температура входящей в него воды не должна быть ниже 5...10°C.

# Уход за коллектором

- Коллектор чистят на холостом ходу сухой неволокнистой тряпкой. Если на коллекторе есть жир, тряпку смачивают спиртом.
- Царапины и почернения на коллекторе во избежание усиления искрения должны устраняться по мере их возникновения. Это достигается полировкой коллектора мелкой стеклянной бумагой, закрепленной на деревянной колодке при нормальной частоте вращения двигателя.
- Смазочные кольца подшипников скольжения должны вращаться с заданной частотой. При замедленном вращении колец происходит недостаточная подача масла и перегрев подшипника. Необходимый уровень масла в подшипниках отмечен чертой на маслоуказателе.

# Текущий ремонт ДПТ

При проведении частичной ревизии без разборки двигателя выполняют следующие работы:

- внешний осмотр общего состояния;
- осмотр выводов, щеточного механизма, коллекторов или контактных колец, подшипников и других частей;
- промывка подшипников скольжения и заполнение их маслом;
- вскрытие подшипников качения и проверка наличия и качества в них консистентной смазки;
  - проверка состояния изоляции обмоток статора и ротора мегомметром;
- проверка свободного вращения ротора; устранение незначительных дефектов, выявленных при ревизии.


# Текущий ремонт

- Ревизия двигателя с полной разборкой должна производиться в сухом отапливаемом помещении, оборудованном подъемными средствами.
- Разборку электродвигателя начинают со снятия полумуфты, шкива или шестерни с конца вала. После этого подвешивают и удерживают на весу подшипниковые щиты, отворачивают болты торцевых крышек, щиты выводят из заточки статора, а ротор опускают на расточку статора.

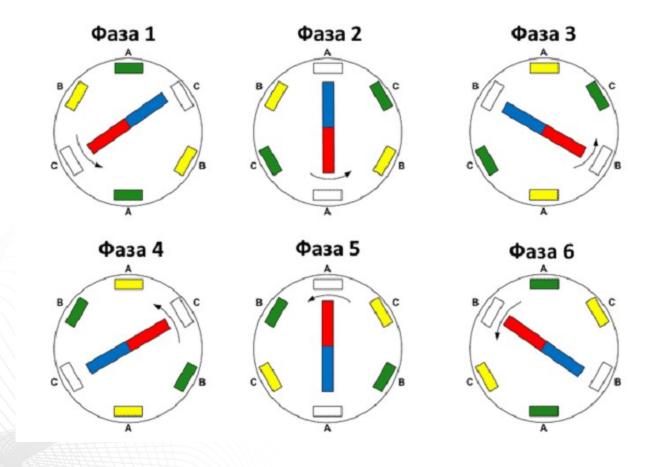
# Текущий ремонт

- При необходимости после снятия щитов производится выемка ротора.
- При осмотре обмотки статора необходимо обратить внимание на исправность крепления отдельных узлов и лобовых частей, а также на отсутствие трещин и повреждений изоляции и состояние расклиновки обмоток.
- При обнаружении ослабленных клиньев следует установить между клиньями и обмоткой дополнительные изоляционные прокладки.
- При осмотре активной стали статора и ротора проверяют плотность опрессовки, надежность крепления и отсутствие коррозии. Выявленные дефекты устраняют, а расточку статора при необходимости покрывают изоляционным лаком.

# Бесколлекторные ДПТ




# Принцип действия бесколлекторного ДПТ


На статоре БДПТ обычно расположены 3 обмотки, по аналогии с электродвигателями переменного тока их часто называют трехфазными. Отчасти это верно: бесколлекторные двигатели

работают от источника постоянного тока (чаще от аккумуляторов), но контроллер включает ток в обмотках поочерёдно.

Форма питающего обмотки напряжения формируется прямоугольными импульсами управления транзисторами.



# Принцип действия БДПТ



# Преимущества БДПТ

- Благодаря возбуждению мощными постоянными магнитами (неодимовыми, например) превосходят по моменту и мощности и имеют меньшие габариты, чем асинхронные двигатели. Чем пользуется большинство производителей электротранспорта от самокатов до автомобилей.
- Нет искрящего щеточно-коллекторного узла, который требует регулярного обслуживания.
- При использовании качественного контроллера в отличие от того же КД не выдают помехи в питающую сеть, что особенно важно в радиоуправляемых устройствах и транспорте с развитым электронным оборудованием в бортовой сети.
- КПД более 80, чаще и 90%.
- Высокая скорость вращения, в отдельных случаях до 100000 об/мин.

#### Недостатки вентильных двигателей

- Высокая стоимость двигателя, обусловленная использованием дорогостоящих постоянных магнитов в конструкции ротора. В ряде случаев предпочтительным оказывается применение асинхронного двигателя с преобразователем частоты.
- Относительно сложная структура двигателя и управление им.

# Бесколлекторные двигатели постоянного тока



# Спасибо за внимание