

Основным классом материалов, удовлетворяющих таким жестким, часто противоречивым друг другу требованиям, как

- обеспечение минимальной массы конструкций,
- максимальной прочности,
- жесткости,
- надежности,
- долговечности

при работе

- в тяжелых условиях нагружения,
- при высоких температурах,
- и в агрессивных средах

являются композиционные материалы.

В одной из своих работ профессор Альберт Дитц пишет:

«Наука и техника, подобно литературе и искусству, имеют свои модные фразы и штампы. Одним из самых модных в наше время является выражение «композиционные материалы», содержащее в новой форме очень старую и простую мысль о том, что совместная работа разнородных материалов дает эффект, равносильный созданию нового материала, свойства которого количественно и свойств каждого качественно отличаются om113 *e20* составляющих».

История использования человеком композиционных материалов насчитывает много веков, а представление о композиционных материалах заимствовано человеком у природы.

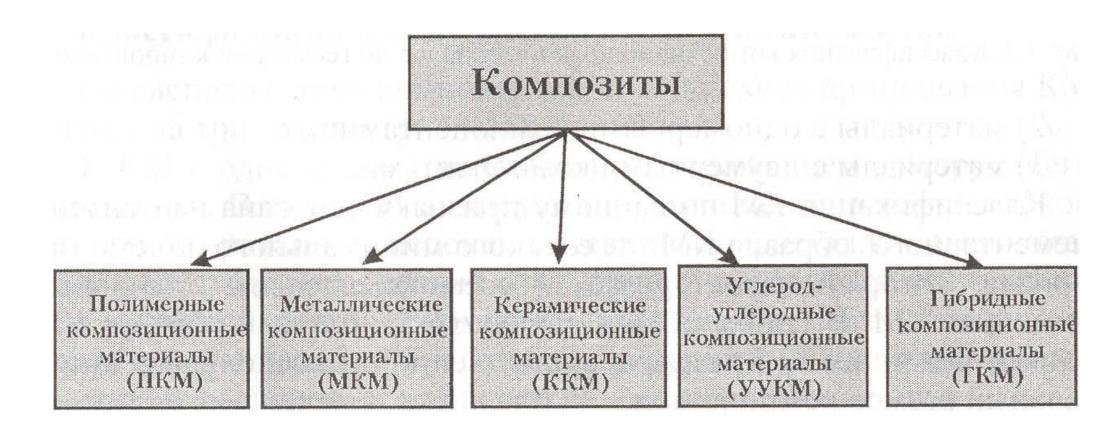
Примеры:

На ранних стадиях развития цивилизации человек использовал для строительства кирпич из глины, в которую замешивалась солома, придававшая повышенную прочность.

Использование природных битумов позволило повысить водостойкость природных материалов и изготавливать суда из камыша, пропитанного битумом.

Аналогия между мумификацией умерших с последующей обмоткой тела в виде кокона из полос ткани и современными технологиями обмотки корпусов ракет.

Прикладные и научные аспекты полимерного материаловедения развиваются интенсивно в течение последних десятилетий, начиная с 60-х годов.


Специалистами отмечается особенность ситуации, в которой находится материаловедение, ориентированное на проблемы современных композиционных материалов:

из-за высокой потребности в новых материалах, появления их в большом количестве при разработке конструкций <u>темпы изучения</u> <u>свойств этих материалов практически не успевают за их созданием</u>. Исследование свойств новых КМ — дорогостоящая и трудоемкая задача.

К композитам относятся материалы, обладающие рядом признаков:

- 1) состав, форма и распределение компонентов материала запроектированы заранее;
- 2) материал не встречается в природе, а создан человеком;
- 3) материал состоит из двух или более компонентов, различающихся по химическому составу и разделенных выраженной границей;
- 4) свойства материала определяются каждым из его компонентов, которые в связи с этим должны присутствовать в достаточно больших количествах (больше некоторого критического содержания);
- 5) материал обладает такими свойствами, которых не имеют его компоненты, взятые в отдельности;
- б) материал неоднороден в микромасштабе и однороден в макромасштабе.

Наиболее часто используется классификация композиционных материалов, в основу которой положено их деление по материаловедческому признаку.

Понятие **«матрица»** (от лат. *matrix* — матка, источник, начало) характеризует непрерывную пространственную фазу, ответственную за сохранение конфигурации изделия, передачу эксплуатационных нагрузок на арматуру, сопротивление действию других внешних факторов.

Наполнители полимеров – твердые, жидкие и газообразные органические и неорганические вещества, которые распределяются в непрерывной фазе полимера (матрице) с образованием гетерофазной системы с выраженной границей раздела фаз.

Наполнители вводят в полимеры с целью:

- создания новых полимерных материалов с комплексом ценных эксплуатационных свойств;
- улучшения технологических свойств и перерабатываемости наполненных полимеров: удешевления материалов; утилизации отходов и решения экологических задач; получения декоративных эффектов.

Компоненты, используемые при производстве композиционных материалов

Матрицы

Металлические (алюминий и сплавы, магниевые сплавы, титан и его сплавы, медь, сплавы никеля и кобальта);

Полимерные (*термопласты*: полиэтилен, полипропилен, полистирол, политетрафторэтилен, поливинилхлорид, полифениленоксид, полифениленсульфид, поли-

этилентерефталат, поликарбонат, полиамиды и др;

фенолоальдегидные смолы, реактопласты: (карбамидоформальдегидные аминосмолы смолы, меламиноформальдегидные, анилиноформальсмолы), ненасыщенные полиэфирные дегидные смолы, эпоксидные, алкидные смолы; эластомеры: изопреновые каучуки, бутадиеновые, бутадиен-стирольные каучуки;

Керамические (обычная керамика: силикаты;

техническая керамика: оксиды Al_2O_3 , карбиды SiC, нитриды Si_3N_4 , бориды TiB_2 , сульфиды BeS;

 κ ерметы: соединения, содержащие керамическую (Al_2O_3) и металлическую составляющие (Cr, Ni, Co, Fe)).

Компоненты, используемые при производстве композиционных материалов

Наполнители

Дисперсные: мел, асбест, гидроксид алюминия, тальк и др.

Волокнистые: металлические, стеклянные, углеродные, борные,

органические, керамические, нитевидные

кристаллы – усы.

Листовые: ткани, бумага, древесный шпон, ленты, холсты,

сетки, нетканые материалы

Объемные: объемные ткани, каркасные системы.

Таблица 1. Дисперсные наполнители для полимеров

Наполнитель	Формула	Π лотность, кг/ ${ m M}^3$
Каолин	$Al_4[Si_2O_5]_2(OH)_8$	2600
Тальк	$Mg_{3}[Si_{4}O_{10}](OH)_{2}$	2788
Слюда (мусковит)	$KAl_2[AlSi_3O_{I0}](OH;F)_2$	2834
Мел	CaCO ₃	2600-2900
Кварц (стекло)	SiO_2	2248
Барит	BaSO ₄	4480
Аэросил	SiO_2	2350
Асбест	$Mg_{6}[Si_{4}O_{10}](OH)_{8}$	2100-2800
Белая сажа	$SiO_2 \cdot H_2O$	2100-2200
Технический углерод	C	1820
Литопон	ZnS (30 %)+BaSO ₄ (70 %)	2500-3500
Гидроксид алюминия	$A1(OH)_3$	2420
Рутил	TiO_2	4200-4300
Гипс	CaSO ₄ • 2H ₂ O	2317
Корунд	$A1_2O_3$	3900-4000

Ведущее положение среди композиционных материалов на основе синтетических полимеров занимают армированные пластики.

Компоненты армированного пластика — это волокно и полимерная матрица.

Основную механическую нагрузку несут волокна и они, главным образом, определяют прочность и жесткость (модуль упругости) материала.

Таблица 2. Состав и свойства стеклянных и базальтовых волокон

Состав, %	Тип и назначение волокна				
	Е	S	YM-31A		
	общего	высокопрочное	высокомодульное	Базальтовое	
	назначения				
SiO_2	. 54,0	·	53,7		Недостаток
$A1_2O_3$	14,0	25,0		15	
Fe ₂ O,	0,2	_	0,5	2	стеклянных
CaO	.17,5		12,9	9	<mark>волокон</mark> :
MgO	. 4,5	10,0	9,0	5	
B_2O_3	8,0				• Большая
K_20	.0,6			1	плотность
Li ₂ 0	_	_	3,0		• Пиотент молун
BeO	_		8,0		• Низкий модуль
TiO ₂			8,0	3	упругости
ZrO_2			2,0		
CeO	—		3,0		**
FeO	_		_	11	Недостаток
$Na_2,0$	-		_	3	<mark>базальтовых</mark>
<mark>плотность</mark> ,	2,54	2,49	2,89	— г/cм ³	
прочность,	3,45	4,59	3,45	2-2,25 Γ Па	волокон:
модуль	72,4	86,2	110	78-90	• Нестабильные
<mark>упругости</mark> , Г	l la				свойства

Таблица 3. Свойства углеродных волокон

Марка	Прочность,	Модуль	Плотность,	
волокна	ГПа	упругости, ГПа	г/см ³	Примечание
	Высокопро	 чные волокна		Сырье:
T-300*	3,6	235	1.76	_
T-400H*	4,5	255	1.80	Полиакрилонитрильные,
T-800H*	5,7	300	1,81	вискозные волокна,
T-1000*	7,2	300	1.82	,
	Высокомоду	льные волокна		нефтяные пеки
M-30*	4	300	1,7	
M-40*	2,8	400	1,81	
M-46*	2,4	460	1,88	
M-50*	2,5	500	1,91	Достоинство волокон:
M-55J*	3.7	550	1,93	• Низкая плотность
HM-50**	2,8	500		
HM-55**	2,9	550		• Высокий модуль
HM-60**	3,0	600		упругости
HM-80**	3,24	785		
		ьные волокна		• Очень низкий
M-35*	5.1	350	1,75	коэффициент
M-40*	4,5	385	1,77	линейного
M-46*	4,3	445	1,84	линеиного
Отечественные волокна			расширения	
ЛУ-П	2,7—3	250-270	1.7	
Элур-П	3-3,2	200-250	1,7	
УКН-П	3.5	210-230	1,75	
УКТ-ПМ	4-4,5	240	1.75	

Марка волокна	Прочность, ГПа	Модуль упругости, ГПа	Плотность, г/см ³	Примечание	
Кулон	2.5-3,3	450500	1,95		
Кулон-М	3,0	600	1,95		
Волок	на из нефтяного пе	ка (фирмы Юнион I	Карбайд)		
P-55	2,1	380	2,0		
P-75	2,1	520	2,0		
P-100	2,4	690	2,2		
P-120	2,2	827	2,2		
 *Волокна фирмы "Торей" (Япония) ** Волокна фирмы "Кагосима Сэкию" (Япония). 					

Таблица 4. Свойства полимерных волокон

Марка	Прочность,	Модуль	Плотность, г/см ³	Примечание
волокна	ГПа	упругости,	,	
		ГПа		
	Apan	мидные волокна		Самая низкая плотность
Кевлар-29	3,0-3,2	62-70	1,44	
Кевлар-49	3,8	135	1,45	
Кевлар-149	2,4-3,2	160-184	1,47	Высокая удельная
Кевлар-*	4,1	121	1,45	· ·
CBM	3,8-4,2	135	1,43	прочность при
Армос	4,5-5,5	145-160	1,43	растяжении
ТерлонСД	3,5-3,8	150	1,45	
ТерлонС	3,5-3,8	184	1,45	
ТерлоиСБК	3,0-3,4	140	1,34	Высокое удельное
Волокна из ароматических полиэфиров			лиэфиров	сопротивление удару
Эканол	3,5-4,2	132-142	1,4	сопротивление удару
Вектран	2,9	70	1,4	
Полибензтиазольные волокна			окна	Низкая прочность при
PBZ	3,0-3,3	335	1,5	1
	Поли	имидные волокн	a	сжатии и изгибе
Лабораторные	6	200		
	Полиэт	иленовые волок	на	
Спектра, Дайни	ıма 2-3,5	50-125	0,97	
Лабораторные	7-10	220-240	<1	
Поливинилспиртовые волокна				
Лабораторные	1,5-2	50-70		

Жесткоцепные полимеры

$$\left[\stackrel{H}{\text{N}} - \bigcirc \stackrel{H}{\text{N}} - \bigcirc \stackrel{O}{\text{N}} - \bigcirc$$

Кевлар

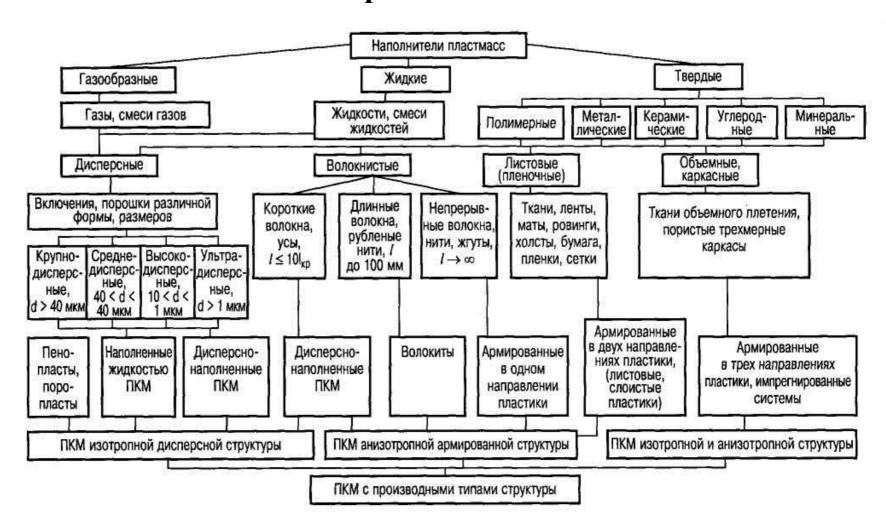
Полибензотиазол

Гибкоцепные полимеры

Полиэтиленовое волокно

Волокно поливинилового спирта

Рис. 1. Химическая структура полимерных волокон


Таблица 5. Свойства различных армирующих волокон

Марка волокна	Прочность, ГПа	Модуль упругости, ГПа	Плотность, г/см ³	Диаметр, волокна, мкм
Сталь Стекло Ароматический	2-3 3,5-4,6 3,8-5,5	200 72-110 120-185	7,8 2,5-2,9 1,43-1,47	3-25,80 10-12
полиамид Полибензтиазол Полиэтилен Углеродное	3,0-3,3 2-3,5(7) 3,6-7,2	335 50-125(200) 300	1,5 <1 1,8	30-35 5-10
высокопрочное Углеродное высокомодульное		500-800	1,8-2,2	5-10
Оксид алюминия Карбид кремния	2,2-2,4 3,1-4,0	385420 410-450	3,95 2,7-3,4	10-25 100-140
Бор	3,45	400	2,6	100-200

Виды полимерных композиционных материалов

Основные виды наполнителей и наполненных полимерных материалов

Принципиальные недостатки ПКМ

- Возникновение перенапряжений из-за разницы модулей упругости.
- Возникновение усадочных напряжений из-за разницы коэффициентов линейного теплового расширения,
- Возможность разрушения ПКМ с увеличением концентрации недеформирующихся частиц наполнителя (снижение деформируемости материала).
- Возможность разрушения ПКМ при введении менее прочного наполнителя (эластомера, газа), ослабляющего сечение в котором действует напряжение.

Факторы, приводящие к улучшению свойств ПКМ

- При разрушении увеличивается удельная энергия вновь образованной поверхности разрушения, следовательно, возрастает прочность (прочность пропорциональна энергии).
- Наличие МФС обеспечивает релаксацию перенапряжения в вершине трещины и внутренних термоусадочных напряжений.
- Взаимное влияние контактирующих фаз обеспечивает эффект «залечивания» микродефектов на поверхности наполнителя в результате смачивания поверхности наполнителя полимером.

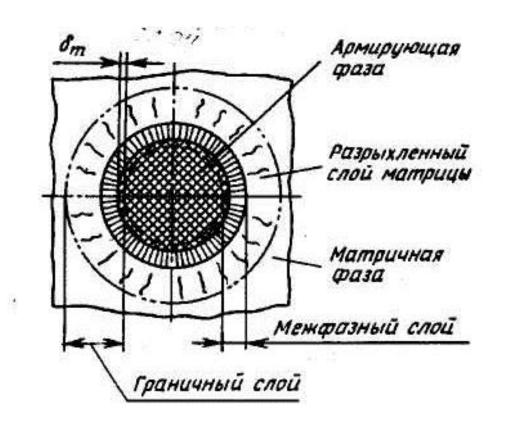


Рис.2. Модельное представление о межфазном слое в системе полимер — твердое тело

Понятие «межфазный слой» впервые предложено Гиббсом, который считал его неоднородной «поверхностью разрыва» с конечной толщиной.

Межфазным слоем принято называть объем АП, непосредственно примыкающий к поверхности раздела волокна и матрицы

Межфазный слой, как правило, существенно отличается от матричной фазы по составу — он вбирает в себя аппрет, замасливатель и другие низкомолекулярные включения связующего и поверхности армирующих волокон.

Границе раздела фаз между волокном и матрицей очень часто является наиболее слабым местом материала, и именно здесь начинается разрушение, как при механических нагрузках, так и при других воздействиях, например, под влиянием внешней атмосферы, воды и прочих.

Поэтому во многих случаях проводят специальную обработку поверхности волокон.

Углеродные волокна подвергают окислению, в результате чего на их поверхности образуются гидроксильные, оксидные и другие полярные группы, хорошо взаимодействующие с полимерной матрицей.

Полиэтиленовые волокна обрабатывают в плазме.

На стеклянные волокна наносят специальные химические вещества — аппреты, которые чаще всего вступают в химические реакции, как с поверхностью волокна, так и со связующим при его отверждении, образуя химическую связь между волокном и матрицей.

Таблица б

Кремнийорганические аппреты

Аппрет	Структура	Применение
Катионсодержащее производное винилбензилсилана СН ₂ =	=CH-CH ₂ -NH-CH ₂ -CH ₂ -NH-(CH ₂) ₃ -Si(C	ОСН ₃) ₃ Для всех связующих
Винил-трис(β-метоксиэтоксилан)	CH ₂ =CH-Si(OCH ₂ -CH ₂ -O-CH ₃) ₃	Для полиэфирных смол
Винилтриацетоксисилан	CH ₂ =CH-Si(OOC-CH ₃) ₃	Для полиэфирных смол
у-Метакрилоксипропилтриметоксисилан	ÇH₃	Для полиэфирных смол
у-Аминопропилтриэтоксисилан	CH ₂ =C-COO-(CH ₂) ₃ -Si(OCH ₃) ₃	Для эпоксидных, фенолформальд гидных смол, полиамидов
у-(β-Аминоэтил)амин пропилтриметоксисилан	$H_2N-(CH_2)_3-Si(OCH_3)_3$ $H_2N-(CH_2)_2-HN-(CH_2)_3-Si(OCH_3)_3$	Для эпоксидных, фенолформальд гидных смол, полиамидов
у-Глицидоксипропилтриметоксисилан	,O	Практически для всех связующи
у-Меркаптопропилтриметоксисилан	CH ₂ -CH-CH ₂ -O-(CH ₂) ₃ -Si(OCH ₃) ₃	Практически для всех связующи
β-(3,4-Эпоксициклогексил) этилтриметоксисилан	HS-(CH ₂) ₃ -Si(OCH ₃) ₃	Для эпоксидных смол
ү-Хлорпропилтриметоксисилан	O(CH ₂) ₂ -Si(OCH ₃) ₃	Для эпоксидных смол

Благодаря образующимся химическим, сильным полярным или водородным межмолекулярным связям между поверхностью волокна и матрицей повышается прочность адгезии и стойкость материала в агрессивных средах и воде.

Разработка полимерных матриц для ПКМ — серьезная и важная проблема, поскольку многие свойства определяются матрицей.

Требования к матрицам можно разделить на 3 группы: К одной группе можно отнести прочность, жесткость, теплостойкость полимерной матрицы,

к другой — пластичность, трещиностойкость, ударную вязкость; к третьей — перерабатываемость, технологичность связующего.

Задача исследователя, конструирующего композиционный материал, — найти компромисс, как-то оптимизировать выбор связующего, учитывая еще и экологические, экономические, конъюнктурные и другие соображения.

• Таблица 7. Требования к полимерным матрицам

Свойства пластика	Свойства полимерной матрицы
Теплостойкость	Высокая температура размягчения (стеклования)
Водо-, атмосферостойкость	Низкое водопоглощение, слабое изменение свойств при влагопоглощении
Прочность при растяжении	Оптимальная прочность, высокая вязкость
вдоль волокон	разрушения
Прочность при сжатии вдоль	Высокая прочность и жесткость, высокая вязкость
волокон	разрушения, оптимальная адгезия
Трансверсальная прочность,	Хорошая адгезия, высокая прочность, большие
сдвиг	удлинения
Ударная вязкость	Высокая ударная вязкость, оптимальная адгезия
Технологичность	Низкая вязкость связующего, повышенная
	жизнеспособность, нетоксичность, пониженная
	температура отверждения (переработки)

Термореактивные связующие представляют собой сравнительно низковязкие жидкости (при температуре переработки), которые после пропитки армирующего материала (волокон, нитей, лент, тканей) за счет химических реакций превращаются в неплавкую твердую полимерную матрицу.

Некоторые примеры химических структур термореактивных связующих и реакций отверждения приведены далее.

Рис. 2. Химическая структура полиэфирных связующих и сомономеров для их отверждения.

Схемы отверждения эпоксидных связующих

Рис. 3. Химическая структура эпоксидных связующих и схемы их отверждения.

Рис. 4. Химические структуры олигоэфиракрилатных связующих.

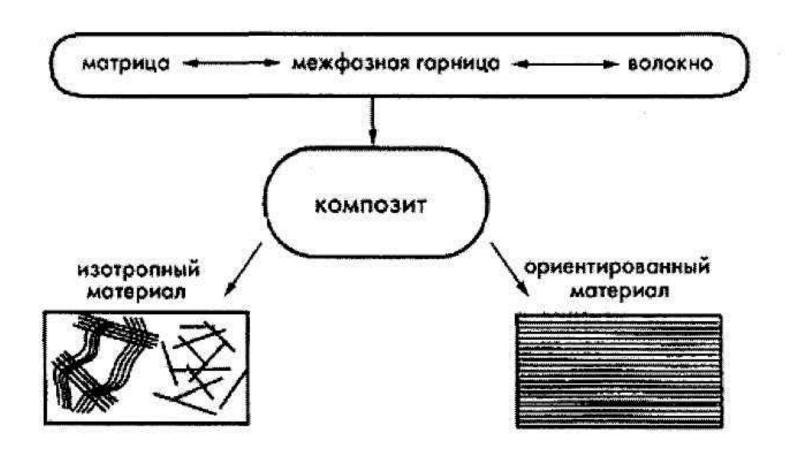
Фенолформальдегидные связующие

Рис. 5. Химическая структура фенолформальдегидных и мочевиноформальдегидных связующих и схемы их отверждения.

Достоинства термореактивных связующих:

- Хорошие технологические свойства: низкая вязкость связующего, хорошая смачиваемость и пропитываемость армирующего материала, сравнительно низкие температуры отверждения.
 - Хорошая адгезия к большинству волокон.
 - Повышенная теплостойкость.
- Стойкость в различных средах: химическая, водо- и атмосферостойкость, низкая проницаемость для жидкостей и газов.
- Свойства можно регулировать в широком диапазоне путем варьирования компонентов, добавления модификаторов, катализаторов и изменения условий отверждения.

Недостатки термореактивных связующих:


- Хрупкость, низкие вязкость разрушения и ударная прочность (усугубляются для высокотеплостойких матриц).
 - Невозможность вторичной переработки.
- Длительное время отверждения из-за необходимости проведения экзотермической химической реакции в мягком режиме (без значительных перегревов).
 - Ограниченное время жизни препрега.
- Значительная химическая усадка в большинстве случаев.

Для термопластов характерно

- сочетание высокой прочности и теплостойкости (полиэфирсульфон, полиэфиримид, полифениленсульфид, полиэфирэфиркетон) с высокой ударной прочностью, трещиностойкостью.
 - возможность вторичной переработки;
 - облегчение ремонта изделий;
- более эффективные интенсивные методы переработки, формование деталей менее энергоемко, возможно формование более крупных, сложной конфигурации деталей, более высокая производительность;
- практически бесконечная жизнеспособность препрегов время между его изготовлением и переработкой в изделие;
- пониженные горючесть, дымовыделение при горении, токсичность продуктов горения, высокая стойкость к излучению.

$$\begin{array}{c|c} CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline Dолиэфирэфиркетон \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ \hline CH_{3} & O & O & O \\ CH_{3} & O & O \\ \hline CH_{3} & O & O & O \\ \hline C$$

Рис. 6. Химические структуры некоторых термостойких термопластичных связующих для армированных пластиков.

Композиционные материалы — изотропный и ориентированный —

Возможности полимерных композиционных материалов (ПКМ) чрезвычайно широки благодаря неисчерпаемой вариабельности их составов, многообразию полимеров и наполнителей, способам их модификации и взаимораспределения.

Диапазоны технических характеристик основной группы ПКМ

— армированных пластиков:

Плотность ρ , кг · м $^{-3}$	от 900 до 2200
Прочность при растяжении σ+, МПа	от 1 до 10000
Модуль упругости при растяжении E^+ , ГПа	от 0,01 до 1000
Коэффициент Пуассона у	от 0,15 до 0,5
Удельная ударная вязкость a_k , кДж · м $^{-2}$	от 2,5 до 500
Температура эксплуатации T_p , *С	от – 270 до 400
Коэффициент теплопроводности λ , Вт \cdot м $^{-1}$ \cdot K $^{-1}$	от 0,002 до 300
Коэффициент линейного термического расширения $\alpha \cdot 10^{-6}$, K^{-1}	от - 0,8 до 1000
Удельное объемное электросопротивление р, Ом · м	от 10^{-2} до 10^{19}
Диэлектрическая проницаемость є	от 2 до 10
Тангенс угла диэлектрических потерь при частоте $10^9 - 10^{10}$ Гц ($\operatorname{tg} \delta$) $\cdot 10^{-3}$	от 1 до 1000
Твердость НВ, МПа	от 10 до 500

Технология получения ПКМ

Обработка поверхности наполнителя	Физическая подготовка (сушка, измельчение). Химическая подготовка (аппретирование различных наполнителей).
Смешение	Подготовительные операции (сушка, измельчение, гранулирование полимера). Смешение твердого порошка с вязкой жидкостью. Смешение двух вязких жидкостей.
Получение	Радикальная полимеризация,
полимерного слоя	ионно-координационная,
на поверхности наполнителя (ПН)	полимеризация в присутствии наполнителя.

Сравнение традиционного метода и полимеризационного наполнения (ПН)

Установлено, что

- 1. прочность возрастает пропорционально содержанию и дисперсности наполнителя (20-30 % традиц. способ; 70-80 % метод ПН);
- 2. снижение вероятности возникновения неравновесных состояний на границе раздела фаз в случае ПН;
- 3. при ПН происходит экзотермическое взаимодействие полимера с наполнителем, что приводит к усилению контакта полимера с наполнителем.

ПРОИЗВОДСТВО ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ ИЗ НИХ

Важнейшая особенность производства современных композиционных материалов заключается в том, что

- разработка конструкции детали,
- композиционного материала для ее изготовления и
- технологического процесса получения требуемой формы представляют собой три стороны единой проблемы.

Технология производства изделий из ПКМ включает следующие стадии:

- подготовка армирующего наполнителя;
- приготовление полимерного связующего;
- совмещение матрицы с арматурой;
- формообразование детали;
- отверждение связующего (при необходимости);
- механическая доводка детали (при необходимости);
- контроль качества детали.

Основные технологические процессы формообразования изделий из ПКМ

Контактное формование:

- ручная выкладка,
- напыление,
- автоматизированная выкладка

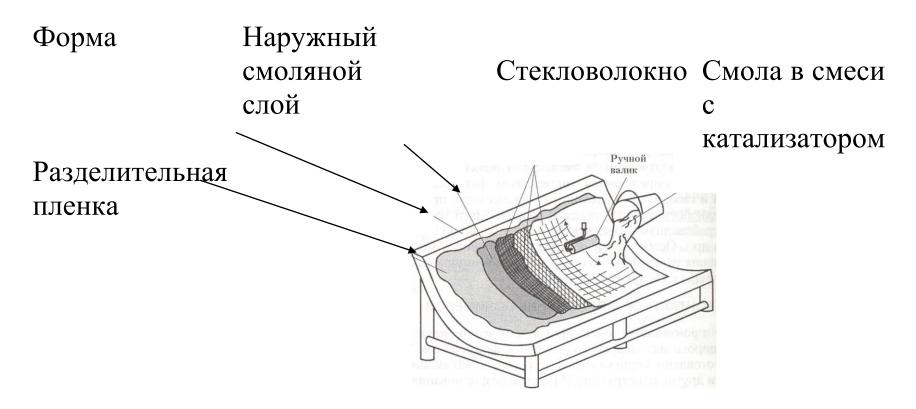
Формование с эластичной диаграммой:

- вакуумное,
- вакуумное-автоклавное,
- вакуумное пресс-камерное

Формование давлением:

пропитка под давлением.

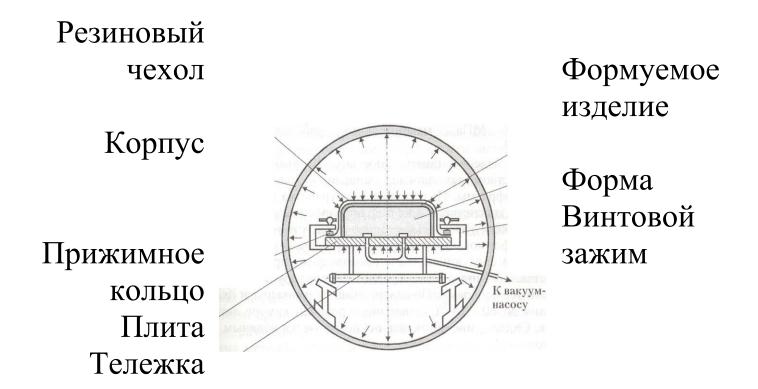
Прессование в формах:

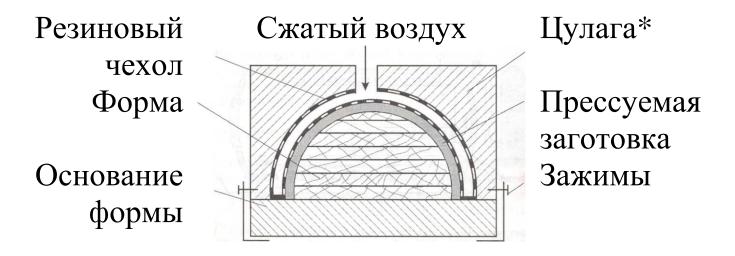

- прямое,
- литьевое,
- термокомпрессионное

Намотка

- мокрая,
- сухая

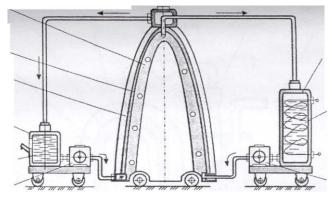
Пултрузия — процесс, основанный на непрерывном протягивании армирующего материала, пропитанного связующим, через нагретую фильеру.


ПРОИЗВОДСТВО ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ


Puc. 5.1. Элементы конструкции формы и изделия при формовании ручной выкладкой

Форма Слои стеклоткани Деревянный брус для крепления стеклоткани

Puc. 5.2. Схема укладки волокнистого материала на позитивной форме


Puc. 5.15. Схема формования изделий из ПКМ в автоклавах и гидроклавах

Puc. 5.17. Схема пресс-камерного формования изделий из полимерных композиционных материалов

* Цулага — тонкая обшивка, форма которой соответствует контурам формуемого изделия.

Матрица Пакет материала Пуансон Бачок со связующим Компрессор

Установка для подогрева органического теплоносителя

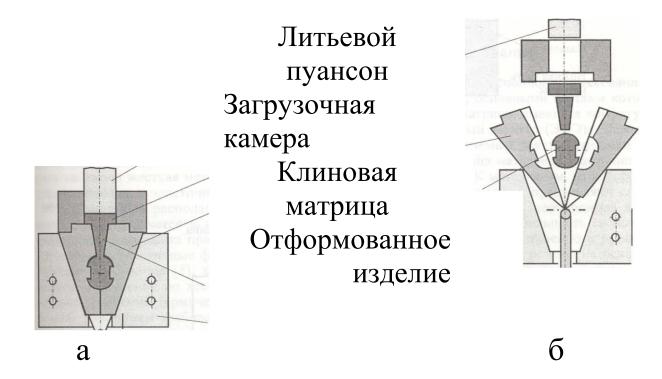

Компрессор

Рис. 5.18. Формование ПКМ. Схема пропитки пакета материала под давлением

Puc. 5.20. Схема прямого прессования изделий из полимерных композиционных материалов:

- а начальная стадия процесса,
- δ окончание процесса прессования

Puc. 5.21.Схема пресс-формы для литьевого прессования ПКМ на прессах с одним рабочим цилиндром:

- а форма в замкнутом состоянии,
- δ форма в разомкнутом состоянии

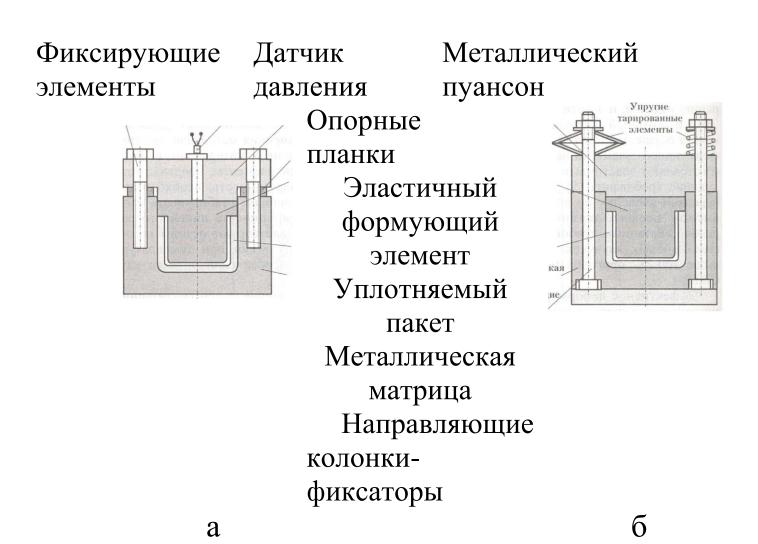
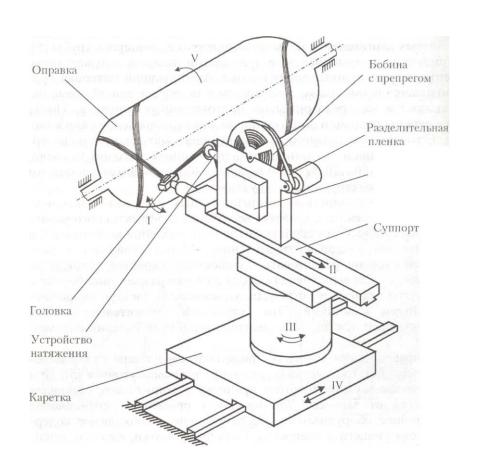
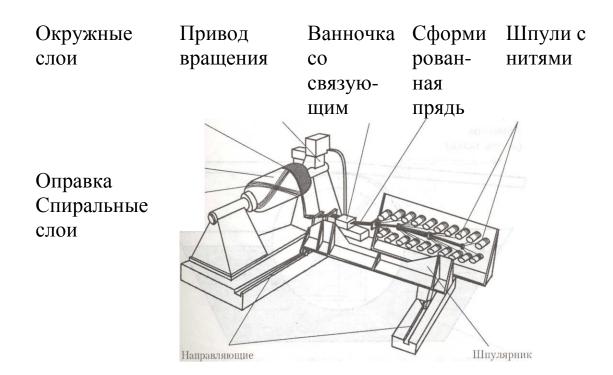
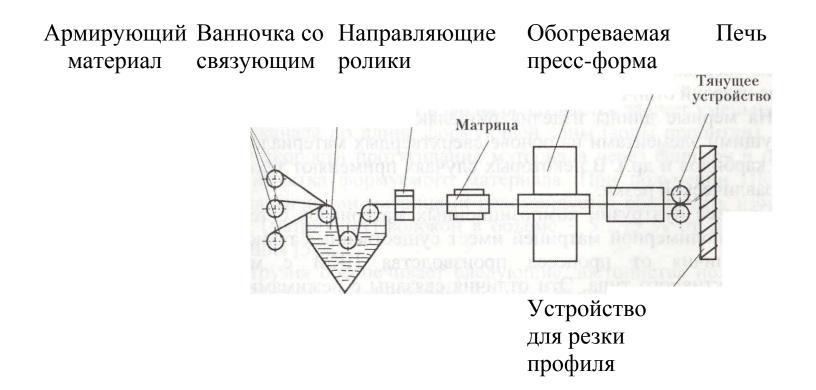




Рис. 5.23. Оснастки для термокомпрессионного формования полимерных КМ материалов с постоянным (а) и переменным (6) объемами



Нагреватель

Рис. 5.24. Схема «сухой» намотки изделия препрегом

Puc. 5.25. Схема получения изделия из полимерного композиционного материала по методу «мокрой» намотки

Рис. 5.51. Изготовление изделий из полимерных композиционных материалов по методу пултрузии

Дальнейшее развитие ПКМ следует рассматривать как движение в двух направлениях.

Первое направление — разработка дешевых компонент и их переработки в полуфабрикаты и изделия методов гражданских целей широкого применения. Для этой цели в матриц, по-видимому, будут использоваться качестве многотоннажные полимеры (например, полипропилен и другие) и дешевые полиэфирные смолы. В качестве волокон — стеклянные, углеродные на основе пеков, а также более дешевые полимерные волокна.

Второе направление — повышение рекордных характеристик композитов. В последнее время второе направление в значительной степени потеряло финансирование как у нас в стране, так и в западных странах в связи с прекращением холодной войны и гонки вооружения. Однако такие материалы, хоть и в небольших масштабах, будут всегда требоваться для космической, авиационной и других гражданских отраслей.

Наряду с информационными и биотехнологиями **нанотехнологии**, по признанию мировой научной элиты, в XXI веке будут определять направление научно-технического прогресса.

Нанокомпозиты из керамики и полимеров Материалы с сетчатой структурой Слоистые нанокомпозиты

Нанокомпозиты, содержащие металлы или полупроводники

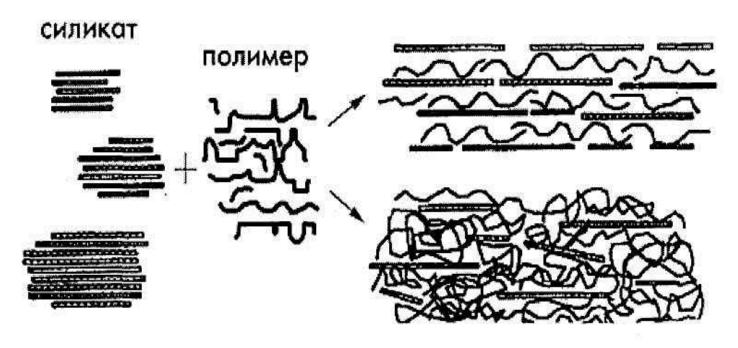
Молекулярные композиты

Нанокомпозиты из керамики и полимеров

Материалы с сетчатой структурой

Значительные успехи в получении этих нанокомпозитов были достигнуты золь-гель технологией, в которой исходными компонентами служат алкоголяты некоторых химических элементов и органические олигомеры.

Сначала алкоголяты кремния (титана, циркония, алюминия или бора) подвергают гидролизу

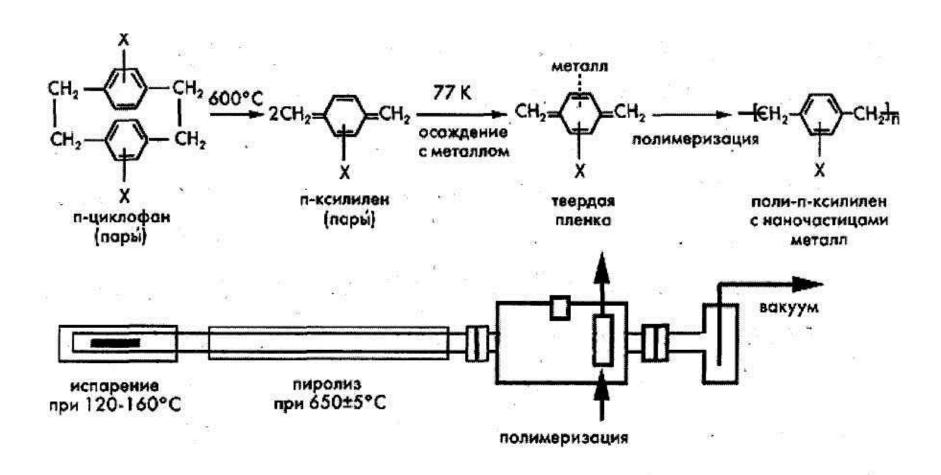

$$Si(OR)_4 + H_2O \rightarrow (OH)Si(OR)_3 + ROH$$

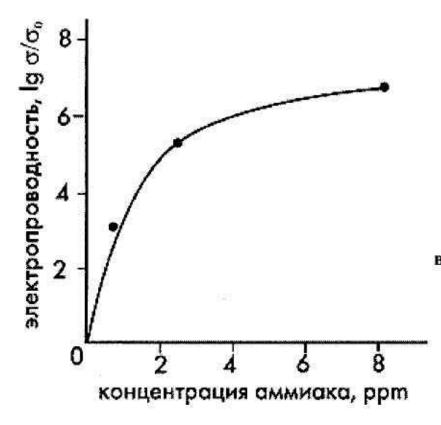
 $(OH)Si(OR)_3 + H_2O \rightarrow (OH)_2Si(OR)_2 + ROH$
 $(OH)_2Si(OR)_2 + H_2O \rightarrow (OH)_3Si(OR) + ROH$
 $(OH)_3Si(OR) + H_2O \rightarrow Si(OH)_4 + ROH,$

а затем проводят реакцию поликонденсации гидроксидов

$$(OH)_3Si\text{-}OR + HO\text{-}Si(OH)_3 \rightarrow (OH)_3Si\text{-}O\text{-}Si(OH)_3 + ROH$$

 $(OH)_3Si\text{-}OH + HO\text{-}Si(OH)_3 \rightarrow (OH)_3Si\text{-}O\text{-}Si(OH)_3 + HOH.$


Нанокомпозиты из керамики и полимеров


Слоистые нанокомпозиты

Слоистые нанокомпозиты на основе алюмосиликата и полимера с низким его содержанием (справа вверху) и высоким.

Нанокомпозиты, содержащие металлы или полупроводники

1

Изменение относительной электропроводности пленки поли-п-ксилилена, содержащей наночастицы оксида свинца, в зависимости от содержания аммиака в атмосфере.

Образование нанокристаллов ZnS в ходе реакции полимеризации норборненовых мономеров. ROMP — реакция метатезиса с раскрытием цикла,
Ph — фенильный остаток, Me — метильный, Bu — бутильный.

$$\left\{ (CH_{i})_{i} - \left(-\frac{1}{2} - \frac{1}{2} \right) \right\}_{i,i} \left\{ \left(-\frac{1}{2} - \frac{1}{2} - \frac{1}$$

Единичный блок тройного сополимера, в центре которого находится полиимидный жесткий фрагмент, а по краям к нему примыкают гибкие полиамидные цепи.

X=14-15, размер имидной части 35-40 нм