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Abstract. A method of reducing of a multi-dimensional model of the
complex non-linear heat exchange system (HES) with delay based on
structural changes in equilibrium points and approximation of delay func-
tion by the end of inertial units is presented. Simulation results confirm-
ing the adequacy of the process of reduced and original models, as well
as their compliance with the real data of the experimental control object
are demonstrated.
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1 Introduction

In modern systems of intelligent management of complex equipment there are
often used optimal control algorithms providing real-time management of pro-
duction processes. One of the well-approved approaches for the synthesis of such
algorithms is the theory of linear systems, which assumes a description of non-
linear processes and objects in terms of linearized models [1]. The main obstacle
to the use of these methods is a significant degree of differential equations de-
scribing the behavior of a complex multi-dimensional control object with the
necessary range of accuracy. The most preferred variant of priori mathematical
models allowing to record the control laws in an analytical form, and submit the
results of the analysis of dynamic processes in a convenient form, is second order
differential equations. For example, in the relay control systems in sliding mode
control methods for nonlinear second-order systems are well-developed [2], [3].

There are several approaches to reduction of dimensional models of high di-
mension [4]: the use of linearized matrix properties when converting to block
matrix according to division into independent blocks ; the use of the coefficients
properties of low interconnection; aggregating the matrix elements; the models
selection according to the frequency hierarchy of submatrices; separation in time
or frequency.

1.1 Problem Formulation

We will consider the problem of reduction of non-linear mathematical model of
a distributed heat-exchange system with maximum accounting its features. We
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assume interval stationary of HES element parameters and determinate nature
of interrelated thermal processes. It is appropriate to present the approximation
procedure in several stages [4]: decomposition of the original model [5]; formation
of several reduced models [6]; structural transformation in equilibrium state
points and leading to a simpler form; checking the approximate model for the
adequacy of the complete model or the real process of high order.

2 The Original Non-linear Model in the Space of State
Variables

As an illustrative example here is the heat exchange system (Fig. 1), charac-
terized by significant non-linear properties [7]. Notation: 1 heat exchanger, 2
circulating pumps, 3 control valve with AC motor 4, 5 temperature sensors and
a microprocessor controller (MC).

Fig. 1. The technological scheme structure of the heat exchange system

Salient features of HES with high-performance heat exchangers are not only
the non-linearity of the three-point relay control, but also the delay in the for-
mation channels of control actions and the flow of heat transfer in a distributed
pipe network of the secondary circuit. In addition, significant disturbance on
the characteristics and parameters of the heat exchange system is made by a
periodic flow of cold water into the secondary loop of the HES to compensate
for the irreplaceable HES discharge.

Arbitrary arrangement of risers-of couplers of the HES secondary circuit and
their different distances from the heat exchanger causes a variable delay which
makes a significant impact on the dynamics of thermal processes in the primary
circuit.

Under certain admissions for thermal processes taking place in contours of
HES, the original non-linear model of the system in the space of state variables
can be represented by the following differential equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dKmix(t)
dt = (kmx −Kmix(t)) · kh

Tvlv
· u(t)

dT◦
to1(t)
dt =

(T◦
1 −T◦

bk1(t))·Kmix(t)+T◦
bk1(t)−T◦

to1(t)
Tmix

dT◦
to2(t)
dt =

kexc·T◦
to1(t)+(1−kexc)·T◦

bk2(t)−T◦
to2(t)

Texc
dT◦

bk1(t)
dt =

kexc·T◦
bk2(t)+(1−kexc)·T◦

to1(t)−T◦
bk1(t)

Texc
dT◦

to3(t)
dt =

T◦
to2(t)−T◦

to3(t)
Tcp

∀i = 1..n →
{
∀j = 1..m →

{
dT◦

bkz(i,j)(t)

dt =
T◦
bkz(i,j−1)(t)−T◦

bkz(i,j)(t)

τz(i)/m

}}

dT◦
bk2(t)
dt =

kcw ·T◦
cw+(1−kcw)·T◦

bk3(t)−T◦
bk2(t)

Tcw

(1)

∀i = 1..n → T ◦
bkz(i,0)(t) = (1− kcl) · T ◦

to3(t) + kcl · T ◦
rm

T ◦
bk3(t) =

n∑

i=1

(
kzi · T ◦

bkz(i,m)(t)
)
,

n∑

i=1

kzi = 1

where Kmix(t) - the coefficient of coolant mixing in the external circuit to the
mixing unit; kmx and kh - coefficient characterizing the nonlinear properties of
the mixing process; Tvlv - the time constant of the electric control valve; u(t)
- electric valve control action that takes one of discrete values u ∈ (−1, 0,+1);
T ◦
to1 - the coolant temperature at the inlet HES in the external circuit; T ◦

1 - the
coolant temperature coming out of the backbone network; Tmix, Texc, Tcp, Tcw -
respectively, constants mixing time of the valve in the heat exchanger, in the
intermediate storage device, in the input node of cold water; T ◦

bk1 - the coolant
temperature at the outlet of the external circuit of HES; T ◦

to2 - the coolant
temperature at the outlet of the internal circuit of HES; T ◦

bk2 - the coolant tem-
perature at the inlet of the internal circuit of HES; kexc - the coefficient of heat
exchange efficiency; T ◦

to3 - the coolant temperature at the outlet of the interme-
diate storage, which is located in the internal circuit; T ◦

bk3 - return temperature
before unit mixing with cold water; τz(i) - the time delay of the transport carrier
in the secondary circuit (i riser-branch); T ◦

bkz(i,j) - the equivalent temperature
in inertial units to be used for the approximation of the transport delay; kcw -
the coefficient of cold water influence on the coolant in the internal circuit; kcl
- the coefficient of the coolant cooling in the internal circuit; n - the number
of secondary circuits (riser-branch) in HES; m - the number of inertial units
approximating transport delay.

Obviously, the order of the system of differential equations (1) will be de-
termined by (6 + n · m). For example, for a system with two risers n = 2 and
branches of inertial delay line units equal to m = 5 the number of equations of
the system will be 16. The coefficient kzi means relative proportion of the i-th
heat flow throughout the entire volume of the coolant flow q2, and characterizes
the distribution of the i-th flow on risers-branches.
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3 The Reduction of the Original Non-linear
Multidimensional Model

The procedure of the original nonlinear model HES converting assumes finding
the equilibrium points, which can be calculated by solving the system (1) with
priori known parameters of the object and control u(t) = 0 .

As a result of this calculation with the required accuracy we can find steady
values of the following variables state of the heat exchange system:

[
K0

mix, T
◦0
to1, T

◦0
to2, T

◦0
bk1, T

◦0
to3, ∀i = 1..n →

{
∀j = 1..m →

{
T ◦0
bkz(i,j)

}}
, T ◦0

bk3

]
(2)

where the superscript “0” denotes the state variables belong to the fields of
steady state. Further, using the calculated values (2) we write equations that
reflect dynamic processes in a neighborhood of steady state:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = Kmix(t)−K0
mix

x2(t) = T ◦
to1(t)− T ◦0

to1

x3(t) = T ◦
to2(t)− T ◦0

to2

x4(t) = T ◦
bk1(t)− T ◦0

bk1

x5(t) = T ◦
to3(t)− T ◦0

to3

∀i = 1..n →
{
∀j = 1..m →

{
x5+(i−1)·m+j(t) = T ◦

bkz(i,j)(t)− T ◦0
bkz(i,j)

}}

x6+n·m(t) = T ◦
bk3(t)− T ◦0

bk3

(3)

Defining the x(t) = [x1(t), x2(t), .., x6+n·m]
T
, the linearized model can be written

in a vector-matrix form:

ẋ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 0 0 0 · 0 0
a2,1 a2,2 0 a2,4 0 0 · 0 0
0 a3,2 a3,3 0 0 0 · 0 a3,6+nm

0 a4,2 0 a4,4 0 0 · 0 a4,6+nm

0 0 a5,3 0 a5,5 0 · 0 0
0 0 0 0 Ain1 A1 · 0 0
· · · · · · · · ·
0 0 0 0 Ainn 0 · An 0
0 0 0 0 0 Aout1 · Aoutn a6+nm,6+nm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

· x+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b1
0
0
0
0
0
·
0
0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

· u (4)

where the matrices A1, A2, .., An represent an approximation of the transport
delay of the coolant in riser-branches by inertial units:

∀i = 1..n → Ai =

∣
∣
∣
∣
∣
∣

ai1,1 0 · 0
ai2,1 ai2,2 · 0
0 0 · aim,m

∣
∣
∣
∣
∣
∣
;

where ∀j = 1..m → aij,j = −m/τzi, aij,j−1 = m/τzi the input vectors-columns
AT

ini of dimension m are calculated as follows:

∀i = 1..n → AT
ini = [(1 − kcl) ·m/τzi, 0, .., 0]
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the output vectors-lines Aouti of the dimension m are defined by the expression:

∀i = 1..n → Aouti = [0, .., 0, (1− kcw) · kci/Tcw, ]

where
n∑

i=1

kci = 1; the coefficient b1 =
(
kmx −K0

mix

) · kh

Tvlv
.

Let us consider in more details the peculiarities of a heat exchange system
as a control object. As it is known from the description of the object its non-
linear properties are reflected in the coefficients a2,1, a2,4, b1. The remaining ele-
ments of the matrix HES parameters are stationary coefficients, the components
A1, A2, .., An are determined by transport delay with different values within cer-
tain limits.

The traditional problem of regulating in heat exchange systems is to stabilize
the temperature T ◦

to3(t) of the coolant at the outlet of the intermediate tank,
which in terms of the taken denotation corresponds to a state variable x5(t).
Further, assuming that the a2,1, a2,4, b1 coefficients of the linearized model are
stationary points in the equilibrium state, the transfer functions can be used
for structural analysis of the object mathematical model. In addition, note the
assumption that is made on the analysis of the functioning of the control object.
This assumption is as following: the minimum time of transport delay in heat
exchange systems is next larger than the mixing time constant, therefore the
impact of the return coolant in the HES is considered as an external disturbance
on the closed loop control. In the absence of the influence of cold water on the
coolant in the inner-loop heating systems, i.e. kcw = 0, this disturbance will be
stationary and it can be used in the mathematical model (4) in the form of a
fixed coefficient.

In case of significant effect of cold water on the heat exchange system, which
leads to the inequality coefficient kcw > 0, the disturbance takes the form of
time-dependent function, which in the mathematical model (4) is appropriate to
distinguish as a separate term. Denoting the disturbance as a symbol v(t), we
can reduce the dimension of the mathematical model to the fifth order:

ẋ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 0 0
a2,1 a2,2 0 a2,4 0
0 a3,2 a3,3 0 0
0 a4,2 0 a4,4 0
0 0 a5,3 0 a5,5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

· x+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b1
0
0
0
0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

· u+

∣
∣
∣
∣
∣
∣
∣
∣

0
q3
q4
0

∣
∣
∣
∣
∣
∣
∣
∣

· v(t) (5)

where q3 = a3,6+nm, q4 = a4,6+nm

Next, using the Laplace transformation in the point of the equilibrium state,
we will write the linearized model:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X1(s) =
b1·U
s

X2(s) =
a2,1·X1+a2,4·X4

s−a2,2

X3(s) =
a3,2·X2+q3·V3

s−a3,3

X4(s) =
a4,2·X2+q4·V4

s−a4,4

X5(s) =
a5,3·X3

s−a5,5

(6)
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With the notation of the functional blocks

W1(s) =
−a2,1·b1·a−1

2,2

s ,W2(s) =
−a3,2·a−1

3,3

1−a−1
2,2·s

,W3(s) =
1

1−a−1
3,3·s

,

W4(s) =
−a2,4·a−1

4,4

1−a−1
4,4·s

,W5(s) =
−a5,3·a−1

5,5

1−a−1
5,5·s

,

Kv3 = − q3
a3,3

,Kv4 = − q4
a4,4

,K2,4 =
a4,2·a3,3

a3,2·a4,4
;

(7)

the mathematical model (6) can be represented as a block diagram (Fig. 2):
After conversion (dotted line marked shifts directions of adders) we obtain the

Fig. 2. The block diagram of the linearized model (7)

system shown in Figure 3.

Fig. 3. The converted block diagram of the linearized model (7)

Under the conditions of HES functioning let us consider some assumptions
that allow quite adequately to convert a block diagram (Fig. 3) in order to
get an equivalent transfer function. Thus the equivalent element with transfer
function W2,4(s) is assumed to be stable, because the static open-loop transfer
coefficient is less than one:
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W2(0) · k2,4 ·W4(0) =
a4,2 · a2,4
a4,4 · a2,2 = (1 −K0

mix) · (1− kexc) < 0.2 (8)

where the coefficient kexc = 0.9 (based on the practical experience of heat ex-
change systems maintenance). In addition, using Vieta theorem, we can write
the following approximation:

(1− T2 · s)
(1− T2 · s) · (1 − T1 · s)− 0.2

≈ (1− 0.2)−1

(1− T1 · s) (9)

This assumption is transformed to the ratio of the roots of the characteristic
equation, which allows to write the conditions:

Tmin < T1 < Tmax,
Tmax

Tmin
≈

(

1 + 2

√

1− 4 · T1 · T2 · 0.8
(T1 + T2)2

)

< 2 (10)

Execution of the inequalities (10) presents the measure of inaccuracy of log-
magnitude of the open loop not more than 6 dB.

Thus, the transfer function unit W2,4 with a positive feedback, with the as-
sumptions noted above, can be written as:

W2,4(s) =
(−a3,2/a3,3)·(1−(a4,2·a2,4)/(a4,4·a2,2)

−1)

1+(−a2,2·ktt(K0
mix)·s) ,

∀K0
mix ∈ (0..1) ∨ (kexc > 0.9) → ktt(K

0
mix) ∈

(
(
√
2)−1..

√
2
) (11)

where ktt(K
0
mix) - the function that characterizes the change in the time constant

of the object.
Next, the object is divided into the following parts: the unit of control sig-

nal delay Wz(s), the integrating part which is a unit of the equivalent transfer
function Wi(s) of the electric control valve, the inertial part which is an ape-
riodic link Wo(s) of the first-order transfer function of the thermal object, the
transfer function Wv(s) of the disturbance signal V (s). As a result of transfor-
mations, we obtain the final block diagram (Fig. 4), representing the linearized
model graphically (6). The corresponding transfer functions are defined by the
following equations:

Wz(s) ·Wi(s) ·Wo(s) = W1(s) ·W2,4(s) ·W3(s) ·W5(s),
Wv(s) = (Kv3 +Kv4 ·W4(s) ·W2,4(s)) ·W3(s) ·W5(s)

(12)

Fig. 4. The final block diagram
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The blocks are distributed in such a way that the inertial link with a maximum
time constant to be present in the unit Wo(s), the other two units are replaced
by the delay link (Fig. 3).

As a result of the transformation we obtain more convenient for the synthesis
of closed-loop control transfer function of the electric control valve, including
the main parameters of the heat exchanger system:

Wi(s) =

(
b1 · a3,2 · a2,1 · a5,3
a3,3 · a2,2 · a5,5

)

·
(

1− a4,2 · a2,4
a4,4 · a2,2

)−1

· s (13)

After the substitution of physical quantities, which are the parameters of HES,
this expression takes on the following form:

Wi(s) =
kh · kexc · (kmx −K0

mix) · (T ◦
1 − T ◦0

bk1(kcw))

(1− (1 − kexc) · (1−K0
mix)) · (Tvlv · s) (14)

In the research of complex objects with delay a very important requirement is
a preliminary assessment of the main parameters that have a significant impact
on the stability of the closed-loop control system. A valid transfer coefficient and
time constants in the inner loop heat exchange systems that define the retarded
reaction of control to the disturbance can be such parameters for the object in
question.

For the specific HES performance with known interval values of the con-
stituents parameters, in particular, the transfer coefficient kg of the control valve,
the coefficient kcw of cold water influence on the coolant in the internal contour
of the heat exchange system we can rather accurately estimate the range of
variation of the static coefficient of the actuator transfer function Wi(s).

The determining factor in assessing of the delay in the HES control channel
is the ratio of the time constant Tcp of the fluid mixing in the storage container
(if it exists in the HES) and time constant Tmix of the fluid mixing at the valve
of the system. It is clear that in the absence of the storage container the delay
duration in the control channel will be determined only by the time constant
Tmix. Let us write the transfer functions Wo(s) and Wz(s) the coefficients of
which are largely determined by the ratio of the time constants data:

Tcp > Tmix

⎧
⎪⎨

⎪⎩

Wo(s) =
1

1−a−1
5,5·s

= 1
1+Texc·s ,

Wz(s) = exp((ktt(K
0
mix) · a−1

2,2 + a−1
3,3) · s)

= exp((ktt(K
0
mix) · Tmix + Texc) · s)

Tcp < Tmix

{
Wo(s) =

1
1−ktt(K0

mix)·a−1
2,2·s

= 1
1+ktt(K0

mix)·Tmix·s ,

Wz(s) = exp((a−1
5,5 + a−1

3,3) · s) = exp((Tcp + Texc) · s)

(15)

To solve the tasks of HES research we can use the following fact: in the inequality
Tcp > Tmix there is nonstationary delay time for control, which varies not more
than two fold and corresponds to (ktt(K

0
mix) · Tmix + Texc). Similarly, when

performing inequality Tcp < Tmix nonstationary time constant of the object
(ktt(K

0
mix) · Tmix) also changes not more than two fold.
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4 The Nonlinear HES Model of the Second Order with
Delay in Controlling

Using the equations (15) without disturbance, with the notation y1(t) = x5(t),
y2(t) - output unit with the transfer function Wi(s)

kg(s) =
kh·kexc·(kmx−K0

mix)·(T◦
1 −T◦0

bk1(kcw))

(1−(1−kexc)·(1−K0
mix))·Tvlv

Tcp > Tmix

{
To = Tcp, τz = (ktt(K

0
mix) · Tmix + Texc)

Tcp < Tmix

{
To = ktt(K

0
mix) · Tmix, τz = (Tcp + Texc)

(16)

we can write the system of differential equations of the second order

{
ẏ1(t) =

y2(t)−y1(t)
To(t,y)

,

ẏ2(t) = kg(t, y) · u(t− τz)
(17)

The canonical representation of the system of differential equations in Frobe-
nius form after changing variables z1(t) = y1(t), z2(t) = ẏ1(t) becomes:

{
ż1(t) = z2(t),
ż2(t) = (kg(t, z)/To(t, z)) · u(t− τz)− T−1

o (t, z) · z2(t) (18)

4.1 The Results of the Simulation

The adequacy of the resulting model (18) is confirmed by comparing the s-
shaped curves of the speed-up after the numerical simulation of the transition
process which conforms to conditions of the experiment [8]. The experiment was
performed in the same conditions for each model, the parameters of the model
(18) were calculated by the formula (16) on the base of the parameters of the
initial model (1). The simulation was performed in the C language; the source
code is available on the web resource. [9]

Fig. (5a) illustrates transients: full red line T ◦
to3 for the model (1); green dotted

line y1(t) = z1(t) for the model (18), and curve T ◦
sto3 from the sensor output of

the current heat exchange system - the blue dotted line. Some difference between

Fig. 5. Comparison of the modeling and experiment outcomes
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the models at the beginning of the transition process can be explained by the
fact that in the system of equations (18) several inertial links are replaced by a
single delay element.

Fig. 5b shows the laws T ◦
to3 and y1(t) = z1(t) for both models. They corre-

spond to the same conditions and values of the parameters in the control valve
stem position h = 0.7. The results of modeling and experimental research imply
a high degree of adequacy of the reduced model to the real object.

Conclusion

A solution to the problem of approximation of a complex nonlinear mathematical
model of heat transfer delay system to a nonlinear system of differential equations
of the second order allows us to use modern methods of relay control. For the di-
mensional model reduction we used the method of decomposition of the linearized
model at the steady state point, where the basic coefficients are given in a general
form which allows us to get the non-linear law of the reduced model coefficients
at an arbitrary point of equilibrium. The results of numerical simulations confirm
the adequacy of the reduced model and real heat exchange system.
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