

Томский политехнический университет

Доцент, к.ф.м.н. Богданов Олег Викторович

Линейная алгебра Ч.2

Линейная алгебра Ч.2

- -Решение систем методом Крамера
- -Матричные уравнения
- -Понятие ранга матрицы
- -Решение систем методом Гаусса и Теорема Кронекера-Капелли

Системы линейных алгебраических уравнений – матричное представление

Система линейных уравнений имеет вид

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Таблица, составленная из коэффициентов при неизвестных, называется матрицей. Для данной системы основная матрица:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix} \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_m \end{pmatrix}$$

$$B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_m \end{pmatrix}$$

Коэффициенты при неизвестных Столбец свободных членов

Столбец неизвестных переменных

Правило Крамера решения квадратных систем линейных уравнений.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

$$AX = B$$

$$\mathbf{A} = (a_{ij})i, j = 1, 2, \dots, n; \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}; \mathbf{B} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Если определитель матрицы А не равен нулю, то система имеет единственное решение, определяемое формулами:

$$\begin{cases} x_1 = \frac{\Delta_1}{\Delta} \\ x_2 = \frac{\Delta_2}{\Delta} \\ \dots \\ x_n = \frac{\Delta_n}{\Delta} \end{cases}$$

Здесь Δ_i — определитель n-го порядка, получающийся из определителя Δ матрицы **A** коэффициентов системы заменой i-го столбца столбцом свободных членов.

Схема решения систем методом Крамера

С вычислением определителей связан один из методов решения систем линейных уравнений — метод Крамера. Рассмотрим его на примере.

$$\begin{cases} 2x_1 + 4x_2 + 5x_3 = 0 \\ 3x_1 - x_2 + 2x_3 = 10 \\ -4x_1 + x_2 + x_3 = -5 \end{cases}$$

Для решения системы необходимо вычислить 4 определителя 3-го порядка.

1. Вычисляем главный определитель из коэффициентов при неизвестных

$$\Delta = \begin{vmatrix} 2 & 4 & 5 \\ 3 & -1 & 2 \\ -4 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 18 & 0 & 1 \\ -1 & 0 & 3 \\ -4 & 1 & 1 \end{vmatrix} = 1 \cdot (-1)^{3+2} \cdot \begin{vmatrix} 18 & 1 \\ -1 & 3 \end{vmatrix} = -(18 \cdot 3 + 1) = -55$$

2. Вычисляем побочные определители для каждого неизвестного, для этого поочередно в главном определители заменяем столбцы, соответствующие одному из неизвестных, столбцом свободных членов

а) Находим определитель для первого неизвестного, заменяя в главном определителе первый столбец на столбец свободных членов

$$\Delta_{x_1} = \begin{vmatrix} 0 & 4 & 5 \\ 10 & -1 & 2 \\ -5 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 20 & 0 & 1 \\ 5 & 0 & 3 \\ -4 & 1 & 1 \end{vmatrix} = 1 \cdot (-1)^{3+2} \cdot \begin{vmatrix} 20 & 1 \\ 5 & 3 \end{vmatrix} = -(60-5) = -55$$

б) Находим определитель для второго неизвестного, заменяя в главном определителе второй столбец на столбец свободных членов

$$\Delta_{x_2} = \begin{vmatrix} 2 & 0 & 5 \\ 3 & 10 & 2 \\ -4 & -5 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 5 \\ -5 & 0 & 4 \\ -4 & -5 & 1 \end{vmatrix} = (-5) \cdot (-1)^{3+2} \cdot \begin{vmatrix} 2 & 5 \\ -5 & 4 \end{vmatrix} = 5(8+25) = 165$$

в) Находим определитель для третьего неизвестного, заменяя в главном определителе третий столбец на столбец свободных членов

$$\Delta_{x_3} = \begin{vmatrix} 2 & 4 & 0 \\ 3 & -1 & 10 \\ -4 & 1 & -5 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 0 \\ -5 & 1 & 0 \\ -4 & 1 & -5 \end{vmatrix} = -5 \cdot (-1)^{3+3} \cdot \begin{vmatrix} 2 & 4 \\ -5 & 1 \end{vmatrix} = -5(2+20) = -110$$

Для нахождения значений неизвестных используем формулы Крамера

$$x_1 = \frac{\Delta_{x_1}}{\Delta} = \frac{-55}{-55} = 1$$

$$x_2 = \frac{\Delta_{x_2}}{\Delta} = \frac{165}{-55} = -3$$

$$x_3 = \frac{\Delta_{x_3}}{\Delta} = \frac{-110}{-55} = 2$$

Значения неизвестных находятся делением побочных определителей на главный определитель

Это означает, что методом Крамера можно решать только такие системы, у которых главный определитель отличен от нуля

Полученное решение запишем в виде матрицы-столбца

Легко проверить подстановкой в каждое уравнение Системы, что полученное решение верно.

$$X = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$$

Пример:

$$\begin{cases} 3x_1 + 2x_2 - x_3 = 2 \\ 2x_1 - x_2 + 2x_3 = 3 \\ 4x_1 + x_2 + 3x_3 = 5 \end{cases}$$

$$\Delta = \begin{vmatrix} 3 & 2 & -1 \\ 2 & -1 & 2 \\ 4 & 1 & 3 \end{vmatrix} = -17; \quad \Delta_1 = \begin{vmatrix} 2 & 2 & -1 \\ 3 & -1 & 2 \\ 5 & 1 & 3 \end{vmatrix} = -16;$$

$$\Delta_2 = \begin{vmatrix} 3 & 2 & -1 \\ 2 & 3 & 2 \\ 4 & 5 & 3 \end{vmatrix} = 3; \quad \Delta_3 = \begin{vmatrix} 3 & 2 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 5 \end{vmatrix} = -8;$$

$$x_1 = \frac{16}{17}; \quad x_2 = -\frac{3}{17}; \quad x_3 = \frac{8}{17}.$$

Матричные уравнения

Матричные уравнения – это уравнения, в которых участвуют как известные матрицы, так и неизвестная матрица, которую и нужно найти. Существуют два основных типа матричных уравнений.

1 тип (левое умножение)

$$\frac{A \cdot X = B}{A^{-1} \cdot A \cdot X = A^{-1} \cdot B}$$

$$E \cdot X = A^{-1} \cdot B$$

$$X = A^{-1} \cdot B$$

2 тип (правое умножение)

$$X \cdot A = B$$

$$X \cdot A \cdot A^{-1} = B \cdot A^{-1}$$

$$X \cdot E = B \cdot A^{-1}$$

$$X = B \cdot A^{-1}$$

В виде матричного уравнения $A \cdot X = B$ может быть записана система линейных уравнений, решение которой $X = A^{-1} \cdot B$ существует, если определитель основной матрицы отличен от нуля.

Если в системе количество уравнений и неизвестных разное, то нельзя говорить об определителе основной матрицы и решать систему матричным методом нельзя.

Для решения таких систем применяется метод Гаусса

Схема нахождения обратной матрицы

- 1) Находится определитель матрицы. Если он отличен от нуля, $\det A \neq 0$ то обратная матрица существует.
- 2) Составляется союзная матрица , A^{*} элементами которой являются алгебраические дополнения элементов исходной матрицы.
- 3) Полученную союзную матрицу транспонируем, т.е. меняем ролями строки и столбцы матрицы. Получаем матрицу A^{*T} .
- 4) Матрицу A^{*T} делим на определитель матрицы и получаем обратную матрицу. (При делении матрицы на число все ее элементы нужно разделить на это число)

$$A^{-1} = \frac{1}{\det A} \cdot A^{*_T}$$

Рассмотрим примеры.

1. Найти матрицу, обратную данной $A = \begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix}$

1)
$$\det A = \begin{vmatrix} 2 & -3 \\ 4 & 5 \end{vmatrix} = 2 \cdot 5 - (-3) \cdot 4 = 22$$

1)
$$\det A = \begin{vmatrix} 2 & -3 \\ 4 & 5 \end{vmatrix} = 2 \cdot 5 - (-3) \cdot 4 = 22$$

2) $A^* = \begin{pmatrix} 5 & -4 \\ 3 & 2 \end{pmatrix}$ 3) $A^{*T} = \begin{pmatrix} 5 & 3 \\ -4 & 2 \end{pmatrix}$ 4) $A^{-1} = \frac{1}{22} \begin{pmatrix} 5 & 3 \\ -4 & 2 \end{pmatrix}$

Решение систем методом Гаусса

Метод Гаусса – метод последовательного исключения неизвестных. При решении системы методом Гаусса все действия проводятся над строками расширенной матрицы.

Понятие ранга матрицы.

Понятие ранга помогает при анализе системы уравнений.

Определение. Рангом матрицы называется максимальное число линейно независимых строк этой матрицы.

Рассмотрим систему уравнений

и запишем ее основную матрицу и расширенную матрицу

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} A^p = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \vdots b_1 \\ a_{21} & a_{22} & \dots & a_{2n} \vdots b_2 \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{cases}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$A^{p} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \vdots b_{1} \\ a_{21} & a_{22} & \dots & a_{2n} \vdots b_{2} \\ \dots & \dots & \dots & \dots \vdots \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \vdots b_{m} \end{pmatrix}$$

Определение 1. Система линейных уравнений называется совместной, если она имеет решение. Это возможно только в том случае, когда ранг основной матрицы равен рангу расширенной.

$$RangA = RangA^p$$

Определение 2. Система называется несовместной, если она не имеет решений.

Определение 3. Система называется определенной, если она имеет единственное решение. Это возможно, если ранг системы равен количеству неизвестных:

$$RangA = n$$

Определение 4. Система называется неопределенной, если она имеет бесчисленное множество решений. Это возможно в том случае, когда ранг системы меньше количества неизвестных:

RangA < n

Таким образом, при решении системы необходимо установить ее совместность, а затем определить единственное или множество решений она будет иметь.

Теорема Кронекера-Капелли

Теорема Кронекера-Капелли. Для совместимости СЛАУ необходимо и достаточно, чтобы ранг ее матрицы был равен рангу расширенной матрицы.

- Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение.
- Если ранг матрицы совместной системы меньше числа неизвестных, то множество ее решений является бесконечным.

Рассмотрим на примере системы

$$\begin{cases} x_1 + 4x_2 - 2x_3 = 3 \\ 3x_3 = -7 \\ -2x_1 - 8x_2 + 4x_3 = -6 \\ 3x_1 + 12x_2 - 6x_3 = 9 \end{cases}$$

Расширенная матрица – это матрица коэффициентов при неизвестных с добавлением столбца свободных членов.

$$A^{p} = \begin{pmatrix} 1 & 4 & -2 & 3 \\ 0 & 0 & 3 & -7 \\ -2 & -8 & 4 & -6 \\ 3 & 12 & -6 & 9 \end{pmatrix}$$

Видно, что 3-я и 4-я строки получаются умножением первой на числа (-2) и 3, значит соответствующие уравнения системы являются лишними. И система будет иметь множество решений. Решаем ее методом Гаусса.

Схема решения системы методом Гаусса.

- 1. Выписываем расширенную матрицу системы и приводим ее к ступенчатому или треугольному виду также, как это делалось при вычислении определителей (процедура получения нулей).
- 2. В процессе всех этих действий могут проявиться линейно зависимые строки (т.е. строки, соответствующие элементы которых одинаковые или пропорциональные, нулевые строки и т.п.), которые можно вычеркнуть

Например:
$$\begin{pmatrix} 1 & 4 & -2 & 3 \\ 0 & 0 & 3 & -7 \\ -2 & -8 & -4 & -6 \\ 3 & -12 & -6 & 9 \end{pmatrix} \approx \begin{pmatrix} 1 & 4 & -2 & 3 \\ 0 & 0 & 3 & -7 \\ RangA = 2 \end{pmatrix}$$
 Т.о. осталось 2 линейно независимых строки и ранг матрицы равен 2

3. В полученной матрице нужно выбрать базисный минор. Базисный минор – это отличный от нуля минор, порядок которого равен рангу матрицы. Соответственно определяются базисные и свободные неизвестные.

В нашем примере базисный минор можно составить из элементов 1-го и 3-го столбцов

$$M_2 = \begin{vmatrix} 1 & -2 \\ 0 & 3 \end{vmatrix}
eq 0$$
 , тогда так как минор, составленный из элементов 1-го и 2-го столбцов, равен нулю

$$M_2 = \begin{vmatrix} 1 & 4 \\ 0 & 0 \end{vmatrix} = 0$$

4. Записываем эквивалентную систему, при этом базисные неизвестные остаются в левой части уравнений, а свободные переносятся в правую.

$$\begin{cases} x_1 - 2x_3 = -4x_2 + 3 \\ 3x_3 = -7 \end{cases}$$

5. В итоге решается эта система и находится общее решение, в котором базисные неизвестные выражаются через свободные. Этим свободным неизвестным даются произвольные числовые значения, по ним вычисляются базисные и получается каждый раз новое частное решение. Таких решений можно составить бесчисленное множество.

$$X = egin{cases} -4x_2 - 5/3 \ x_2 \ -7/3 \end{cases}$$
 - общее решение $X = egin{cases} -3 \ 1/3 \ -7/3 \end{cases}$ -частное решение $x_2 = 1/3$)

Замечание. Если в матрице системы не вычеркивается ни одна строка, то есть все строки линейно независимы, то ранг будет равен числу неизвестных и решение получится единственным.

Система линейных однородных уравнений имеет вид и решается также, как и неоднородная

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

Пример:

$$\begin{cases} x_1 + 2x_2 + x_3 = 0 \\ 2x_1 - 7x_2 + 2x_3 = -11 \\ 2x_1 + 4x_2 + 5x_3 = 3 \end{cases}$$

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & -7 & 2 & -11 \\ 2 & 4 & 5 & 3 \end{pmatrix}^{(-2)} \sim \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -11 & 0 & -11 \\ 0 & 0 & 3 & 3 \end{pmatrix} \Rightarrow -11x_2 = -11; \quad x_2 = 1, \quad 3x_3 = 3, \quad x_3 = 1.$$

$$x_1 + 2x_2 + x_3 = 0$$
 $x_1 = -2x_2 - x_3 = -2 - 1 = -3$, $x_1 = -3$.

Пример: Найти общее и одно частное решение однородной системы линейных уравнений:

$$\begin{cases} x_1 + 2x_2 + x_3 + 4x_4 + x_5 = 0, \\ 2x_1 + x_2 + 3x_3 + x_4 - 5x_5 = 0, \\ x_1 + 3x_2 - x_3 + 6x_4 - x_5 = 0. \end{cases}$$

$$A = \begin{pmatrix} 1 & 2 & 1 & 4 & 1 \\ 2 & 1 & 3 & 1 & -5 \\ 1 & 3 & -1 & 6 & -1 \end{pmatrix} \sim \begin{pmatrix} S_1 \\ -2S_1 + S_2 \\ -S_1 + S_3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 & 4 & 1 \\ 0 & -3 & 1 & -7 & -7 \\ 0 & 1 & -2 & 2 & -2 \end{pmatrix} \sim \begin{pmatrix} S_1 \\ S_2 \\ 0 & -3 & 1 & -7 & -7 \end{pmatrix} \sim \begin{pmatrix} S_1 \\ S_2 \\ 0 & -3 & 1 & -7 & -7 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 4 & 1 \\ 0 & 1 & -2 & 2 & -2 \\ 0 & 0 & -5 & -1 & -13 \end{pmatrix}$$

Имеем:
$$-5x_3 - x_4 - 13x_5 = 0 \implies 5x_3 = -x_4 - 13x_5$$

$$x_3 = -0.2x_4 - 2.6x_5;$$

$$x_2 = -2x_3 + 2x_4 - 2x_5 = 0,$$
 $x_2 = 2x_3 - 2x_4 + 2x_5,$ $x_2 = -0.4x_4 - 5,$ $2x_5 - 2x_4 + 2x_5 = -2.4x_4 - 3.2x_5;$

$$x_1 + 2x_2 + x_3 + 4x_4 + x_5 = 0$$
, $x_1 = -2x_2 - x_3 - 4x_4 - x_5$, $x_1 = 4.8x_4 + 6.4x_5 + 0.2x_4 + 2.6x_5 - 4x_4 - x_5$, $x_1 = x_4 + 8x_5$.

$$x = \begin{pmatrix} x_4 + 8x_5 \\ -2.4x_4 - 3.2x_5 \\ -0.2x_4 - 2.6x_5 \\ x_4 \\ x_5 \end{pmatrix}$$
 - общее решение.

$$x = \begin{pmatrix} 5+0 \\ -12-0 \\ -1-0 \\ 5 \\ 0 \end{pmatrix}$$
 при $x_4 = 5$ и $x_5 = 0$, получим частное решение $x_4 = (5, -12, -1, 5, 0)$.

Спасибо за внимание