

Томский политехнический университет

Доцент, к.ф.м.н. Богданов Олег Викторович

Числовые и функциональные ряды (Лк.2)

Числовые и функциональные ряды

- -Числовые и функциональные ряды.
- -Знакопеременные ряды.
- -Степенные ряды. Ряд Тейлора и Маклорена.
- -Ряды Фурье.

Вариант № 1

1. Исследовать на сходимость знакоположительные ряды:

1)
$$\sum_{n=1}^{\infty} \frac{(2n-1)^2}{(5n^2+1)\cdot\sqrt{n}}$$
 2) $\sum_{n=1}^{\infty} tg^5 \frac{3}{\sqrt{2n+7}}$

2)
$$\sum_{n=1}^{\infty} tg^5 \frac{3}{\sqrt{2n+7}}$$

3)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{2^n}$$

3)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{2^n}$$
 4) $\sum_{n=1}^{\infty} \left(\frac{n-1}{n}\right)^n \cdot \frac{1}{5^n}$

2. Исследовать на сходимость знакочередующиеся ряды:

1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-2}{2n}$$

1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-2}{2n}$$
 2) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{5n^2 + 3n - 1}}{7n^3 + 4}$

3)
$$\sum_{n=1}^{\infty} (-1)^n \frac{6^n (n^2 - 1)}{n!}$$

3)
$$\sum_{n=1}^{\infty} (-1)^n \frac{6^n (n^2 - 1)}{n!}$$
 4) $\sum_{n=1}^{\infty} (-1)^n \ln^{2n} \left(1 + \frac{3}{n^2} \right)$

Найти интервалы сходимости степенных рядов:

1)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n+2}}{n+1} (x-8)^n$$
 2) $\sum_{n=1}^{\infty} (-1)^n n 2^{2n} x^n$

2)
$$\sum_{n=1}^{\infty} (-1)^n n 2^{2n} x^n$$

4. Разложить в ряд Тейлора по степеням $(x - x_0)$ функции:

1)
$$y = \frac{1}{x^2 + 4x + 7}$$
, $x_0 = -2$ 2) $y = (1+x)e^{-2x}$, $x_0 = 0$

2)
$$y = (1+x)e^{-2x}$$
, $x_0 = 0$

3)
$$y = \frac{\operatorname{arctgx}^3}{5x^3}$$
 $x_0 = 0$, 4) $y = \ln(x+2)^3$ $x_0 = 1$.

4)
$$y = \ln(x+2)^3$$
 $x_0 = 1$

Используя разложение подынтегральной функции в степенной ряд, вычислить интегралы с точностью не менее 0,01:

1)
$$\int_{0}^{1/8} \sqrt{1-x^3} \, dx$$
 2) $\int_{0}^{1} \sin x^3 \, dx$

$$2) \int_{0}^{1} \sin x^{3} dx$$

Разложить в ряд Фурье функцию в указанном интервале:

1.
$$y = \begin{cases} \frac{2}{\pi}x + 1, & -\pi < x \le 0, \\ 1/2, & 0 < x < \pi \end{cases}$$
 2. $y = -x/3, -3 < x < 0$ no curifycam

Числовые и функциональные ряды

ОПР. Пусть дана последовательность чисел $u_1, u_2 \dots u_n$. Выражение вида $\underline{\hspace{1cm}}^{\infty}$

$$u_1 + u_2 + \ldots + u_n + \ldots = \sum_{n=1}^{\infty} u_n$$
 (*

называется числовым рядом.

Числа u_1 , u_2 , ... $u_{\rm n}$ называются членами ряда. $u_{\rm n}$ – общий член ряда

ОПР. Составим из (*) новые последовательности

$$S_1 = u_1$$
 $S_2 = u_1 + u_2$ $S_3 = u_1 + u_2 + u_3$ $S_n = u_1 + u_2 + \dots + u_n$ (**) Числа S_1 , S_2 , S_3 называются частичными суммами ряда (*). $S_n = u_1 + u_2 + \dots + u_n$

ОПР. (сходимость и расходимость ряда)

Ряд (*) называется сходящимся, если сходится последовательность { $S_{\rm n}$ } частичных сумм, т. е. $\exists \lim_{n \to \infty} S_n = S$. Число S называется суммой ряда.

Если предел последовательности частичных сумм не существует или равен ∞, то ряд (*) называется расходящимся. Такой ряд суммы не имеет.

Теорема. (Необходимый признак сходимости ряда).

Если ряд
$$\sum_{n=1}^{\infty} \mathbf{u}_n$$
 сходится, то $\lim_{n \to \infty} u_n = 0$.

Следствие из Т. (Достаточный признак расходимости ряда).

Если
$$\lim_{n\to\infty}u_n\neq 0$$
 или \nexists , то ряд $\sum_{n=1}^\infty \mathbf{u}_n$ расходится.

Свойства сходящихся рядов.

Теорема.

Умножение членов сходящегося ряда на любое число α не нарушает его сходимости.

Теорема. Если ряды
$$\sum_{n=1}^{\infty} u_n$$
 и $\sum_{n=1}^{\infty} v_n$ сходятся и имеют суммы S_1 и S_2 соответственно, то сходится ряд $\sum_{n=1}^{\infty} \left(u_n \pm v_n\right)$ и его сумма равна $S_1 \pm S_2$.

ОПР. Ряд
$$u_{m+1} + u_{m+2} + \ldots + u_{m+n} + \ldots = \sum_{n=1}^\infty u_{m+n} = r_m$$
 полученный из ряда $\sum_{n=1}^\infty u_n$ отбрасыванием первых m членов называется m -ым остатком ряда $n=1$

Теорема.

Отбрасывание от ряда или присоединение к ряду любого конечного числа начальных членов не меняет его сходимости или расходимости.

Следствие из Т.

При исследовании ряда на сходимость можно игнорировать конечное число его членов

ОПР. Ряд, все члены которого не отрицательные числа, называется рядом с неотрицательными членами или знакоположительным рядом

Достаточные признаки сходимости ряда с неотрицательными членами

Теорема. (критерий сходимости)

Ряд $\sum_{n=1}^{\infty} u_n$ с неотрицательными членами сходится тогда и только тогда, когда последовательность его частичных сумм S_n ограничена сверху $S_n \leq M$.

Теорема. (1-ый признак сравнения)

Даны ряды
$$\sum_{n=1}^{\infty} a_n$$
 и $\sum_{n=1}^{\infty} b_n$ с неотрицательными членами причем $a_n < b_n$

Тогда

- а) из сходимости ряда $\sum b_n$ следует сходимость ряда $\sum a_n$
- б) из расходимости ряда $\sum a_n$ следует расходимость ряда $\sum b_n$

Теорема (предельный признак сравнения)

Даны ряды
$$\sum_{n=1}^{\infty} a_n$$
 и $\sum_{n=1}^{\infty} b_n$ ($a_n \ge 0$, $b_n \ge 0$)

- а) если \exists конечный и неравный нулю предел $\lim_{n \to \infty} \frac{a_n}{b_n}$, то оба ряда ведут себя одинаково в смысле сходимости
- б) если $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, то из сходимости $\sum b_n$ следует сходимость $\sum a_n$

Теорема (признак Даламбера)

Дан ряд
$$\sum_{n=1}^{\infty} u_n$$
 ($u_n \ge 0$). Если \exists предел $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l$, то

- a) при l < 1 ряд сходится
- б) при l>1 ряд расходится
- в) при l=1 вопрос о сходимости не решается (использовать признак сравнения)

Теорема (радикальный признак Коши)

Дан ряд
$$\sum_{n=1}^{\infty}u_n$$
 ($u_n\geq 0$). Если \exists предел $\lim_{n\to\infty}\sqrt[n]{u_n}=l$, то

- а) при l < 1 ряд сходится
- б) при l>1 ряд расходится
- в) при l=1 вопрос о сходимости не решается (использовать признак сравнения)

Теорема (интегральный признак Коши)

Дан ряд $\sum_{n=1}^{\infty} u_n$ ($u_n \ge 0$), пусть дана функция f(x) такая, что

 $f(1)=u_1, f(2)=u_2, ..., f(n)=u_n$ и пусть f(x) монотонно убывает на (1, + ∞).

Тогда ряд сходится, если сходится несобственный интеграл $\int_{1}^{\infty} f(x) dx$ и расходится, если этот интеграл расходится

$$f(2) + f(3) + f(4) + \dots + f(n) = S_n - u_1$$

$$f(1) + f(2) + f(3) + \dots + f(n-1) = S_n - u_n$$

$$f(1) = \int_{0}^{\infty} f(n) \int_{0}^{\infty} y = f(x)$$
1 2 3 4 n-1 n x

Знакопеременные ряды

Ряд $\sum_{n=1}^{\infty} a_n$ с членами произвольных знаков, называют знакопеременным

ОПР. Знакочередующимся называют ряд, у которого два соседних члена имеют разные знаки

$$u_1 - u_2 + u_3 - \dots + (-1)^{n+1} u_n + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} u_n = \sum_{n=1}^{\infty} a_n$$
 (27)

ОПР. Знакопеременный ряд $\sum_{n=1}^{\infty} a_n$ называется абсолютно сходящимся, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$, составленный из модулей его членов

Теорема. (признак абсолютной сходимости)

Если ряд
$$\sum_{n=1}^{\infty} |a_n|$$
 сходится, то знакопеременный ряд $\sum_{n=1}^{\infty} a_n$ тоже сходится

$$\sum_{n=1}^{\infty} \alpha$$
ңазывается условно сходящимся,

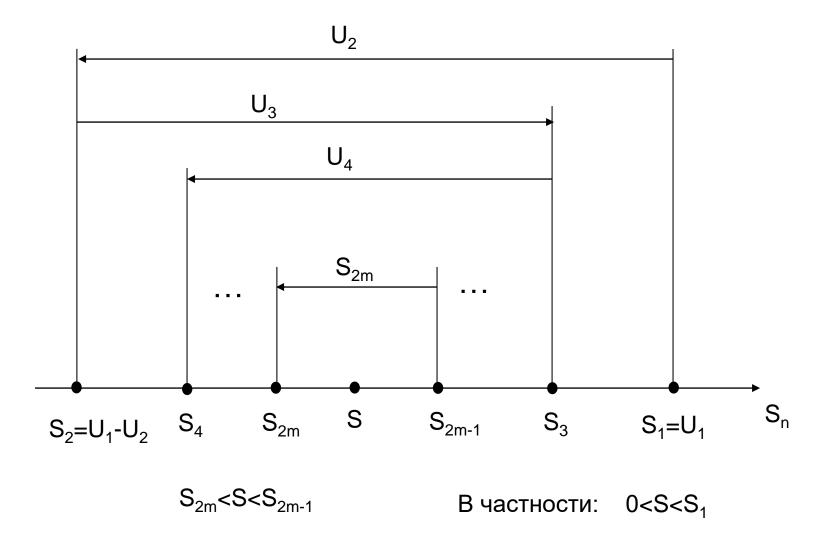
если он сходится, а ряд
$$\sum_{n=1}^{\infty} |a_n|$$
 расходится

Признак Лейбница

Теорема. (достаточный признак условной сходимости знакочередующегося ряда)

Если члены знакочередующегося ряда $\sum_{i} (-1)^{n+1} u_n$

- а) монотонно убывают по абсолютной величине $u_n>u_{n+1}$
- б) и стремятся к нулю при $n \to \infty$ то ряд сходится



Для остатка ряда лейбницевского типа: $0 < r_{2m} < U_{2m+1}$

Функциональные ряды

Пусть задана последовательность $f_1(x), f_2(x), ..., f_n(x)$ на D

Опр. Выражение

$$f_1(x) + f_2(x) + ... + f_n(x) + ... =$$
 называется функциональным рядом
$$\sum_{n=1}^{n} (f_n(x))^n (x)$$

Функции
$$f_I(x), \ f_2(x), \ ... f_n(x)$$
 - члены ряда. $f_n(x)$ – общий член ряда

Если
$$x=x_0$$
 - число, то ряд (*) — числовой ряд
$$f_1(x_0)+f_2(x_0)+...+f_n(x_0)+...=\sum_{n=1}^\infty f_n^{**}(x_0)$$

Опр. Множество значений $x_0 \in X$, для которых числовой ряд (**) сходится называется областью сходимости ряда

Равномерная сходимость

Если $\lim_{n\to\infty} f_n(x) = f(x)$ говорят, что $\{f_n(x)\}$ сходится к функции f(x). f(x) – предельная функция.

Введем частичные суммы

$$S_{1}(x) = f_{1}(x)$$

$$S_{2}(x) = f_{1}(x) + f_{2}(x)$$

$$S_{3}(x) = f_{1}(x) + f_{2}(x) + f_{3}(x)$$

$$... + f_{n}(x)$$

$$S_{n}(x) = f_{1}(x) + f_{2}(x) + ... + f_{n}(x)$$

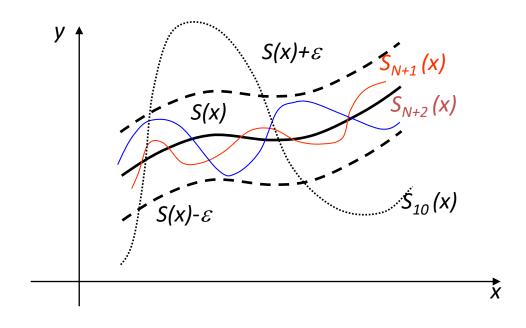
Опр. Суммой ряда $f_1(x) + f_2(x) + ... + f_n(x) + ...$ называется функция f(x) - предел частичных сумм

$$\lim_{n\to\infty} S_n(x) = f(x)$$

Опр. (равномерной сходимости)

Если $\forall \varepsilon > 0 \ \exists N \ \forall n > N \$ и $\forall x \in \$ D выполняется $|f(x) - S_{\rm n}(x)| < \varepsilon \ (|r_{\rm n}(x)| < \varepsilon),$

то говорят, что ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится в D равномерно



Опр. Говорят: «ряд
$$\sum_{n=1}^{\infty} f_n(x)$$
 мажорируется числовым рядом $\sum_{n=1}^{\infty} C_n$ » если $|f_n(x)| \le C_n$, $\forall n \in \mathbb{N}$ (28)

или: «
$$\sum_{n=1}^{\infty} C_n$$
 служит мажорантным рядом для $\sum_{n=1}^{\infty} f_n(x)$ »

Теорема. (Признак Вейерштрасса о равномерной сходимости)

Если ряд $\sum_{n=1}^{\infty} f_n(x)$ мажорируется на D сходящимся числовым рядом $\sum_{n=1}^{\infty} C_n$ то он сходятся на D равномерно

Свойства равномерно сходящихся рядов

Пусть функции $f_n(x)$ определены и непрерывны на [a,b]

- **1.** Если $\sum f_n(x)$ сходится на промежутке $D \subset \mathbb{R}$ равномерно и $\varphi(x)$ ограничена на D, то ряд $\sum \varphi(x) f_n(x)$ тоже сходится на D равномерно.
- 2. Если ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на [a,b] , то и его сумма f(x) непрерывна на этом отрезке.
- 3. Если ряд $\sum_{n=1}^{n=1} f_n(x)$ сходится равномерно на [a,b] , то интеграл в пределах от α до β $(\alpha,\beta\in [a,b])$ от суммы ряда f(x) равен сумме интегралов от членов данного ряда

$$\int_{\alpha}^{\beta} f(x)dx = \sum_{n=1}^{\infty} \int_{\alpha}^{\beta} f_n(x)dx$$

Замечание: Говорят «ряд можно почленно интегрировать»

Пусть функции $f_n(x)$ имеют на [a,b] непрерывные производные

3. Если ряды $\sum_{n=1}^{\infty} f_n(x)$ и $\sum_{n=1}^{\infty} f'_n(x)$ сходится равномерно на [a,b], то и сумма ряда f(x) имеет на [a,b] производную, причем $f'(x) = \sum_{n=1}^{\infty} f'_n(x)$

Замечание: Говорят «ряд можно почленно дифференцировать»

Степенные ряды

Опр.. Степенным рядом называется функциональный ряд вида

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots = \sum_{n=1}^{\infty} a_n x^n$$

 a_0 , a_1 , a_2 , ... $a_{\rm n}$ – постоянные, называются коэффициенты ряда.

Теорема. (Абеля об области сходимости)

- 1) Если степенной ряд сходится при некотором значении $x_0 \neq 0$, то он абсолютно сходится при всяком x, для которого $|x| < |x_0|$.
- 2) Если степенной ряд расходится при некотором значении x'_0 , то он расходится при всяком x, для которого $|x| > |x'_0|$.

Следствие. Областью сходимости степенного ряда является интервал с центром в начале координат

Опр. Интервалом сходимости степенного ряда называется интервал (-R,R) такой, что $\forall x \in (-R,R)$ ряд сходится и притом абсолютно, а для точек вне этого интервала ряд расходится.

Число R называется радиусом сходимости.

Свойства степенных рядов

- 1. Степенной ряд равномерно сходится на любом отрезке [a,b], лежащем внутри его интервала сходимости
- 2. Сумма степенного ряда является непрерывной функцией в интервале сходимости.

Замечание. Сумма остается непрерывной в конце интервала, если он входит в область сходимости.

3. Степенные ряды $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ и $\sum_{n=1}^{\infty} \left(a_n (x-x_0)^n \right)'$ имеют один и тот же радиус сходимости.

Замечание. Ряды имеют один и тот же радиус сходимости, но область сходимости может не совпадать.

Следствие. Ряд
$$\sum_{n=1}^{\infty} a_n (x-x_0)^n \text{ и ряды}$$

$$\sum_{n=1}^{\infty} \left(a_n (x-x_0)^n \right)'; \sum_{n=1}^{\infty} \left(a_n (x-x_0)^n \right)''; \dots; \sum_{n=1}^{\infty} \left(a_n (x-x_0)^n \right)^{(n)}$$

будут иметь один и тот же радиус сходимости

- 4. Степенной ряд можно почленно дифференцировать в интервале сходимости любое число раз.
 - 5. Степенной ряд можно почленно интегрировать по любому промежутку, принадлежащему интервалу сходимости любое число раз.

Разложение функции в степенной ряд

Oпр. Пусть функция f(x) бесконечно дифференцируема в точке x_0 . Степенной ряд

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \dots$$

называется рядом <u>Тейлора</u> функции f(x) по степеням $(x-x_0)$ или рядом <u>Тейлора</u> функции f(x) в окрестности точки x_0

В частности, если $x_0 = 0$, то ряд называется рядом <u>Маклорена</u>

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n = f(0) + f'(0) \cdot x + \frac{f''(0)}{2!} \cdot x^2 + \dots + \frac{f^{(n)}(0)}{n!} \cdot x^n + \dots$$

Теорема (необходимый признак сходимости функции к ряду Тейлора) Если функция f(x) в некоторой окрестности точки $x=x_0$ является суммой степенного ряда по степеням $(x-x_0)$, то этот ряд является ее рядом Тейлора.

Следствие. Не может быть двух различных рядов по степеням ($x-x_0$), сходящихся к одной и той же функции f(x).

$$n$$
-ая частичная сумма ряда Тейлора
$$S_n(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$

Опр. Разность $R_{\rm n}(x) = f(x) - S_{\rm n}(x)$ называют остаточным членом ряда

Тогда ряд Тейлора: $f(x) = S_n(x) + R_n(x)$

Остаточный член $R_n(x)$ в форме Лагранжа:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$
 точка ξ находится между x и x_0

Очевидно $f(x) = S_n(x)$, если $R_n(x) \to 0$:

Теорема (признак сходимости ряда Тейлора к порождающей его функции. достаточный)

Пусть функция f(x) и все ее производные ограничены в совокупности на интервале $(x_0 - h; x_0 + h)$, т.е. $\exists M > 0, \forall x \in (x_0 - h; x_0 + h)$ и всех n = 0,1,...выполняется неравенство $|f^{(n)}(x)| \leq M$. Тогда на интервале $(x_0 - h; x_0 + h)$ функция f(x) раскладывается в ряд Тейлора

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{(n)!} (x - x_0)^n \qquad |x - x_0| < h$$

Стандартные разложения Маклорена

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \frac{m(m-1)(m-2)}{3!}x^3 + \dots$$

$$sh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

$$ch x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

Область сходимости уметь получать

$$(-\infty, \infty)$$

$$(-\infty, \infty)$$

$$(-\infty, \infty)$$

$$(-1, 1)$$

$$(-\infty, \infty)$$

$$(-\infty, \infty)$$

Ряды Фурье

Опр. Пусть система функций $\varphi_1(x) \ \varphi_2(x) \ ... \ \varphi_n(x)$ ортогональна на [a,b]: C[a,b]

Ряд вида
$$a_1 \varphi_1(x) + a_2 \varphi_2(x) + \ldots + a_n \varphi_n(x) + \ldots = \sum_{n=1}^{\infty} a_n \varphi_n(x)$$

где a_i — числа, называется рядом Фурье по ортогональной на [a,b] системе функций $\varphi_I,\,\varphi_2,\,...,\,\varphi_n$

Тригонометрические ряды Фурье

Основная тригонометрическая система функций на $[-l\ ;\ l\]$

$$\frac{1}{2}, \cos\frac{\pi x}{l}, \sin\frac{\pi x}{l}, \cos\frac{2\pi x}{l}, \sin\frac{2\pi x}{l}, \dots, \cos\frac{n\pi x}{l}, \sin\frac{n\pi x}{l}, \dots$$

Опр. Ряд Фурье по основной тригонометрической системе функций называется тригонометрическим рядом Фурье.

$$\frac{a_0}{2} + a_1 \cos \frac{\pi x}{l} + b_1 \sin \frac{\pi x}{l} + a_2 \cos \frac{2\pi x}{l} + b_2 \sin \frac{2\pi x}{l} + \dots + a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} + \dots = \frac{a_0}{l} + a_1 \cos \frac{\pi x}{l} + a_2 \cos \frac{2\pi x}{l} + a_3 \cos \frac{2\pi x}{l} + \dots + a_n \cos \frac{n\pi x}{l} + a_n \sin \frac{n\pi x}{l} + \dots = \frac{a_0}{l} + a_n \cos \frac{n\pi x}{l} + a_n \sin \frac{n\pi x}{l} + \dots = \frac{a_0}{l} + a_n \cos \frac{n\pi x}{l} + a_n \cos \frac{n\pi x}{l} + \dots + a_n \cos \frac{n\pi x}{l} + \dots = \frac{a_0}{l} + a_n \cos \frac{n\pi x}{l} + a_n \cos \frac{n\pi x}{l} + \dots + a_n \cos \frac{n\pi x}{l} + \dots = \frac{a_n}{l} + a_n \cos \frac{n\pi x}{l} + \dots + a_n \cos \frac{n\pi x}{$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

Если ряд Фурье сходится к некоторой функции f(x) в каждой ее точке непрерывности, то говорят, что f(x) разлагается в ряд по тригонометрической системе функций.

Очевидно, это разложение единственно.

$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{l} + b_1 \sin \frac{\pi x}{l} + a_2 \cos \frac{2\pi x}{l} + b_2 \sin \frac{2\pi x}{l} + \dots + a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} + \dots$$

Коэффициенты ряда Фурье

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cdot \cos \frac{n\pi x}{l} dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \cdot \sin \frac{n\pi x}{l} dx$$

Теорема Дирихле.

(достаточные условия сходимости ряда (33) к функции f(x) на отрезке [-l;l]) Пусть на отрезке [-l;l] функция f(x) удовлетворяет условиям:

- 1) f(x) непрерывна или имеет конечное число точек разрыва первого рода;
- 2) f(x) монотонна или имеет конечное число точек экстремумов.

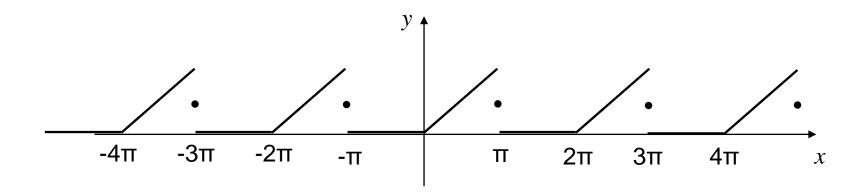
Тогда тригонометрический ряд Фурье функции f(x) сходится во всех точках отрезка [-l; l] и его суммой будет функция S(x), определенная на этом отрезке следующим образом:

- а) S(x)=f(x), если $x \in (-l; l)$, и x точка непрерывности функции f(x);
- б) $S(x) = \frac{f(x-0) + f(x+0)}{2}$, если $x \in (-l; l)$, и x точка разрыва функции f(x);

в)
$$S(-l) = S(l) = \frac{f(-l+0) + f(l-0)}{2}$$
 на границе.

Причем на любом отрезке не содержащем точек разрыва функции сходимость тригонометрического ряда Фурье будет равномерной.

пример
$$f(x) = \begin{cases} 0, & \text{если } -\pi \le x \le 0, \\ x, & \text{если } 0 < x \le \pi, \end{cases}$$



Тригонометрические ряды Фурье для четных и нечетных функций (неполные ряды Фурье)

$$f(x)$$
 — четная => $a_0 = \frac{2}{l} \int_0^l f(x) dx$ $a_n = \frac{2}{l} \int_0^l f(x) \cdot \cos \frac{n\pi x}{l} dx$ $b_n = 0$

Ряд по косинусам:

$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}$$

$$f(x)$$
 — нечетная => $a_0 = 0$ $a_n = 0$ $b_n = \frac{2}{l} \int_0^l f(x) \cdot \sin \frac{n\pi x}{l} dx$

Ряд по синусам: $S(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$

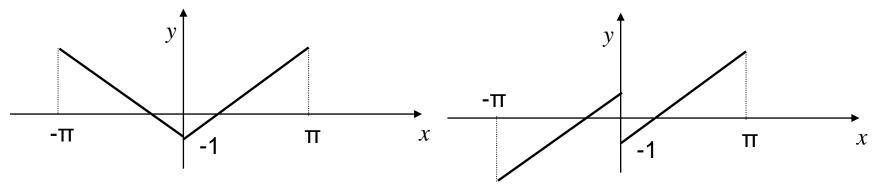
Функция, заданная на полуинтервале $[\ 0\ ; l\]$

Пусть f(x) — задана на полуинтервале [0 ; l]

Доопределять f(x) на промежуток [-l;0] можно произвольным образом, но удобнее сделать это четным или нечетным образом.

Так как доопределение произвольно, то ряд Фурье такой функции не единственный

пример: f(x) = x-1 задана на $[0, \pi]$

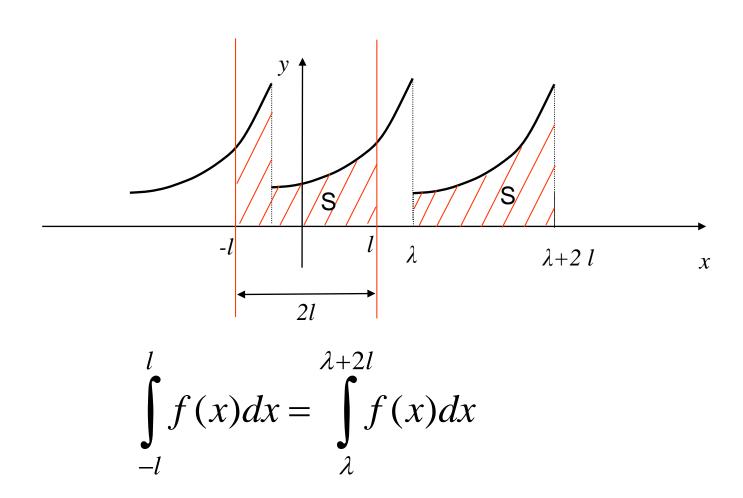


доопределим четным образом

доопределим нечетным образом

Функция, заданная на произвольном промежутке

Пусть задана периодическая функция f(x) с периодом T=2l на интервале $[\lambda;\lambda+2l]$



Вывод. При вычислении коэффициентов Фурье для периодической функции f(x) заданной на интервале $[\lambda; \lambda + 2l]$ в силу (37)

$$a_0 = \frac{1}{l} \int_{\lambda}^{\lambda+2l} f(x) dx$$

$$a_n = \frac{1}{l} \int_{\lambda}^{\lambda+2l} f(x) \cdot \cos \frac{n\pi x}{l} dx$$

$$b_n = \frac{1}{l} \int_{\lambda}^{\lambda+2l} f(x) \cdot \sin \frac{n\pi x}{l} dx$$

Спасибо за внимание