КУРСОВАЯ РАБОТА

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Тема «Расчет теплообменной установки»

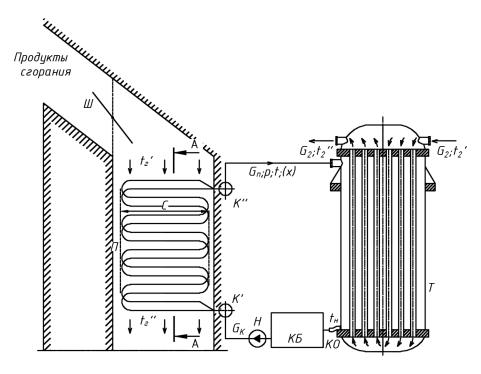


Рисунок 1 – Принципиальная схема установки

T — парожидкостный кожухотрубчатый теплообменник; KO — конденсатоотводчик; KE — конденсатный бак; H — насос; K'и K'' — коллекторы; Π — парогенерирующий пучок трубок; \coprod — шибер

Исходные данные

- 1. По теплообменнику Т
- 1.1. Тип теплообменника рекуперативный, трубчатый, ходовой, парожидкостный, нечетные варианты вертикальный, четные горизонтальный.
- 1.2. Трубный пучок: размещение трубок в трубной доске по вершинам равносторонних треугольников, сторона которых S_1 , а $S_1/d=\cdots$. При этом $S_2=0.866\cdot S_1$. Трубки стальные с размерами $d_0/\delta=\ldots$ (мм).

- 1.3. Нагреваемый теплоноситель— , температура на входе $t_2' = \cdots$ °C, на выходе $t_2'' = \cdots$ °C, производительность $G_2 = \cdots$ кг/час, средняя скорость в трубах $w_2 = \cdots$ м/с.
- 1.4. Греющий теплоноситель водяной пар $P = \cdots M\Pi a, t = \cdots {}^{\circ}C, x = \cdots ...,$ поступающий из парогенерирующего пучка труб.
 - 2. По парогенерирующему пучку труб П.
- 2.1. Парогенерирующий пучок: коридорный для четных вариантов, шахматный для нечетных; трубки стальные с размерами $d_0/\delta = \dots$ (мм); скорость конденсата на входе в трубки змеевиков пучка $W_{3M} = \dots M/c$; шаги пучка $S_1/d = \dots S_2/d = \dots$
- 2.2. Греющий теплоноситель продукты сгорания твердого топлива, состав которых принять в соответствии со стандартами; температура на входе в пуч $(t = \cdots)$ с; на выходе из пучка $t_{\Gamma} = \cdots$... $(t = \cdots)$ скорость продуктов сгорания на входе в пучек $w_{\Gamma} = \cdots$... $(t = \cdots)$...
- 3. Внутренние диаметры трубопроводов принять, исходя из допустимых скоростей в них: конденсата $w_{\rm K.}=10\,\div20\,{\rm m/c}$, пара $w_{\rm II.}=10\,\div30\,{\rm m/c}$. Трубопроводы теплоизолированы, теплопотери в них пренебрежимо малы.
- 4. Пояснительная записка объемом $10 \div 15$ страниц рукописного текста выполняется на одной стороне листов формата A4 (210х297 мм) в соответствии с «Требованиями к оформлению текстовой документации для курсовых и ВКР». Приводится классификация трубчатых теплообменников с анализом достоинств и недостатков рассчитываемого типа теплообменника.

По теплообменнику Т и парогенерирующему пучку П проводятся:

- 1. расчеты поверхностей теплообмена,
- 2. расчеты длин для одноходовых теплообменников.

Результаты расчетов выделяются.

Пояснительная записка представляется скрепленной в корочке из ватманской бумаги.

5. Численные значения исходных данных берутся из таблицы 1 индивидуальных вариантов.

Пояснения к схеме установки

В парожидкостном кожухотрубном теплообменнике Т (рис.1) жидкость (масло $\frac{1}{2}$ вода или другая), технологические параметры и теплофизические свойства (ТФС) которой отмечены подстрочным индексом 2, в количестве G_2 , кг/час, должна быть нагрета от температуры t до t_2'' за счет теплоты конденсации пара заданных параметров p, t, (x).

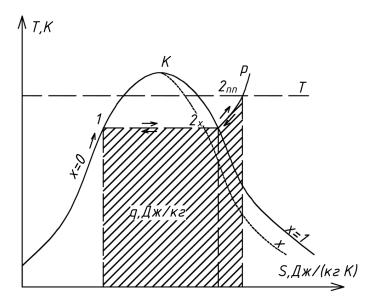


Рисунок 2 – Процессы образования пара и его конденсации на тепловой диаграмме T-S

 $1 - 2_x$ — образование влажного пара;

 $1 - 2_{\text{п.п.}}$ — образование перегретого пара;

 $2_x - 1$ — конденсация влажного пара;

 $2_{\text{п.п.}} - 1$ — конденсация перегретого пара.

Нагреваемая жидкость (теплоноситель) подается в теплообменник Т и движется внутри трубчатой поверхности нагрева, а пар, поступающий из парогенерирующего пучка, конденсируется на наружных поверхностях трубок. В результате теплопередачи между конденсирующимся на трубках паром и движущейся внутри трубок жидкостью происходит нагревание этой жидкости. Конденсат, образовавшийся в результате конденсации пара при заданном давлении P и имеющий температуру насыщения $t_{\rm hac.}$, через конденсатоотводчик КО, конденсатный бак КБ с помощью насоса Н подается во входной коллектор K, из которого поступает в трубки парогенерирующего пучка П. Здесь происходит процесс парообразования за счет теплопередачи от продуктов сгорания, омывающих трубки пучка. Продукты сгорания при этом снижают свою температуру от $t_{\rm r.}'$ до $t_{\rm r.}''$. Параметры продуктов сгорания (газов) обозначены подстрочным индексом «г». Из выходного коллектора K''пар поступает в парожидкостный теплообменник.

Термодинамические процессы образования пара в парогенерирующем пучке и конденсации его в парожидкостном теплообменнике изображены на диаграмме TS, рис.2.

Таблица 1 – Исходные данные индивидуальных вариантов

№	По теплообменнику									
вар-	$d_0\!/\!\delta$	S_{I}/d	ω_2	t_2	t_2 "	$G_2 \cdot 10^{-5}$	p	t	х	нагреваемый теплоноситель
	MM	-	м/с	°C	°C	кг/час	МПа	°C	-	-
1	20/1,0	1,3	2,8	25	130	2,6	0,476	-	0,85	MC-20
2	22/1,5	1,35	3,4	30	125	3,4	0,361	160	-	МК
3	24/1,5	1,4	4	30	120	3,2	0,361	170	-	MT
4	20/1,0	1,5	4,4	20	120	2,5	0,361	-	0,9	MT
5	26/1,5	1,45	3,6	15	105	3,3	0,198	140	-	МК
6	24/1,5	1,4	3	15	90	3,1	0,198	150	-	MC-20
7	20/1,0	1,3	3,8	25	130	2,6	0,476	160	-	МК
8	18/1,0	1,35	4,8	30	115	2,4	0,361	-	0,95	MT
9	16/1,0	1,4	2,6	30	140	2,2	0,618	180	-	MC-20
10	20/1,0	1,45	3,6	25	130	2	0,618	170	-	МК

№ вар-та	По парогенерирующему пучку										
312 Bap-1a	MM	-	-	°C	°C	м/с	м/с				
1	32/2	2,3	1,2	600	360	10	0,8				
2	34/2	2,6	2,4	580	340	8	0,7				
3	36/2	2,4	1,25	560	320	12	0,6				
4	30/2	2,5	1,25	520	280	9	0,9				
5	32/2	2,8	2,3	500	260	11	0,5				
6	30/2	2,2	1,2	480	240	13	1				
7	30/2	2,4	1,15	570	310	8	0,9				
8	32/2	2,3	2,6	590	330	10	0,9				
9	34/2	2,2	1,15	610	350	12	0,8				
10	36/2	2,4	2,3	610	330	14	0,7				

Тематика исследовательской части курсовой: Обеспечение энергосбережения при работе теплообменной установки