Министерство образования и науки Российской Федерации Федеральное агентство по образованию

Томский	политехнический	университет

	УТВЕРЖ	КДАЮ:	Декан	ФФЕ
		_Евтуі	шенко	г.с.
«			20	05r.

425-N

ИССЛЕДОВАНИЕ ТЕНЗОМЕТРИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ

Методические указания по подготовке и выполнению лабораторной работы № 425 по курсу "Методы и средства измерений" для студентов специальности 190900.- Информационно-измерительная техника и технологии

УДК 621.317.39 (075.8)

Исследование тензометрических измерительных преобразователей. Методические указания по подготовке и выполнению лабораторной работы \mathbb{N} 425 по курсу "Методы и средства измерений" для студентов специальности 190900 - "Информационно-измерительная техника и технологии". Томск, изд. ТПУ, 2000. - 17 с.

Составителт: Б.Б.Винокуров

Рецензент В.В.Вотяков

Методические указания рассмотрены и рекомендованы методическим семинаром кафедры информационно-измерительной техники 26.01.2005г.

Зав.	кафедрой	TNN	В.К.Жуков
------	----------	-----	-----------

ЛАБОРАТОРНАЯ РАБОТА № 425

ИССЛЕДОВАНИЕ ТЕНЗОМЕТРИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ, ИСПОЛЬЗУЕМЫЕ В РАБОТЕ

 $S_{\it mr}$ - чувствительность тензопреобразователя (продольная тензочувствительность);

 $R_{\it mn}$ - номинальное значение сопротивления тензопреобразователя, Ом;

 $\pm \Delta R_{m\kappa}$ - приращение сопротивления тензопреобразователя при его деформации, Ом;

l - активная длина проводящего элемента тензопреобразователя, м;

 Δl - приращение длины проводящего элемента тензопреобразователя при его деформации, м;

 $oldsymbol{\epsilon}_R$ — относительное изменение сопротивления тензопреобразователя;

 ϵ_I - относительная деформация;

A- база тензопреобразователя, мм;

B - ширина решетки тензопреобразователя, мм;

 S_{\perp} - поперечная тензочувствительность;

 $S_{\scriptscriptstyle M}$ - чувствительность мостовой измерительной цепи, В/Ом (или А/Ом);

 $S_{\it un}$ - чувствительность выходного прибора, Дел/В (или Дел/А);

 Φ ТП, ПТП и ППТП - соответственно фольговые, проволочные и полупроводниковые тензопреобразователи.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Электрические измерения неэлектрических величин. Под ред. П.В.Новицкого.-5-е изд.-Л.:Энергия.1975.-576с .
- 2. Левшина Е.С., Новицкий П.В. Электрические измерения физических величин. Измерительные преобразователи. -Л.: Энергоатомиздат. 1983.-296 с.
- 3. Методы и средства натурной тензометрии: Справочник/М.Л.Дайчик и др. М.: Машиностроение, 1989.-240 с.

ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

- 1. Изучить свойства и характеристики тензопреобразователей.
- 2. Ознакомиться с назначением и областью применения тензопреобразователей.
- 3. Изучить основные схемы включения резистивных тензопреобразователей.
 - 4. Ознакомиться с целью и программой работы.
- 5. Подготовить устные ответы на поставленные контрольные вопросы.

1. ЦЕЛЬ РАБОТЫ

- 1.1. Ознакомиться с принципом действия тензочувствительных преобразователей вообще и резистивных приклеиваемых тензопреобразователей, в частности.
- 1.2. Получить практические навыки определения основных параметров и характеристик тензочувствительных преобразователей.
- 1.3. Получить навыки практического использования тензопреобразователей для измерения неэлектрических величин.

2. ПРОГРАММА РАБОТЫ

- 2.1. Изучить лабораторную установку и входящие в ее состав объекты измерения и средства измерения.
- 2.2. Исследовать проволочные тензопреобразователи (ПТП).
- 2.2.1. Отградуировать ПТП и определить его продольную тензочувствительность.
- 2.2.2. Исследовать различные схемы включения ПТП на примере измерения сосредоточенных усилий или деформации упругой консольной балки.
 - 2.3. Исследовать фольговые тензопреобразователи (ФТП).
- 2.3.1. Отградуировать ФТП и определить его продольную тензочувствительность.
- 2.3.2. Исследовать различные схемы включения ФТП на примере измерения сосредоточенных усилий иди деформаций упругой консольной балки.
- 2.4. Исследовать полупроводниковые тензопреобразователи (ППТП).
- 2.4.1. Отградуировать ППТП и определить его продольную тензочувствительность.
- 2.4.2. Исследовать различные схемы включения ППТП на примере измерения сосредоточенных усилий или деформации упругой консольной балки.

- 2.5. Провести дополнительные исследования по усмотрению студента в соответствии с возможностями и комплектацией лабораторной установки.
- 2.6. Обработать экспериментальные данные и построить требуемые характеристики. Сформулировать частные и общие выводы по работе.
- 2.7. Представить полученные результаты в письменном отчете.

3. КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

Tензометр - устройство, прибор для измерения деформации в твердых телах, возникающих под воздействием механических нагрузок. Традиционно применяются для исследования распределения деформаций и соответственно механических напряжений в деталях машин, механизмов и конструкций. Применяют различные по принципу действия

Применяют различные по принципу действия тензометры - механические, оптические, электромагнитные, резистивные и др. Наиболее широкое применение получили резистивные тензометры, в основе которых лежит использование резистивных тензопреобразователей, в дальнейшем просто тензопреобразователей (ТП).

Естественной входной величиной таких преобразователей является относительная деформация, естественной выходной - электрическое сопротивление.

Принцип работы ТП заключается в следующем. При воздействии на проводник длиной l и сопротивлением R механической нагрузкой F (растяжение или сжатие) происходит изменение его сопротивления на величину $\pm \Delta R$. Изменение сопротивления проводника объясняется двумя факторами: изменением геометрических размеров — длины и сечения и изменением удельного сопротивления (проводимости) материала проводника при его деформации. Тот же эффект наблюдается и при деформации элемента, выполненного из полупроводникового материала. В зависимости от того, какой материал используется для изготовления ТП, различают тензопреобразователи проводниковые и полупроводниковые (ППТП).

Группу проводниковых ТП составляют проволочные (ПТП) и фольговые (ФТП) тензопреобразователи. Устройство наиболее используемых ПТП показано на рис.1а.

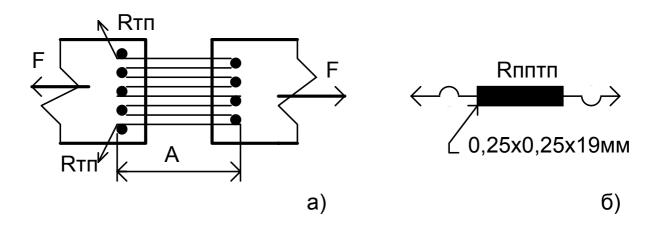


Рис. 1

(или испытуемой детали деталях) установлены диэлектрические стойки, между которыми натягиваются и закрепляются петли из металлической проволоки с высоким удельным сопротивлением (константан, нихром, манганин и др.). В другом варианте (на рис. не показано) проволока, выполненная зигзагообразно в виде решетки, наклеивается на полоску тонкой бумаги. К концам проволоки пайкой или сваркой присоединяются выводные медные проводники. Такой преобразователь, будучи равномерно наклеенным деталь, воспринимает деформацию испытуемую ee поверхностного слоя. Очевидно, что т.н. наклеиваемые $T\Pi$ классу относятся одноразовых $T\Pi$ И повторное ИX использование нежелательно.

Однако наиболее широкое применение получили фольговые тензопреобразователи, рабочими элементами которых являются фольговые проводники. Технология изготовления фольговых $T\Pi$ аналогична той, которая применяется для изготовления печатных плат в электронной промышленности (рис.2). При этом используется фольга из материала с высоким удельным сопротивлением и толщиной $4\div12$ мкм.

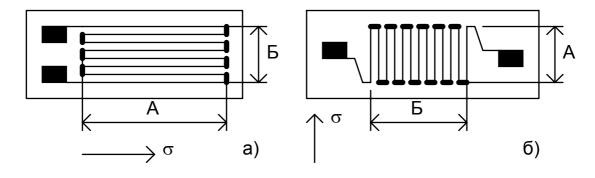


Рис.2

Основные преимущества ϕ ольговых ТП перед проволочными ТП:

- прямоугольное сечение фольговых проводников обеспечивает лучшие условия для теплоотдачи, что позволяет увеличивать ток через ТП и тем самым увеличивать чувствительность измерительной цепи;
- фотоспособ, применяемый для изготовления фольговых $T\Pi$, позволяет проектировать $T\Pi$ практически любой конфигурации. На рис.3 показан пример такого $T\Pi$, например, для измерения механических моментов. $T\Pi$ наклеиваются на поверхность скручиваемого упругого вала. При этом два $T\Pi$, находящиеся на общей подложке и ориентированные между собой взаимно перпендикулярно, реагируют на соответствующие составляющие деформаций $\mathbf{\epsilon}_1$ и $\mathbf{\epsilon}_2$.

Полупроводниковые ТП выполняют, как правило, из кристаллических полупроводников.

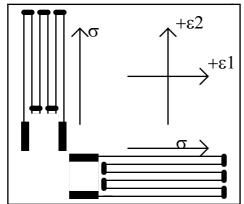


Рис.3

Наиболее сильно изменяется сопротивление при деформации германия, кремния, арсенида галия и др., что и предопределило их широкое использование. Сам преобратователь представляет брусок из ПП малых размеров с вплавленными в его концы

тонкими проводниками из никеля, золота или серебра (0.1мм, рис.1б).

Полупроводниковые тензопреобразователи (ППТП) обладают значительно большей чувствительностью к деформациям (см. табл.1). Они дороже проводниковых $T\Pi$, значительно сильнее подвержены действиям температуры и внешнего магнитного поля.

Из сказанного ясно, что наиболее массовыми для практического применения являются фольговые тензопреобразователи.

Основными метрологическими характеристиками ТП являются:

1. Значение продольной тензочувствительности

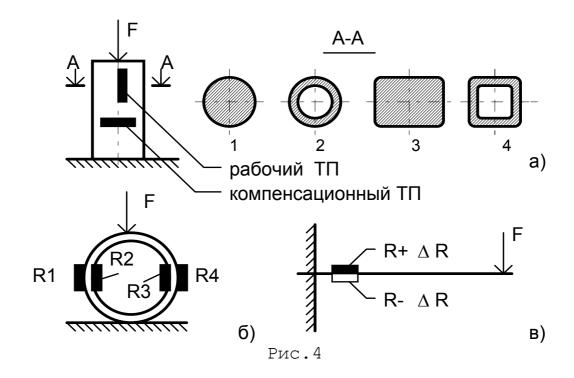
$$S_{mn} = \frac{\Delta R/R}{\Delta l/l} = \frac{\varepsilon_R}{\varepsilon_l};$$

- 2. База ТП -А (см. рис.1 и 2) длина петель решетки;
- 3. Ширина решетки -Б (см. рис.2);
- 4. Номинальное сопротивление ТП $-R_{mn}$;

- 5. Значение поперечной тензочувствительности S_{\perp} чувствительности тензопреобразователя в направлении, перпендикулярном рабочему положению;
- 6. Ползучесть постепенное уменьшение воспринимаемой тензопреобразователем деформации при постоянном значении деформации детали;
 - 7. Температурное приращение сопротивления.

В табл.1 приведены значения основных параметров ТП.

Таблица1


	Проволочные ТП	Фольговые ТП	Полупровдн.ТП
S_{mr}	2÷2.5□	1.9÷3.0□	-130÷170
<i>A.</i> mm□	3÷100□	3÷100□	0.25×0.25×19*□
\mathcal{B} . MM \square	5÷20□	5÷20	
S_{\perp}	$(0.25 \div 1.0)\%$ of S	0	
Rmn, om	10÷1000	10÷1000	100÷50 000
$\epsilon_{lma\kappa c}$	1	2	0.2÷1.0
Температ. коэфф.	$5 \cdot 10^{-6} \div 10^{-4}$	$5 \cdot 10^{-6} \div 10^{-4}$	$0.8 \cdot 10^{-3} \div 4 \cdot 10^{-3}$
сопротивле			
-ния□ α _{<i>Rmn</i>□}			

^{*}Пример одного из типов полупроводникового ТП

Для измерения деформаций или механических напряжений $T\Pi$ наклеивают на испытуемые детали или конструкции.

Для целевого измерения сосредоточенных усилий (силы), механических моментов (крутящий момент, вращающий момент и др.) и давлений ТП наклеивают на вспомогательный упругий элемент, воспринимающий измеряемую механическую величину. При этом деформация упругого элемента, вызываемая воздействующей нагрузкой (силой, моментом, давлением), приводит к деформации тензопреобразователя.

Так, например, для измерения сосредоточенных усилий используют упругие цилиндры с различным сечением (рис.4а), упругое кольцо (рис.4б), упругую консольную балку (рис. 4в) и др.

Обычно ТП включают в мостовые измерительные схемы (рис.5). Мостовые схемы, в свою очередь, могут быть равновесными и неравновесными.

Равновесные схемы чаще применяются для точных измерений механических величин или для *градуировки* ТП, т.е. установления зависимости $\frac{\Delta R}{R} = f(\frac{\Delta l}{l})$ или $\mathbf{\epsilon}_R = f(\mathbf{\epsilon}_l)$ и определения коэффициента тензочувствительности. При этом основополагающим является условие равновесия мостовой схемы, которое записывается как $R_1 \cdot R_4 = R_2 \cdot R_3$.

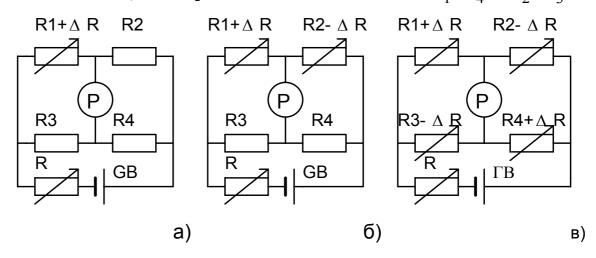


Рис.5

неравновесных мостовых схемах изменение $\pm \Delta R$ преобразуется в напряжение или ток сопротивления ТП выходной диагонали моста. Применение просто измерительных CXEM позволяет осуществлять компенсацию температурной погрешности $T\Pi$, реализуя дифференциальное их включение. Для этого два одинаковых ТП (R1 и R2 на рис.5б) включают в смежные плечи моста, один из которых (R1) -рабочий - воспринимает измеряемую деформацию, другой (R2) - компенсационный, поставленный в одинаковые с рабочим ТП тепловые условия, не воспринимающий деформацию или воспринимающий деформацию противоположного знака ($-\Delta$ R). В последнем случае чувствительность мостовой цепи (рис.5б) удваивается по сравнению со схемой включения, показанной на рис.5а.

На рис.5в представлена мостовая схема включения 4-x ТП. При их подключении необходимо выполнять условие, что преобразователи, расположенные в противоположных плечах, воспринимают деформации одного знака, а ТП, расположенные в смежных плечах – деформации противоположного знака. Причем, для лучшей компенсации температурной погрешности, учитывая, что разброс сопротивлений тензорезисторов может достигать $\pm 20\%$, необходимо, чтобы все четыре плеча имели близкие по значению номинальные сопротивления.

Существует еще ряд практических методов температурной компенсации и улучшения линейности преобразования[1÷3].

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 4.1. На чем основан принцип действия тензорезистивных преобразователей?
 - 4.2. Что такое коэффициент тензочувствительности ТП?
- 4.3. Что такое поперечный коэффициент тензочувствительности?
 - 4.4. Причины возникновения погрешностей ТП?
 - 4.5. Дать классификацию резистивных ТП.
 - 4.6. Что значит отградуировать ТП?
 - 4.7. Рассмотреть схемы и правила включения ТП.
- 4.8. Основное назначение упругих элементов при измерении механических величин с применением ТП?
- 4.9. Рассмотреть режимы работы мостовых измерительных схем и в каких случаях эти режимы используются?

5. ОБЪЕКТЫ ИЗМЕРЕНИЯ И СРЕДСТВА ИЗМЕРЕНИЯ

Лабораторный макет (рис.6) предназначен исследования фольговых, проволочных и полупроводниковых тензопреобразователей. Все объекты исследования средства измерения размещены в сдвоенном стандартной конструкции. В верхнем блоке расположена консольная балка с наклеенными на ней фольговыми, проволочными и полупроводниковыми тензопреобразователями электромеханической системой ее нагружения разгружения. Здесь же установлены цифровой индикатор "Нагрузка", индицирующий значение сосредоточенного усилия в ньютонах (Н) и цифровой индикатор равновесия мостовой измерительной схемы. Мост может быть уравновешен с использованием переключателя S2 и регулировок "Грубо плавно". В нижнем блоке собраны все измерительные схемы. Выбор типа тензопреобразователя и схем их включения соответственно комбинацией осуществляется положений переключателей "Тип ТП"(S3) и "Схема"(S4) (варианты $T\Pi$ приведены в табл.2). включения плечи моста Положениям переключателя "Тип ТП" (S3) соответствуют следующие типы преобразователей: "1"- фольговые, проволочные и "3"-полупроводниковые.

Процесс нагружения и разгружения упругой консольной балки до заданной нагрузки проводят следующим образом. С помощью переключателя S1 выбирают режим "нагр." или "разгр.", что соответствует режимам нагружения и разгружения балки. Нажав кнопку "Пуск", наблюдают за изменением показания цифрового индикатора "Нагрузка, Н".

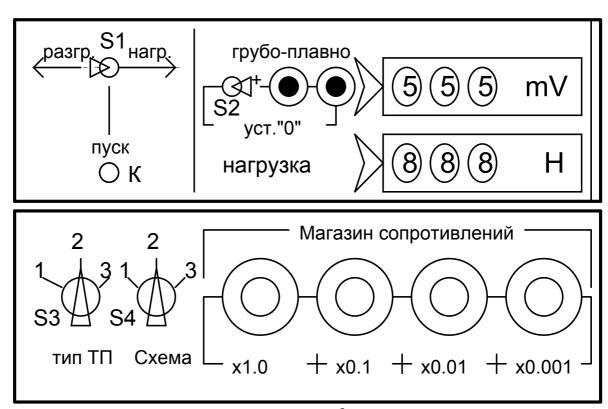


Рис.6

Таблица 2

Положение					Вид сх	хемы
S4	R1	R2	R3	R4		
1	R_{mn}				Рис. 5	ā
2	R_{mn}	R_{mn2}			Рис. 5	วิดี
3	R_{mn}	R_{mn2}	R_{mn3}	R_{mnA}	Рис. 5	- ЭВ

В обоих режимах работы устройства предусмотрено автоматическое отключение процесса нагружения при

достижении номинальной нагрузки. Для запуска устройства необходимо переключатель S1 переключить в обратное положение и продолжить работу в установленном порядке.

ВНИМАНИЕ!

По окончании работы балка должна быть полностью разгружена.

Сама балка имеет профиль, соответствующий понятию "Балка равного сопротивления". В этом случае при ее нагружении по всей поверхности упругого элемента механическое напряжение одинаково, материал используется наиболее рационально, а преобразователи можно наклеивать практически в любом месте, соблюдая при этом лишь правило направленности. На рис. 7 показано расположение ТП в соответствии с их положением на принципиальной мостовой схеме, безотносительно к типу ТП.

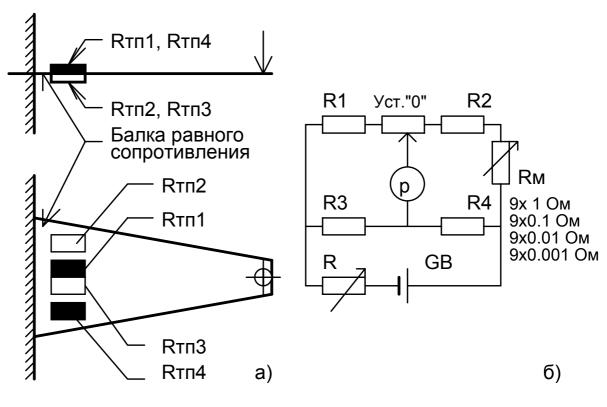


Рис.7

В схеме рис.7,б " р"- цифровой индикатор "mV". " $R_{\text{м}}$ "- четырехдекадный магазин сопротивлений, использование которого определяется программой работы.

- 6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ
 - 6.1.Подготовка макета к работе.

- 6.1.1.Включить шнур питания макета в сеть 220В, 50Гц.
- 6.1.2.Включить кнопку "Сеть".
- 6.1.3.Установить исходное положение регулировок макета, для чего:
 - полностью разгрузить балку (см. раздел 8);
- значение $R_{\mbox{\tiny M}}$ (сопротивление магазина сопротивлений) установить равным "0";
 - тумблер S_3 установить в положение "1";
 - тумблер S_4 установить в положение "1";
- -убедиться, что при регулировке элементов $S_2-(«грубо»-«плавно»)$ показания цифрового индикатора "mV" изменяются и могут принимать нулевые значения.
- 6.2.Исследование фольговых тензопреобразователей ($R_{dmn}\!=\!50.5\,$ Ом).
- 6.2.1.Отградуировать ФТП (конкретно- R_{mn}), используя равновесный режим работы мостовой схемы, для чего сначала определить зависимость $\frac{\Delta R_{mn}}{R_{mn}} = f(\frac{\Delta l}{l})$ или $\mathbf{\epsilon}_R = f(\mathbf{\epsilon}_l)$.

Для этого:

- уравновесить мостовую измерительную цепь (в дальнейшем -"мост") при механической нагрузке на балку, равной F=0;
 - нагрузить балку усилием F=10H;
- изменяя значения $R_M\,$, вновь добиться равновесия моста;
- определить приращение ΔR_{1mr} , используя условие равновесия моста (см. рис.7б) в виде $(R_{1mn} + \Delta R_{1mn}) \cdot R_4 = (R_2 + R_M) \cdot R_3$. откуда приращение $\Delta R_{1mn} = \frac{R_M \cdot R_3}{R_4}$ (при F=0, значение сопротивления $R_{\phi mr} = 50.5$ Ом;
- устанавливая последующие і-тые значения нагрузки F_i через каждые 10H, аналогично определить соответствующие значения приращений сопротивлений ΔR_{1mni} .

Расчет относительной деформации $oldsymbol{\epsilon}_l$ производится, исходя из геометрических параметров балки, механических свойств материала балки и действующей нагрузки, следующим образом.

 $m{\epsilon}_l = \frac{6F \cdot l}{E \cdot b \cdot h^2}$, где F- действующая нагрузка, H; l- длина балки, м; b-ширина балки, м; h- толщина балки, м (l= 0.235 м, b=0.060 м, h=0.003 м); E- модуль упругости материала балки (для титана E=110 ГПа=110· 10^9 Па).

По результатам эксперимента определить коэффициент тензочувствительности $S_{\it mr}$. Данные экспериментов и расчетов внести табл.3.

Таблица 3

Нагрузка	F1	F2	F3	Fn
F, H				
R_{Mi} , om ΔR_{mni} , om				
ΔR_{mni} ,				
$\Delta R_{mn}/R_{mn}$				
$\mathbf{\epsilon}_l$				
S_{mn}				

Построить зависимость $S_{dmn} = f(F)$.

6.2.2. Определить и построить проходные характеристики мостовой измерительной цепи с включенными (три варианта – в табл.2) в ее плечи фольговыми ТП(S3 \rightarrow "1"). Проходная характеристика в данном случае – это зависимость вида $U_{\rm cbix}=f(F)$, где $U_{\rm cbix}$ – значение напряжения на выходе моста и F- значение нагрузки (силы), а мост работает в неравновесном режиме.

Для выполнения данного пункта работы по первому варианту (табл.2) необходимо:

- сопротивление магазина $R_{\scriptscriptstyle M}$ установить, равным "0";
- убедиться, что переключатель S4 установлен в положении"1";
- уравновесить мост при начальной нагрузке, равной "0";
- нагружая балку через 10H, каждый раз регистрировать значения выходного напряжения на выходе моста; *
- затем, разгружая балку через $10 \, \mathrm{H}$, вновь каждый раз регистрировать значения выходного напряжения моста; *
- * (Последние действия обусловлены наличием гистерезиса проходной характеристики и необходимостью получения усредненных параметров. По той же причине рекомендуют определять указанные характеристики для нескольких циклов "нагружение разгружение". В работе ограничиться двумя такими циклами).
- для каждого значения нагрузки усреднить выходное напряжение, как

$$U_{\rm sbix} \, = \! \frac{U_{\rm 1_{\it H}} + U_{\rm 1_{\it p}} + U_{\rm 2_{\it H}} + U_{\rm 2_{\it p}}}{4} \, . \label{eq:Usbix}$$

Результаты экспериментов и расчетов внести в табл. 4. Построить:

- проходную характеристику с учетом гистерезиса для одного из циклов;
 - характеристику вида $U_{\mathit{cbixc}\,\mathtt{p}} = f(F)$.

Определить и построить зависимость чувствительности мостовой цепи, как $S_M = \frac{\Delta U}{\Delta F} \approx \frac{dU_{\rm cbix}}{dF} \quad \text{от значения}$ приложенной нагрузки $S_M = f(F)$.

Проделать те же действия при положениях "2" и "3" переключателя S4, заполнив соответственно таблицы 5 и 6, аналогичные табл. 4.

Характеристики вида $U_{\mathit{ebix}\,.\mathit{cp}} = f(F)$ для всех трех схем включения представить на общем графике и дать им сравнительный анализ.

Таблица 4

Нагрузка,Н	F1	F2	F3	Fn
$U_{\mathrm{l}_{\mathit{H}}}$ - нагружение				
\rightarrow				
$U_{ m 1p}$ - разгружение				
←				
$U_{2\scriptscriptstyle H}$ -нагружение				
\rightarrow				
$U_{ m 2p}$ -разгружение				
←				
$U_{c\mathrm{p}}$, B				
S_M , B/H				

- 6.3. Исследование проволочных тензопреобразователей ($R_{\it nmn}$ =200 Ом).
- 6.3.1. Отградуировать ПТП (при S3 \rightarrow "2"). Для выполнения данного пункта программы необходимо воспользоваться указаниями и рекомендациями п. 9.2.1. настоящих указаний. Результат работы представить в виде экспериментальных и расчетных данных, внесенных в табл.7, аналогичную табл.3. Построить зависимость вида $S_{nmn} = f(F)$.
- 6.3.2. Определить и построить проходные характеристики мостовой цепи с включенными в ее плечи проволочными $T\Pi$.

Для получения этих характеристик необходимо руководствоваться указаниями, предлагаемыми в п. 9.2.2.

Результаты работы представить в виде экспериментальных и расчетных данных, внесенных в табл. 8, 9 и 10, аналогичных табл. 4 и характеристик, аналогичных п. 9.2.2.

6.4. Исследование полупроводниковых ТП (R_{nnmn} =300 Ом).

ВНИМАНИЕ! Программу выполнения данного раздела предлагается определить и выполнить студенту - экспериментатору самостоятельно. За основу взять программы выполнения п.п. 9.2. и 9.3. В качестве вводных данных следует лишь указать, что на упругой балке имеется только один ППТП, закреплен он на нижней поверхности балки и включен на месте резистора R3 (рис.7б).

6.5. Дать сравнительную оценку продольной тензочувствительности для всех трех представленных в работе тензопреобразователей.

Еще раз напоминаем, что после выполнения программы работы, необходимо:

- обязательно разгрузить балку;
- выключить кнопку "Сеть";
- отсоединить шнур питания от сети 220В;
- навести порядок на рабочем месте.

7. СОДЕРЖАНИЕ ОТЧЕТА

- 7.1. Титульный лист с указанием названия университета, названия кафедры, номера и наименования работы, исполнителей и даты выполнения работы.
 - 7.2. Цель работы.
 - 7.3. Программа работы.
 - 7.4. Схемы экспериментальных установок.
 - 7.5. Таблицы, основные соотношения.
 - 7.6. Примеры расчетов.
 - 7.7. Графики зависимостей.
- 7.8. Выводы по отдельным пунктам работы и общие выводы.
- 7.9. Таблица приборов, использованных в работе, с указанием названия прибора, его предела измерения, основной приведенной погрешности.

ИССЛЕДОВАНИЕ ТЕНЗОМЕТРИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ

Методические указания по Подготовке и выполнению лабораторной работы №425 по курсу "Методы и средства измерений" для студентов специальности 19.09 - Информационно-измерительная техника и технологии

Составитель : Б.Б.Винокуров

Рецензент: В.Ф.Вотяков

Подписано к печати _______ Формат 60х84/16. Бумага №2. Плоская печать. Усл.печ.л.__.Уч.-изд.л.____ Тираж _____ экз. Заказ №______ Бесплатно. Ротапринт ТПУ.634050, Томск, пр. Ленина, 30.