
Нестационарная теплопроводность ограниченного цилиндра

Цилиндр диаметром d высотой h с начальной. температурой 20°C помещен в печь с температурой среды 600 °C. Коэффициент теплоотдачи в процессе нагрева цилиндра α = 150 BT/(м2 °C).

Рассчитать температуры t_1 , t_2 , t_3 , t_4 , t_5 и воспринятую цилиндром теплоту (Q_{τ} , Мдж) за время τ после начала прогрева.

Дополнительные исходные данные для расчета взять из таблицы:

Таблица

№ вар.	Материал цилиндра	<i>d,</i> мм	<i>h,</i> мм	т в мин.
1		212	363	36
2	Сталь	182	333	24
3	$\lambda = 45.4 \; \text{BT/(M K)}$	169	303	18
4	$Q = 7900 \text{ kg/m}^3$	242	424	24
5	с = 462 Дж/(кг К)	272	484	30
6		157	272	36
7	Медь λ = 384 BT/(м K) Q = 8800 кг/м ³ c = 381 Дж/(кг K)	307	410	32
8		205	307	40
9		410	205	15
10		512	614	28
11		614	512	25
12	Бронза λ = 64 Bt/(м K) Q = 8000 кг/м ³ c = 381 Дж/(кг K)	384	512	28
13		341	469	25
14		427	427	30
15		299	597	35
16		469	683	40
I7		294	378	35
18	Чугун	252	336	40
19	$\lambda = 63 \text{ BT/(M K)}$	235	294	57
20	$Q = 7220 \text{ кг/м}^3$	336	420	54
21	с = 504 Дж/(кг К)	378	462	52
22		420	504	30
23	Алюминий	381	490	18
24	$\lambda = 204 \text{ BT/(M K)}$	435	435	10
25	$Q = 2670 \text{ кг/м}^3$	326	381	15
26	с = 920 Дж/(кг К)	490	544	20
27	Латунь	228	296	25
28	$\lambda = 85.5 \text{BT/(M K)}$	251	319	40
29	$Q = 8600 \text{ kg/m}^3$	274	342	50
30	с = 378 Дж/(кг К)	319	399	55