Государственное образовательное учреждение высшего профессионального образования «Национальный исследовательский Томский политехнический университет»

УТВЕРЖДАЮ Институт Кибернетики Проректор-директор М.А. Сонькин «1» сентября 2010 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Микропроцессоры в измерительных устройствах

НАПРАВЛЕНИЕ ПОДГОТОВКИ: 221700 «Стандартизация и метрология» ПРОФИЛЬ ПОДГОТОВКИ: Метрология, стандартизация и сертификация КВАЛИФИКАЦИЯ (СТЕПЕНЬ): бакалавр

БАЗОВЫЙ УЧЕБНЫЙ ПЛАН ПРИЕМА: 2007-2010 гг.

КУРС: 3 и 4; СЕМЕСТР 6 и 7;

КОЛИЧЕСТВО КРЕДИТОВ: 8(5/3)

ПРЕРЕКВИЗИТЫ: «Математика», «Физика», «Информатика», «Общая электротехника», «Электроника», «Цифровая электроника», «Физические основы измерений», «Метрология».

КОРЕКВИЗИТЫ: «Автоматизация измерений контроля и испытаний», «Информационно-измерительные системы»

ВИДЫ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ И ВРЕМЕННОЙ РЕСУРС:

ИТОГО	176	часов
САМОСТОЯТЕЛЬНАЯ РАБОТА	61	часов
КУРСОВОЕ ПРОЕКТИРОВАНИЕ	48	часов
АУДИТОРНЫЕ ЗАНЯТИЯ	67	часов (ауд.)
ПРАКТИЧЕСКИЕ ЗАНЯТИЯ	16	часов (ауд.)
ЛАБОРАТОРНЫЕ ЗАНЯТИЯ	34	часа (ауд.)
ЛЕКЦИИ	17	часов (ауд.)

ФОРМА ОБУЧЕНИЯ Очная

ВИД ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ: ЭКЗАМЕН В 6 СЕМЕСТРЕ, ДИФФЕРИНЦИАЛЬНЫЙ ЗАЧЕТ В 7 СЕМЕСТРЕ.

ОБЕСПЕЧИВАЮЩАЯ КАФЕДРА: Компьютерных измерительных систем и метрологии Института кибернетики

ЗАВЕДУЮЩИЙ КАФЕДРОЙ: д.т.н., профессор С.В. Муравьев РУКОВОДИТЕЛЬ ООП: д.т.н., профессор С.В. Муравьев К.т.н., доцент В.Н. Бориков

Томск 2010г.

Аннотация рабочей программы

Дисциплина «Микропроцессоры в измерительных устройствах» является частью профессионального цикла дисциплин подготовки студентов по направлению 221700 — «Стандартизация и метрология». Дисциплина реализуется на базе кафедры компьютерных измерительных систем и метрологии (КИСМ) Института кибернетики Томского политехнического университета.

Содержание дисциплины охватывает круг вопросов, связанных с приобретением знаний, умений и навыков при анализе и синтезе микропроцессорных измерительных устройств.

Дисциплина нацелена на формирование ряда общекультурных: (ОК-3), (ОК-4), (ОК-5), (ОК-15), (ОК-16), (ОК-19) и профессиональных компетенций выпускника: (ПК-4), (ПК-8), (ПК-18), (ПК-19), (ПК-22), (ПК-23), (ПК-24), обозначенных в ООП «Стандартизация и сертификация».

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, консультации, курсовая работа, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- входной контроль для выявления готовности студентов к освоению данной дисциплины за счет знаний, умений и компетенций, сформированных на дисциплинах пререквизитах;
- текущий контроль успеваемости в форме проверки качества подготовки студентов к лабораторным и практическим занятиям, по курсовой работе и защиты выполненных работ;
- рубежный (промежуточный) контроль в форме оценок соответствия знаний и умений студентов ожидаемым результатам по отдельным модулям дисциплины;
- промежуточная аттестация (семестровые испытания) в виде зачета и экзамена в конце семестров.

Общая трудоемкость освоения дисциплины составляет 8 (5/3) зачетных единиц (кредитов), что составляет 176 часов. Программой дисциплины предусмотрены лекции в количестве 17 часов, лабораторные занятия в количестве 32 часов, практических занятий в количестве 16 часов, курсовая работа в количестве 48 часов, а также самостоятельная работа студента в количестве 61 часа.

1. Цели освоения дисциплины

Целью преподавания дисциплины "Микропроцессоры в измерительных устройствах" является теоретическая и практическая подготовка студентов в области микропроцессорной техники в виде формирования у них знаний и умений анализа, синтеза и исследования типовых микропроцессорных электронных схем, используемых в измерительных устройствах, а также выработки положительной мотивации к самостоятельной работе и

самообразованию для проектирования микропроцессорных измерительных устройств.

Сформулированная цель получена в результате декомпозиции целей подготовки выпускника по направлению 221700, отраженных в основной образовательной программе:

- Ц1. Подготовка выпускника-разработчика средств измерений, контроля и диагностики, способного к работе в области расчета и проектирования деталей и узлов измерительных, контрольных и испытательных приборов и стендов в соответствии с техническими заданиями и с использованием стандартных средств автоматизации проектирования, а так же их последующего производства, отладки, настройки и аттестации.
- Ц2. Подготовка выпускника исследователя, способного к планированию и проведению научных экспериментов, использованию современных информационных технологий при проектировании средств и технологий метрологического обеспечения, стандартизации и определения соответствия установленным нормам.
- Ц4. Готовность выпускника к сбору и анализу исходных информационных данных для проектирования средств измерений, контроля и испытаний, к активному участию в инновационной деятельности предприятия, к открытому обмену информацией; готовность к самообучению и постоянному профессиональному самосовершенствованию.

2. Место дисциплины в структуре ООП

Дисциплина "Микропроцессоры в измерительных устройствах" относится к базовой части профессионального цикла дисциплин учебного плана направления 221700.

Пререквизитами дисциплины являются:

- математика. Требования к уровню подготовки к освоению дисциплины со стороны математики:
 - 1. знать основные понятия и методы математического анализа аналитической геометрии и линейной алгебры, дифференциального и интегрального исчисления и гармонического анализа;
 - 2. уметь применять эти методы при решении практических задач;
- физика. Входному контролю подвергаются знания и умения использовать закономерности проявления физических эффектов, связанных с протеканием токов различной природы;
- информатика. При изучении дисциплины будут востребованы следующие требования:
 - 1. знать и уметь применять методы моделирования;
 - 2. уметь применять вычислительную технику для решения практических задач;
 - 3. владеть основными методами работы на компьютере с прикладными программными средствами.

- общая электротехника. На основе изучения этой дисциплины студент должен:
 - 1. знать основные понятия и законы электромагнитного поля и теории электрических и магнитных цепей; методы анализа цепей постоянного и переменного токов в стационарных и переходных режимах;
 - 2. уметь применять понятия и законы электромагнитного поля и теории электрических и магнитных цепей для составления и расчета схем замещения электротехнических устройств;
 - 3. владеть методами расчета переходных и установившихся процессов в линейных и нелинейных электрических цепях.
- электроника. На основе изучения этой дисциплины студент должен проводить анализ, синтез и исследования электронных схем;
 - цифровая электроника. На основе изучения этой дисциплины студент должен проводить анализ, синтез и исследования цифровых электронных схем,
- физические основы измерений. На основе изучения этой дисциплины студент должен проводить анализ, синтез и исследования первичных преобразователей средств измерений.
- метрология. На основе изучения этой дисциплины студент должен проводить оценку метрологических характеристик средств измерений.

При изучении дисциплины полезными являются приобретаемые общекультурные и профессиональные компетенции в дисциплинах кореквизитах: философия, иностранный язык.

3. Результаты освоения дисциплины

В процессе освоения дисциплины у студентов развиваются следующие компетенции:

- 1. Общекультурные:
- владение культурой мышления, знание его общих законов, способность в письменной и устной речи логически правильно оформить его результаты (ОК-3);
- способность и готовность приобретать с большой степенью самостоятельности новые знания, используя современные образовательные и информационные технологии (ОК-4);
- способность выстраивать и реализовывать перспективные линии интеллектуального, культурного, нравственного, физического и профессионального саморазвития и самосовершенствования; готовность развивать самостоятельность, инициативу и творческие способности, повышать свою квалификацию и мастерство (ОК-5);
- способность применять знание процессов и явлений, происходящих в живой и неживой природе, понимание возможности современных научных методов познания природы и владение ими на уровне, необходимом для решения задач, имеющих естественнонаучное

- содержание и возникающих при выполнении профессиональных функций (ОК-12);
- способность применять математический аппарат, необходимый для осуществления профессиональной деятельности (ОК-15);
- способность использовать в социальной жизнедеятельности, в познавательной и в профессиональной деятельности навыки работы с компьютером, работать с информацией в глобальных компьютерных сетях (ОК-16);
- способность использовать навыки работы с информацией из различных источников для решения профессиональных и социальных задач (ОК-19);

2. Профессиональные:

- определять номенклатуру измеряемых и контролируемых параметров продукции и технологических процессов, устанавливать оптимальные нормы точности измерений и достоверности контроля, выбирать средства измерений и контроля; разрабатывать локальные поверочные схемы и проводить поверку, калибровку, юстировку и ремонт средств измерений (ПК-4);
- изучать научно-техническую информацию, отечественный и зарубежный опыт в области метрологии, технического регулирования и управления качеством (ПК-18);
- принимать участие в моделировании процессов и средств измерений, испытаний и контроля с использованием стандартных пакетов и средств автоматизированного проектирования (ПК-19);
- производить сбор и анализ исходных информационных данных для проектирования средств измерения, контроля и испытаний (ПК-22);
- принимать участие в работах по расчету и проектированию деталей и узлов разрабатываемых средств измерений, испытаний и контроля в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования (ПК-23);
- разрабатывать рабочую проектную и техническую документацию, оформлять законченные проектно-конструкторские работы с проверкой соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам; проводить метрологическую экспертизу конструкторской и технологической документации (ПК-24);

В соответствии с поставленными целями и сформированными компетенциями в результате освоения дисциплины студент должен: знать (P.1):

- основные термины и определения, используемые в микропроцессорной технике, в том числе и на иностранном языке (P.1.1);
- характеристики, параметры и модели основных компонентов микропроцессоров и микроконтроллеров (Р.1.2);

- типовые функции микропроцессоров и микроконтроллеров в измерительных устройствах (Р.1.3);
- типовые схемы, методы и алгоритмы анализа и синтеза простых измерительных устройств с микроконтроллером (Р.1.3);
- язык программирования Ассемблер (Р.1.4.).

уметь и владеть (Р.2) приемами и методами, чтобы:

- узнавать схемы с микропроцессорами и микроконтроллерами, а так же требуемые для их анализа виды параметров и характеристик (P.2.1);
- анализировать схемы с микропроцессором и микроконтроллером (Р.2.2);
- определять функции микроконтроллера и микропроцессора (Р.2.3);
- составлять алгоритм работы микроконтроллерного устройства (Р.2.4);
- составлять программу на языке низкого уровня микроконтроллерного устройства (P.2.5);
- проводить отладку микроконтроллерного устройства и его программирование (Р.2.6);
- проводить анализ погрешности микроконтроллерного устройства (Р.2.7);
- экспериментально исследовать типовые схемы микроконтроллерных измерительных устройств (Р.2.8);

владеть (Р2):

- языком программирования Ассемблер (Р.2.9);
- системой проектирования электрических схем с микропроцессором (Р.2.10);
- системой структурного анализа и проектирования алгоритмов (Р.2.11);
- системой разработки и отладки программного обеспечения(Р.2.12);
- системой программирования микроконтроллеров и микропроцессоров (Р.2.13);
- средствами измерений параметров микропроцессорных измерительных устройств(Р.2.14).

понимать (Р3):

- научно-техническую лексику (терминологию) по дисциплине (Р.3.1);
- архитектуру микропроцессоров и микроконтроллеров, развитие которых оказывает большое влияние на общий уровень развития средств измерения, контроля и диагностики (Р.3.2);
- языки программирования и их значимость в понимании функционирования измерительных устройств (Р.3.3).

4. Структура и содержание дисциплины

4.1. Структура дисциплины по разделам, формам организации и контроля обучения

	контроля ооучения					1	T	
$N_{\underline{0}}$	Название раздела/темы	Аудиторная работа			CPC	Итого	Формы текущего	
		(час)			(час)		контроля и	
		Лекции	ПР	Лаб.			аттестации	
				зан.				
1	Структуры измерительных	2		4	4	10	Отчет по	
	устройств с						лабораторной	
	микроконтроллером						работе	
2	Программно-алгоритмическое	2		4	4	10	Отчет по	
	обеспечение измерительных						лабораторной	
	устройств с						работе	
	микроконтроллером							
3	Вычислительные функции	2		4	4	10	Отчет по	
	измерительных устройств с						лабораторной	
	микроконтроллером						работе	
4	Контроллерные функции	2		4	4	10	Отчет по	
	измерительных устройств с						лабораторной	
	микроконтроллером.						работе	
5	Сервисные функции	2		4	4	10	Отчет по	
	измерительных устройств						лабораторной	
							работе	
6	Тестовые функции	2		4	4	10	Отчет по	
	измерительных устройств						лабораторной	
							работе	
7	Измерительные функции	2		4	4	10	Отчет по	
	микроконтроллеров						лабораторной	
							работе	
8	Согласование	3		6	6	15	Отчет по	
	интеллектуальных датчиков с						лабораторной	
	микроконтроллером в						работе	
	измерительных устройствах							
9	Промежуточная аттестация						Экзамен	
10	Разработка измерительных		16		27	43	Отчет по	
	приборов с						практическим	
	микроконтроллерами и их						занятиям	
	программное обеспечение							
11	Курсовая работа					48	Дифф. зачет	
	Итого	17	16	34	51	176		

При сдаче отчетов и письменных работ проводится устное собеседование.

4.2. Содержание разделов дисциплины

6 семестр

Раздел 1. Структуры измерительных устройств с микроконтроллером

Лекция. Понятия и определения. Краткий исторический очерк развития микропроцессоров и новый этап их развития. Общие вопросы применения микропроцессоров в измерительных приборах. Целесообразность применения микропроцессоров.

Основные характеристики микропроцессоров. Различные типы микроконтроллеров. Обобщенная структура микропроцессора. Пристанская и Гарвардская архитектуры микропроцессоров.

Функции микропроцессоров в измерительных устройствах и структуры измерительных устройств с микропроцессором

Лабораторная работа 1.

Изучение структуры микроконтроллера с помощью симулятора AVR Studio.

Раздел 2. Программно-алгоритмическое обеспечение измерительных устройств с микроконтроллером

Лекция. Средства разработки программно-алгоритмического обеспечения микроконтроллеров: блок-схемы; ассемблер; программные и аппаратные средства; программаторы; языки высокого уровня.

Архитектура процессора с точки зрения программиста: регистры общего назначения и АЛУ; регистры состояния; адресация устройств вводавывода и памяти; программный счетчик и стек; прерывания; способы адресации данных.

Система команд микроконтроллера.

Лабораторная работа 2.

Составление программ, реализующие логические операции.

Раздел 3. Вычислительные функции измерительных устройств с микроконтроллером

Лекция. Системы представление информации счисления В устройствах. Логические микропроцессорных измерительных математические операции, команды пересылки данных; команды арифметических и логических операций; команды ветвления; битовые команды и команды тестирования битов.

Лабораторная работа 3.

Составление программ, реализующие математические операции.

Раздел 4. Контроллерные функции измерительных устройств с микроконтроллером.

Лекция. Аппаратные средствамикроконтроллера: типы корпусов, системный тактовый генератор, таймеры, сторожевой таймер, параллельный

ввод-вывод, последовательный ввод-вывод, аналоговый ввод-вывод, конфигурирование контроллера, память данных, программирование, маркировка.

Приложения и примеры приложений управления ввода-вывода информации: организация временной задержки; организация работы внутренних устройств и организация прерываний. Организация клавиатуры и индикации в измерительных устройствах с микроконтроллером.

Лабораторная работа 4.

Работа с устройствами ввода-вывода. Организация простейшей клавиатуры и простейшего индикатора для микропроцессорного секундомера.

Раздел 5. Сервисные функции измерительных устройств

Лекция. Организация основных типов интерфейсов микроконтроллера: асинхронный интерфейс; синхронный интерфейс, последовательный, параллельный.

Лабораторная работа 5.

Ввод и вывод двоичной информации через интерфейс RS-232.

Раздел 6. Тестовые функции измерительных устройств

Лекция. Автономное тестирование, внешние устройства тестирования, средства измерений, комбинированные методы тестирования.

Лабораторная работа 6.

Тестирование оперативной памяти, памяти программ и устройств ввода-вывода.

Раздел 7. Измерительные функции микроконтроллеров.

Лекция. Аналого-цифровое преобразование, организация работы компараторов, измерение временных интервалов, организация широтно-импульсной модуляции, измерение сопротивления, измерение формы сигнала. Погрешности измерения.

Лабораторная работа 7.

Сравнение двух напряжений. Организация работы компаратора.

Раздел 8. Согласование интеллектуальных датчиков с микроконтроллером в измерительных устройствах.

Лекция. Измерение температуры, измерение влажности, измерение скорости, измерение направления движения с помощью интеллектуальных датчиков.

Лабораторная работа 8.

Вывод двоичной информации с датчиков на десятичный индикатор измерительного устройства.

7 семестр

Раздел 9. Разработка измерительных приборов с микроконтроллерами и их программное обеспечение

Практическое занятие 1.

Проектирование генератора прямоугольных импульсов.

Практическое занятие 2.

Измерение частоты напряжения с помощью встроенного таймера.

Практическое занятие 3.

Измерение напряжения с помощью встроенного АЦП.

Практическое занятие 4.

Проектирование источника опорных напряжений с помощью встроенного ШИМ генератора.

7 семестр

Раздел 10. Курсовая работа

Темы курсовых проектов:

- 1. Частотомер.
- 2. Измеритель параметров генератора прямоугольных импульсов.
- 3. Измеритель напряжения постоянного тока.
- 4. Измеритель напряжения переменного тока.
- 5. Измеритель постоянного тока.
- 6. Измеритель переменного тока.
- 7. Калибратор напряжения постоянного тока.
- 8. Калибратора напряжения переменного тока.
- 9. Калибратора переменного тока.
- 10. Калибратор временных интервалов.
- 11. Измеритель емкости.
- 12. Измеритель индуктивности.
- 13. Измеритель активного сопротивления.
- 14. Генератор задержки.
- 15. Измеритель температуры.
- 16. Измеритель виброскорости.
- 17. Измеритель пульса человека.
- 18. Измеритель кровяного давления человека.
- 19. Измеритель освещенности.
- 20. Измеритель влажности.
- 21. Генератор треугольных импульсов.
- 22. Генератор синусоидального сигнала.
- 23. Генератор прямоугольного сигнала.

Задачи, подлежащие проработке:

1. Техническое задание;

- 2. Принципиальная схема;
- 3. Алгоритм программы;
- 4. Программа на языке Ассемблера или С++.
- 5. Расчет основных метрологических характеристик;
- 6. Пояснительная записка;
- 7. Презентационный материал для защиты курсового проекта.
- 8. Действующий макет разработанного прибора.

4.3. Распределение компетенций по разделам дисциплины

Распределение по разделам дисциплины планируемых результатов обучения по основной образовательной программе, формируемых в рамках данной дисциплины и указанных в пункте 3.

No	Формируемые	Разделы дисциплины									
	компетенции	1	2	3	4	5	6	7	8	9	10
1.	P.1.1	X								X	X
2.	P.1.2.	X								X	X
3.	P.1.3	X								X	X
4.	P.1.4.		X							X	X
5.	P.1.5.		X							X	X
6.	P.2.1.			X	X	X	X	X	X	X	X
7.	P.2.2.			X	X	X	X	X	X	X	X
8.	P.2.3.			X	X	X	X	X	X	X	X
9.	P.2.4.			X	X	X	X	X	X	X	X
10.	P.2.5.			X	X	X	X	X	X	X	X
11.	P.2.6.			X	X	X	X	X	X	X	X
12.	P.2.7.			X	X	X	X	X	X	X	X
13.	P.2.8.			X	X	X	X	X	X	X	X
14.	P.2.9.									X	X
15.	P.2.10.									X	X
16.	P.2.11.									X	X
17.	P.2.12.									X	X
18.	P.2.13.									X	X
19.	P.2.14.									X	
20.	P.3.1.	X	X	X	X	X	X	X	X		X
21.	P.3.2.	X	X	X	X	X	X	X	X		X
22.	P.3.3.	X	X	X	X	X	X	X	X		X

5. Образовательные технологии

Достижение планируемых результатов освоения дисциплины осуществляется за счет использования следующих образовательных технологий:

• методы IT (Internet-ресурсов) – при применении компьютеров для использования электронных версий учебников, учебных пособий и методических указаний;

- индивидуализация обучения за счет организации лабораторного цикла по принципу: каждому студенту свое лабораторное место, а также выдачи индивидуальных заданий;
- проблемное обучение за счет формирования собственных заданий по реализации функций микроконтроллеров в измерительных устройствах и демонстрации действия алгоритмов анализа и синтеза различных измерительных устройств по изложенным на занятиях алгоритмам и приведенным примерам.
- обучение элементам творчества и критического мышления (для студентов, способных воспринять такое обучение) за счет избыточности данных и способов решения задания.
- исследовательский метод за счет использования средств измерений и испытательных приборов.

Сочетание методов и форм организации обучения отражается в Таблице 3).

Таблица3. Методы и формы организации обучения (ФОО)

Tuosingus. Werogai ir wopinar oprumisugim ooy temar (±00)									
ФОО Методы	Лекции	Практическ ие занятия	Лаб. работы	СРС	Дома шние задан ия				
<i>IT</i> -методы	+	+	+	+	+				
Проблемное обучение	+	+	+	+	+				
Обучение элементам творчества		+	+						
Исследовательский метод			+						

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов (СРС)

Основой при планировании самостоятельной работы студентов (СРС) явились цели и планируемые результаты обучения дисциплине. При ее организации рассматриваются ответы на следующие вопросы:

- 1. какой материал из программы дисциплины выносить на самостоятельную работу?
- 2. какова технология организации самостоятельной работы?
- 3. как контролируется самостоятельная работа?

6.1 Текущая СРС включает следующие виды работ:

- работу с лекционным материалом, учебниками и учебными пособиями, в том числе с использованием IT-методов;
- изучение тем, вынесенных на самостоятельную проработку,

- подготовку к лабораторным работам и практическим занятиям;
- выполнение домашних заданий;
- подготовку к промежуточному контролю и семестровым испытаниям (к зачету, экзамену).

В текущей СРС изучаются темы, вынесенные на самостоятельную проработку:

- организация прерываний;
- табличные методы расчета данных;
- внутрисхемное программирование;
- организация часового таймера;
- организация работы сторожевого таймера;
- программирование EEPROM памяти данных;
- организация питания и сброса микропроцессорных устройств;
- ячейки конфигурации и защиты;

6.2. Творческая проблемно – ориентированная самостоятельная работа (ТСР)

Проводится только для студентов, которые по итогам текущей СРС показали, что они хотят и могут заниматься проблемно-ориентированной СРС. Для этого использованы следующие формы:

- поиск, анализ, структурирование и презентация заданной информации;
- углубленное исследование вопросов по тематике лабораторных работ;
- решение задач повышенной сложности.

Для ТСР выносятся темы:

- программирование на языке С++;
- проектирование измерительных устройств с микроконтроллером для решения индивидуальных научных задач выполняемых в Томском политехническом университете;
- применение инноваций при проектировании, разработке программного обеспечения, отладки и программирования измерительных устройств с микроконтроллером.

6.3 Контроль самостоятельной работы студентов

Контроль самостоятельной работы студентов и качество освоения отдельных модулей дисциплины осуществляется посредством:

- проведения входного контроля знаний и умений, полученных на дисциплинах пререквизитах;
- проведения контрольных работ (5 мин.), проводимых вначале каждого практического и лабораторного занятия с целью оценки домашней подготовки студента по контрольным вопросам по тематике занятия;
- защиты лабораторных работ в соответствии с графиком выполнения;
- представления для проверки домашних работ по практическим занятиям;
- проведения контрольных работ при промежуточном (рубежном) контроле;
- оценки знаний и умений на экзамене и зачете.

Оценка текущей успеваемости студентов определяется в баллах в соответствии с рейтинг – планом, предусматривающем все виды учебной деятельности.

6.4 Учебно-методическое обеспечение самостоятельной работы студентов

При выполнении самостоятельной работы студенты имеют возможность пользоваться специализированными источниками, приведенными в разделе: 9. «Учебно – методическое и информационное обеспечение дисциплины».

7. Средства текущей и итоговой оценки качества освоения дисциплины (фонд оценочных средств)

Для текущей оценки качества освоения дисциплины и её отдельных модулей разработаны и используются следующие средства:

- список контрольных вопросов по каждой лабораторной работе и практическому занятию;
- комплект тестов стандартных форм, приведенный в электронном учебном пособии в WebCT, для закрепления изучаемого материала;
- методические указания к лабораторным работам с разъяснениями: «что значит подготовиться к работе?»

7.1. Требования к содержанию экзаменационных вопросов

Экзаменационные билеты включают три типа заданий:

- 1. Задание в виде короткого теста;
- 2. Теоретический вопрос;
- 3. Задание на разработку алгоритма и программы для решения выданной задачи.
- 4. Творческое проблемно-ориентированное задание на измерение физической величины.

7.2. Примеры экзаменационных вопросов

- 1. Какой интерфейс относится к асинхронным последовательным интерфейсам микроконтроллера?
 - a) UART;
 - a) SPI;
 - b) I2C;
 - с) все ответы верны.
- 2. Архитектура микроконтроллера с RISK архитектурой;
- 3. Составьте программу подсчета единиц в байте;
- 4. Структура микроконтроллерного устройства измерения напряжения переменного тока.

8. Рейтинг качества освоения дисциплины

Входной контроль и текущий контроль качества освоения отдельных тем и модулей дисциплины осуществляется на основе рейтинговой системы. Этот контроль осуществляется в течение семестра. Рубежный контроль проводится 2-3 раза в семестре в соответствии с планом учебного отдела Института Кибернетики. Качество усвоения материала дисциплины оценивается в баллах в соответствии с рейтинг – планом.

Экзамен производится в конце семестра и также оценивается в баллах. Итоговый рейтинг определяется суммированием баллов текущей оценки в течение семестра и баллов, полученных в конце семестра по результатам зачета или экзамена. Максимальный балл контролей в семестре составляет 60, экзамен – 40; максимальный итоговый рейтинг – 100 баллов.

Информация о допуске студентов к сдаче зачета или экзамена предоставляется в учебный отдел института за день до намеченной сдаче зачета (экзамена) в письменном виде или отмечается в журналах аттестации с пометкой «допущен» (при количестве баллов, меньшем 60, но при выполнении всех обязательных видов работ по дисциплине).

Окончательная оценка успехов студента по дисциплине выставляется в зачетную книжку в 5-бальной системе после сдачи зачета или экзамена в письменной форме или при необходимости в кредитной системе.

Рейтинг-план дисциплины приведен в Приложении.

8. Учебно-методическое и информационное обеспечение модуля (дисциплины)

Основная литература

- 1. Суэмацу Е. Микрокомпьютерные системы управления. Первое знакомство./ Пер. с яп.; под. Ред. Есифуми Амэмия. –М: Издательский дом «Додэка-XXI», 2002. -256 с.
- 2. Баранов В.Н. Применение микроконтроллеров AVR: схемы, алгоритмы, программы.- М.: Издательский дом «Додэка-XXI», 2004 288с.
- 3. Голубцов М.С. Микроконтроллеры AVR: от простого к сложному М.: СОЛОН-Пресс, 2003 228 с.
- 4. Евстифеев A.B. Микроконтроллеры AVR семейств Tiny и Mega фирмы «ATMEL» М.: Издательский дом «Додэка-XXI», 2004 -560 с.
- 5. Евстифеев А. В. Микроконтроллеры AVR семейства Classic фирмы ATMEL / А. В. Евстифеев. 2-е издание, стер. М. : Додэка-ХХІ, 2004. 288 с.
- 6. Предко Майк. Руководство по микроконтроллерам : в 2 т. : пер. с англ. / М. Предко. М. : Постмаркет, 2001. Т. 1. 416 с.
- 7. Предко Майк. Руководство по микроконтроллерам : в 2 т. : пер. с англ. / М. Предко. М. : Постмаркет, 2001. Т. 2, 2001 488 с.
- 8. Семенов Б.Ю. Шина I^2 С в радиотехнических конструкциях. Изд. 2-е, доп. М.: СОЛОН-Пресс, 2004 224 с.
- 9. Программирование на языке С для AVR и PIC микроконтроллеров./ Сост. Ю.А. Шпак – К.: «МК-Пресс», 2006 – 400 с.

- 10. Бориков В.Н. Микропроцессорная система управления температурой / Методические указания к выполнению лабораторных работ. Томск: Изд-во ТПУ, 1996. 22с.
- 11. Бориков В.Н. Микропроцессорный генератор калибратор / Методические указания к выполнению лабораторных работ. Томск: Изд-во ТПУ, 1996. 22с.
- 12. Бориков В.Н. Программирование на языке ассемблера IBM PC /Методические указания к выполнению лабораторных работ. Томск: Изд-во ТПУ, 1996. 22с.

Дополнительная

- 1. Титце У., Шенк К. Полупроводниковая схемотехника. -М.: Мир, 1982. 512с.
- 2. Программируемый таймер на МП 1816 BE35/ Методические указания к выполнению лабораторных работ по курсу "МПУ в ИВК" для студентов специальности 0647. -Томск, 1994.
- 3. Система отладки C0-04. Инструкция по эксплуатации. Описание языка. Томск, 1994.
- 4. Алхимов Ю.В. Микропроцессоры и микроЭВМ в приборостроении: Учебное пособие. Томск: Изд-во ТПУ, 2000 152 с.
- 5. Программирование микроконтроллеров AVR без программатора / М. Потапчук // Схемотехника : Научно-технический журнал. М., 2003 № 10 30 с.
- 6. Гутников В.С. Интегральная электроника в измерительных устройствах. 2-е изд. -Л.: Энергоатомиздат, 1988. -304с.
- 7. Зельдин Е.А. Цифровые интегральные микросхемы в информационно-измерительной аппаратуре. -М.: Энергоатомиздат, 1986. 260с.
- 8. Мячев А.А., Степанов В.Н. Персональные ЭВМ и микроЭВМ. Основы организации, 1991. 78с.
- 9. Рафикузаман М. МП и машинное проектирование микропроцессорных систем, 1988.
- 10. Вайсбанд С.Г. Ассемблер. Описание языка, 1981.
- 11. Фигурнов В.Э. ІВМ РС для пользователя, 1992.
- 12. Мирский Г.Я. МП В измерительных приборах, 1984.
- 13. Горбунов В.Л., Панфилов Д.И. Справочное пособие по микропроцессорам и микроЭВМ, 1988.
- 14. Калабеков Б.А. Микропроцессоры и их применение в системах передачи и обработки сигналов, 1988.
- 15. Хетагуров Я.А., Древе Ю.Г. Проектирование информационновычислительных комплексов, 1987.
- 16. Скляров В.А. Программное и лингвистическое обеспечение персональных ЭВМ, 1992.
- 17. Цветков Э.И. Процессорные измерительные средства. -Л.: Энергоатомиздат, 1989. -224с.:ил.
- 18. Мирский Г.Я. Электронные измерения. -4-е изд., перераб. и доп. М.:Радио и связь, 1986.- 440 с.

- 19. Мелик-Шахназаров А.М., Маркатун М.Г., Дмитриев В.А. Измерительные приборы со встроенными микропроцессорами. М.: Энергоатомиздат, 1985.-240 с.
- 20. Каган Б.М., Сташин В.В. Основы проектирования микропроцессорных устройств автоматики. М.: Энергоатомиздат, 1987.- 304 с.
- 21. Мячев А.А., Степанов В.Н., Щербо В.К. Интерфейсы систем обработки данных: Справочник/ Под ред. А.А. Мячева. М.: Радио и связь, 1989.- 416 с.
- 22. Злобин В.К., Григорьев В.Л. Программирование арифметических операций в микропроцессорах: Учеб. пособие для технических вузов. М.: Высш. шк., 1991.- 303 с.

Интернет-ресурсы:

<u>http://www.atmel.com</u> —сайт компании *ATMEL*, которая работает в области разработки микроконтроллеров и устройств на из базе.

<u>http://portal.tpu.ru</u> - персональный сайт преподавателя дисциплины Борикова Валерия Николаевича

9. Материально-техническое обеспечение модуля (дисциплины)

Лабораторные работы проводятся в специализированных учебных лабораториях кафедры КИСМ ИК (аудитории 605 и 506 18 учебного корпуса ТПУ). Лаборатории оснащены современным оборудованием, позволяющим проводить практические и лабораторные занятия. При проведении лабораторных работ исследования проводятся в программно-аппаратной среде NI ELVIS с привлечением графического языка программирования LabVIEW. Для программирования микропроцессорных средств измерений используется среда *AVR Studio* и макеты фирмы *ATMEL*.

Лекции читаются в учебных аудиториях 18-го корпусов ГОУ ВПО НИ ТПУ.

Студенты полностью обеспечены учебными и методическими материалами, разработанными на кафедре для организации их обучения и контроля его результатов.

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС по направлению и профилю подготовки 221700 «Стандартизация и метрология».

Программа одобрена на заседании кафедры «Компьютерных измерительных систем и метрологии» (протокол № 54 от 31 августа 2010 г.).

Автор Доцент кафедры КИСМ ИК Бориков В.Н.

Рецензент Доцент доцент кафедры КИСМ ИК Цимбалист Э.И.

^{*} приложение – Рейтинг-план освоения модуля (дисциплины)