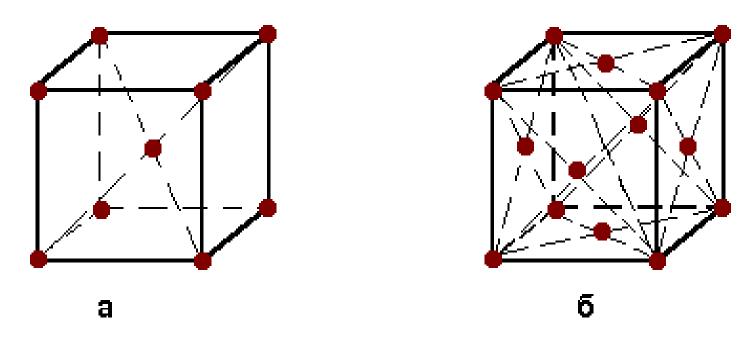
Фазовая диаграмма «железо-углерод»


практическое занятие № 5

1. Компоненты и фазы

Железо — металл серебристо-белого цвета с температурой плавления 1539 °C. Атомный радиус железа - 0,127 нм.

Имеет две полиморфные модификации:

- альфа-железо (или Fe_{α}) с **ОЦК-решёткой**, которая существует при T до 911 °C и выше 1392 °C (**δ-железо (Fe_{\delta}**)), период решётки 0,286 нм;
- гамма-железо (или Fe_{γ}) с ГЦК-решёткой, которая существует при T от 911 °C до 1392 °C, период решётки 0,365 нм.

Рис. 1. Кристаллические решётки Fe_{α} (а) и Fe_{γ} (б).

При превращении $Fe_{\alpha} \to Fe_{\gamma}$ наблюдается уменьшение объёма, так как решётка Fe_{γ} имеет более плотную упаковку атомов, чем решётка Fe_{α} . При охлаждении во время превращения $Fe_{\gamma} \to Fe_{\alpha}$ наблюдается увеличение объёма. В интервале температур 1392-1539°C высокотемпературное Fe_{α} называют Fe_{δ} .

- Углерод (C) неметалл, обычно существует в виде модификации графита, но может находиться и в виде метастабильной модификации алмаза.
- Графит гексагональная кристаллическая решетка (плотность 2,5 г/см³).

• Алмаз – кубическая решётка с координационным числом 4

(температура плавления – 5000°C).

Рис. 2. Кубическая решётка алмаза.

• Атомный радиус углерода — 0,077 нм. При *T*=3500 °C он, не плавясь, переходит в газовую фазу (возгоняется).

Между углеродом и железом возможны следующие виды взаимодействия:

- образование жидкого раствора;
- образование **твёрдых растворов внедрения** на основе Fe_{α} и Fe_{γ} ;
- образование химического соединения **цементит** (Fe₃C).

Поэтому в системе Fe-C существуют следующие фазы:

- жидкий раствор;
- феррит (твёрдый раствор на основе Fe_{α});
- аустенит (твёрдый раствор на основе Fe_{v)} ;
- цементит (химическое соединение Fe₃C);
- графит.

Феррит (Ф) — твёрдый раствор углерода в Fe_{α} (т.е. ОЦК-решётка) с предельной концентрацией - **0,02 масс.%**.

Атом углерода находится либо в центре грани куба, либо в дефектах кристаллической решётки (т.е. в вакансиях или на дислокациях).

Феррит - мягкий и пластичный:

- σ_{B} (предел прочности) 250 МПа;
- δ =50% (относительное удлинение δ =(I_k - I_0)/ I_0 *100%, где I_0 длина образца до испытания, I_k длина образца после растяжения и разрушения);
- имеет твёрдость 80 НВ (твердость по Бринеллю).

Ферритом также называют не только твёрдый раствор углерода в альфа-железе, но и любые твёрдые растворы на основе альфа-железа.

Аустенит (А) — твёрдый раствор углерода в гамма-железе с предельной концентрацией - **2,14 масс.**%.

Атом углерода находится в центре элементарной ячейки.

Аустенит пластичен, но прочнее феррита, его твёрдость составляет 160-200 НВ.

Аустенитом называют не только твёрдый раствор углерода в гамма-железе, но и любые твёрдые растворы на основе гамма-

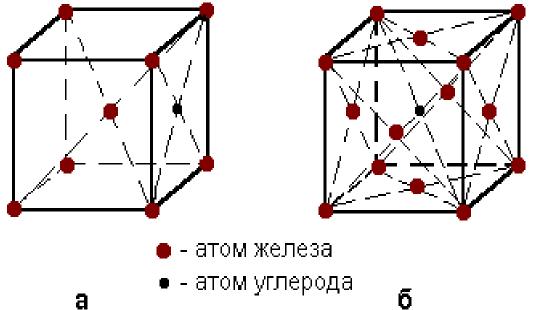


Рис. 3. Кристаллические решётки феррита (а) и аустенита (б).

Цементит (Ц) – химическое соединение железа с углеродом, карбид железа **Fe₃C**. Содержит **6,67-6,69 масс.**% углерода. Имеет орторомбическую решётку с плотной упаковкой атомов: ряды октаэдров, оси которых наклонены друг к другу.

Цементит является метастабильной фазой, при нагреве до 1200 $^{\circ}$ С распадается на железо и углерод. $T_{\text{плавления}}$ цементита приблизительно равна 1260 $^{\circ}$ С.

Твёрд и хрупок; его твёрдость составляет 800 НВ. Не способен пластически деформироваться (практически нулевая пластичность).

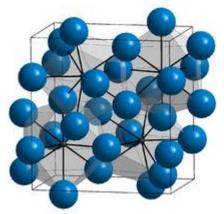


Рис. 4. Орторомбическая решётка цементита.

Графит (Г) имеет слоистую гексагональную решётку. Способность графита к расслаиванию связана с разрывом более слабых межслойных связей по плоскостям скольжения.

Мягкий, непрочный, химически стойкий, электропроводный.

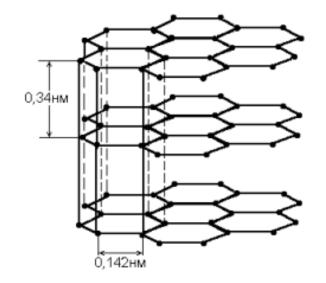


Рис. 5. Кристаллическая решётка графита.

Жидкая фаза (Ж). В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

2. Превращения в системе Fe-С

Диаграмма состояния «железо-углерод» - диаграмма с химическим соединением, т.к. железо с углеродом образуют химическое соединение при содержании углерода 6,69 масс.%.

Сплавы железа с углеродом, содержащие более 6,69 масс.%С, не имеют практического применения.

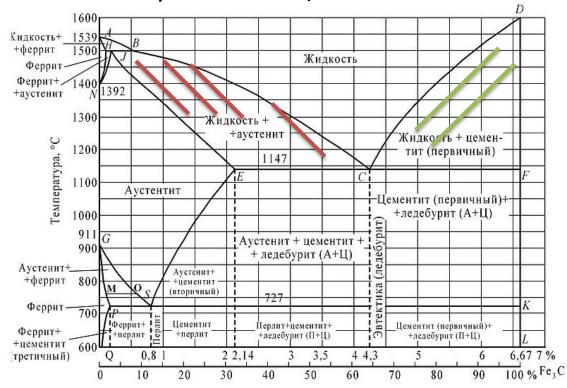
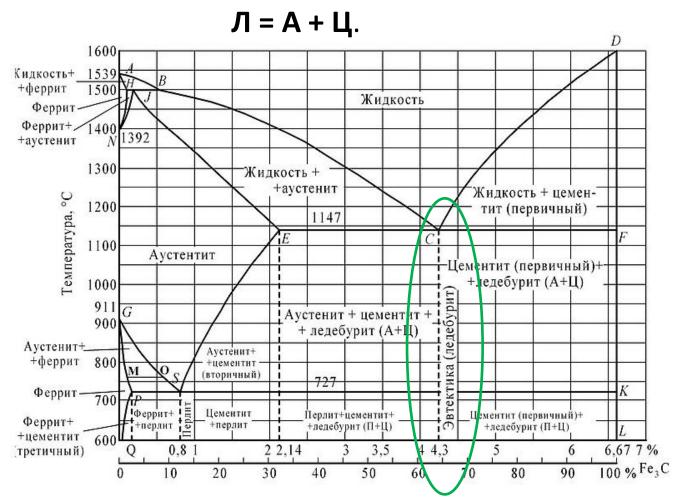



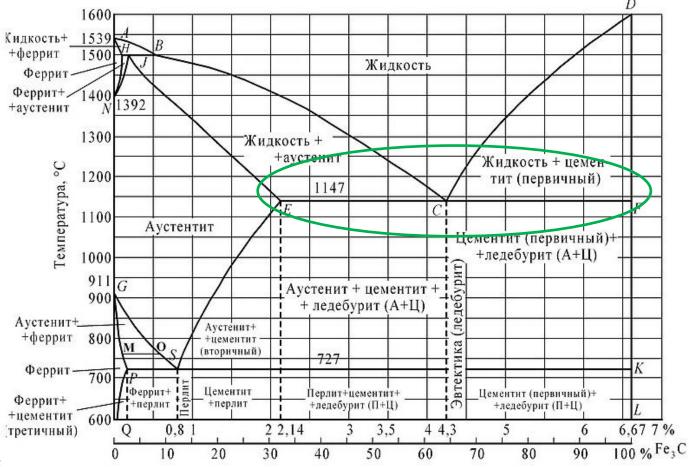
Рис. 6. Диаграммы состояния Fe-C.

На диаграмме железо-углерод линия *ACD* является **ликвидусом**, линия *AECF* — **солидусом**. Первичная кристаллизация начинается на *ACD* и заканчивается на линии *AECF*.

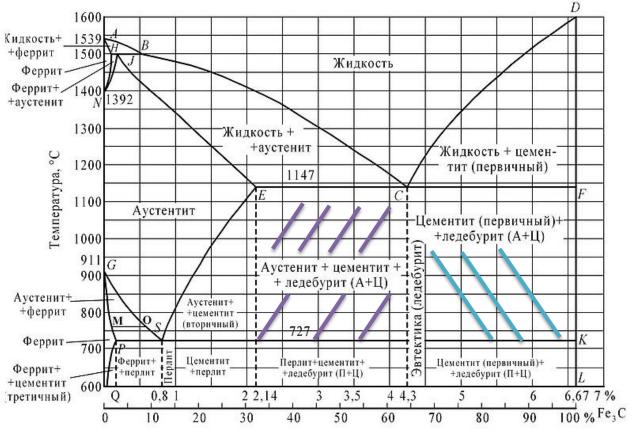

При этом в сплавах, содержащих:

- менее 4,3 масс.% углерода, из жидкости выделяются кристаллы аустенита;
- более 4,3 масс.% С кристаллы цементита.

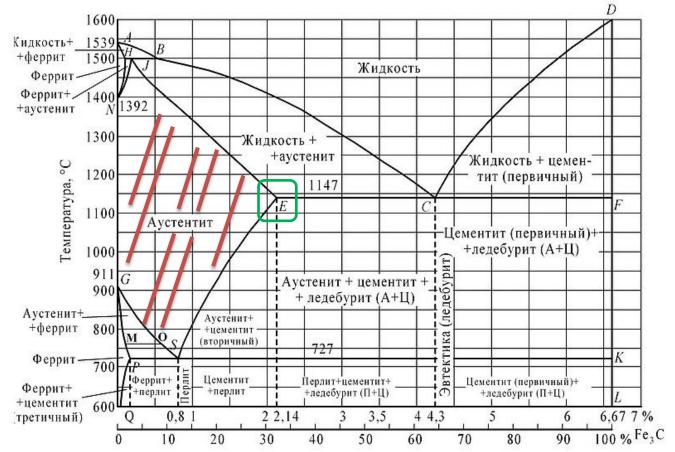
Эвтектика содержит 4,3 масс.% С, кристаллизуется в точке С при температуре 1147 °С и представляет собой **механическую смесь** кристаллов аустенита и цементита.


Эвтектика в железоуглеродистых сплавах — *ледебурит* (Л). Кратко можно записать:

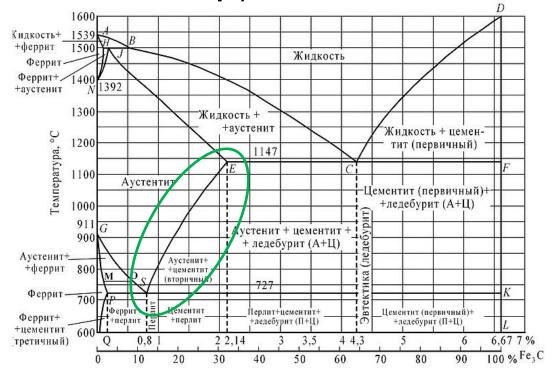
12


Кристаллизация всех сплавов, содержащих более 2,14 масс.% С, заканчивается образованием эвтектики.

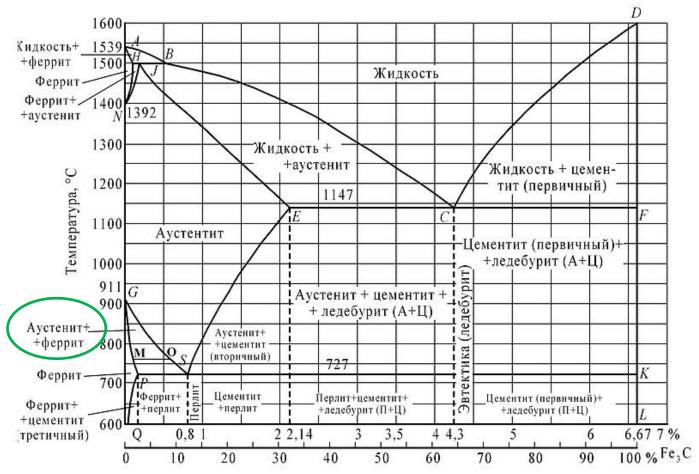
При достижении температуры 1147°C (линия *ECF*) происходит одновременное образование из жидкости кристаллов аустенита и цементита.


По окончании первичной кристаллизации структура сплавов следующая:

- **доэвтектических** (с содержанием углерода от 2,14 до 4,3 масс.%) аустенит и ледебурит,
- **заэвтектических** (от 4,3 до 6,69 масс.% C) ледебурит и цементит.

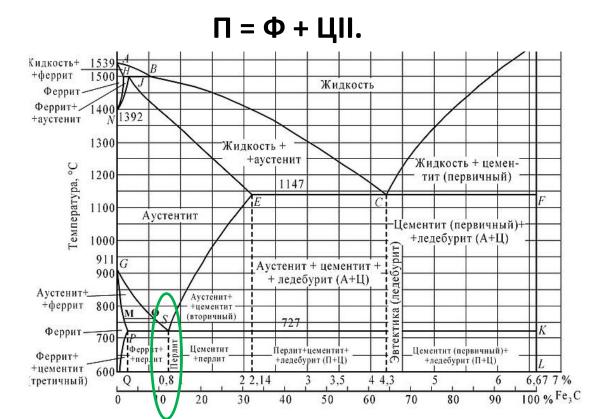

Сплавы, содержащие менее 2,14 масс.% С, по окончании первичной кристаллизации имеют однофазную структуру — аустенит. Вторичная кристаллизация (перекристаллизация в твёрдом состоянии) происходит из-за переменной растворимости углерода в аустените и феррите.

Предельное содержание С в аустените — 2,14 масс. % (точка E).



С понижением T растворимость С в Fe_{γ} -железе уменьшается в соответствии с линией предельной растворимости ES и к моменту достижения T=727 °C (линия PSK) составляет 0,8 масс.% С.

В сплавах (> 0,8 масс. % C) при охлаждении от 1147 до 727 °C происходит выделение С из аустенита. Активный атомарный С немедленно вступает во взаимодействие с железом, образуя цементит. В структуре сплава появляются кристаллы вторичного цементита (обозначают как ЦП).



В сплавах с содержанием углерода меньше 0,8 масс. % в процессе охлаждения от линии GS до линии PSK происходит зарождение и рост кристаллов феррита, поэтому содержание углерода в аустените увеличивается и к моменту достижения T=727 °C составляет также 0,8 масс. %С.

При 727 °C (линия *PSK*) во всех сплавах происходит эвтектоидное превращение: аустенит, содержащий 0,8 масс.% С, распадается с образованием механической смеси кристаллов феррита и цементита.

В железоуглеродистых сплавах эвтектоид носит собственное имя – *перлит*. Он представляет собой смесь двух равновесных при комнатной температуре фаз: феррита и цементита:

(2)

При дальнейшем охлаждении от 727 °C до комнатной температуры никаких превращений в железоуглеродистых сплавах не происходит. Исключением являются сплавы с содержанием углерода менее 0,02 масс. %.

В этих сплавах, при охлаждении от 727 °С, происходит выделение избыточного углерода из феррита в соответствии с кривой предельной растворимости *PQ*. Углерод образует с железом цементит, который называется в данном случае

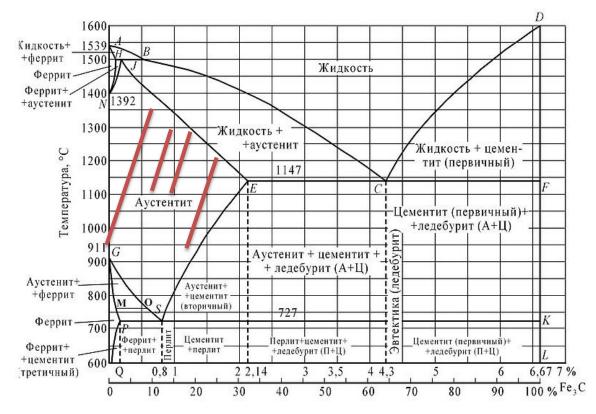
третичным (ЦIII).

3. Классификация сплавов Fe-С

Все сплавы железа с углеродом делятся на две большие группы:

- стали;
- чугуны.

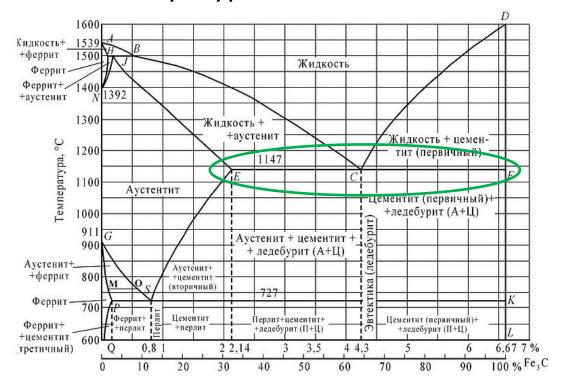
Граница между сталями и чугунами совпадает с предельной растворимостью углерода в аустените - 2,14 масс.% C.


Она разделяет две группы сплавов с различными структурными особенностями и, как следствие, с различной технологией изготовления изделий из них.

Сталями называются сплавы железа с углеродом, содержащие менее 2,14 масс.% углерода.

Любая углеродистая сталь при нагревании переходит в однофазное состояние - твёрдый раствор углерода в гамма-железе (область AESG на диаграмме).

В этом состоянии сталь достаточно пластична, её можно подвергнуть различным видам обработки давлением: прокатке,

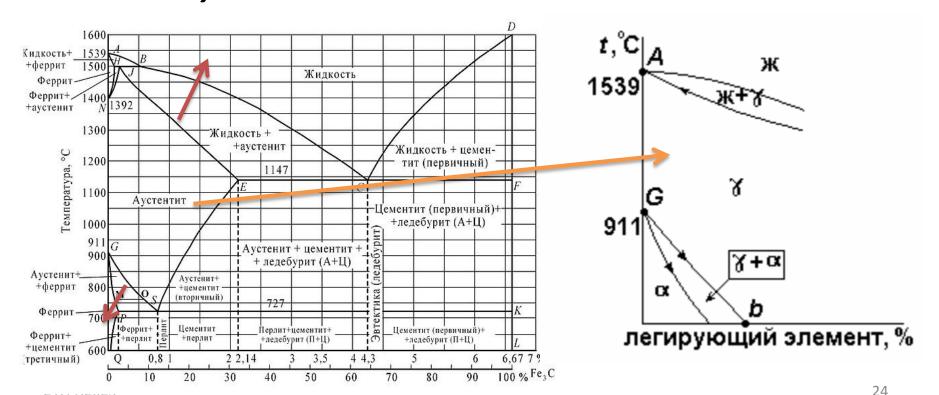

ковке и т.п.

Чугуны - это сплавы железа с углеродом, содержащие более 2,14 масс.% С. При нагреве чугуны всегда остаются двухфазными, до самого солидуса (линия ЕСF на диаграмме).

В структуре чугунов всегда имеется ледебурит — твёрдая и хрупкая структурная составляющая. Поэтому чугуны обработке давлением не подвергаются. Зато чугуны имеют хорошие литейные свойства, так как кристаллизуются при постоянной, сравнительно низкой температуре или в небольшом интервале

температур.

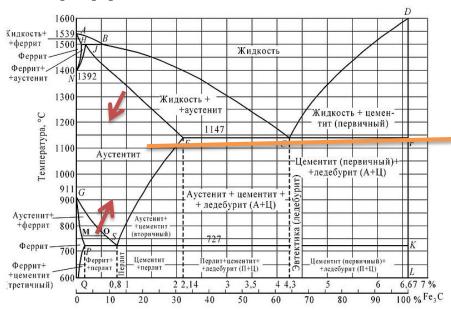
4. Влияние легирующих элементов на превращения в сплавах «железо-углерод»

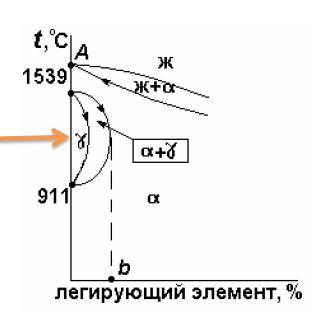

Элементы, специально добавленные в сплавы с целью получения требуемых эксплуатационных свойств, называются легирующими элементами, а стали или чугуны с такими добавками – легированными.

Легирующие элементы, вступая во взаимодействие с исходными компонентами, могут значительно изменять вид диаграммы Fe—C. Их подразделяют на две группы:

- 1) элементы, расширяющие область существования аустенита;
- 2) элементы, расширяющие область существования феррита.

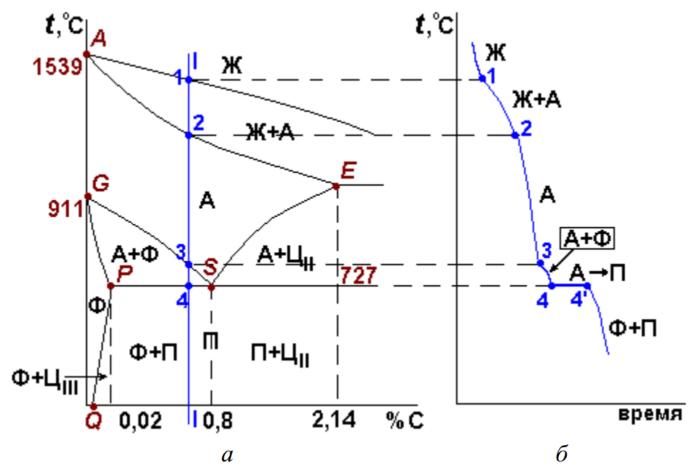
Элементы, расширяющие область существования аустенита, снижают температуру линии *GS* и повышают температуру линии *AE* (никель, марганец, кобальт).


Они образуют неограниченные растворы с Fe_{γ} . В этих сплавах ГЦК-решетка становится устойчивой при комнатной температуре, сплав после охлаждения имеет структуру аустенита. Такие стали называются *аустенитными*.



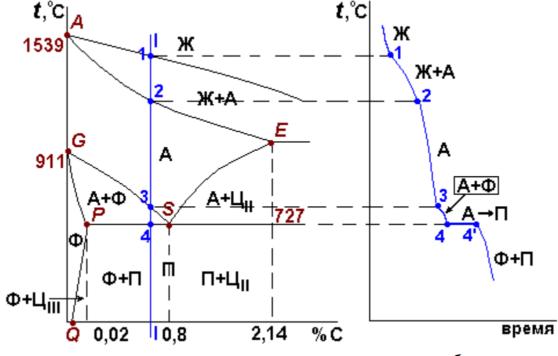
Элементы, расширяющие область существования феррита, повышают температуру линии *GS* и понижают температуру линии *AE*. К этой группе относятся большинство легирующих элементов: Cr, Mo, W, V, Ti, Si и др.

Легирующий элемент неограниченно растворяется в Fe_{α} , начиная с некоторой концентрации b, причем этот твёрдый раствор устойчив при всех температурах, вплоть до солидуса.

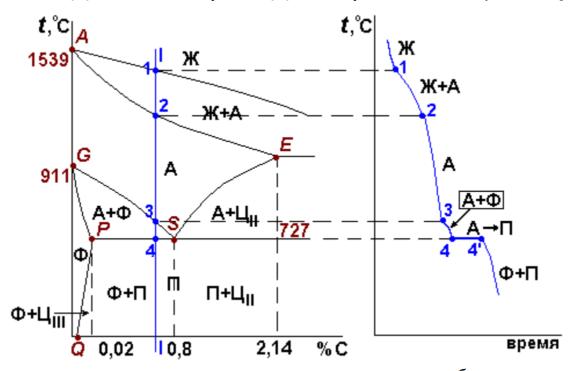

Сплав после охлаждения имеет структуру феррита. Такие стали называются ферритными.

5. Расшифровка диаграммы Fe-C

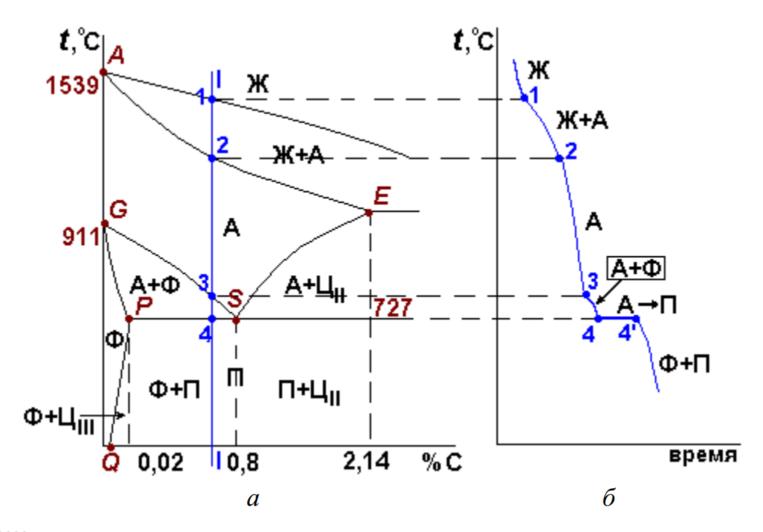
Выполним анализ превращения в системе Fe-C при охлаждении и постоянной концентрации 0,6 масс.% С (линия I-I на рис. 7).


Рис. 7. Левая часть диаграммы Fe-C (a) и кривая охлаждения сплава I-I (δ).

26


- 1. Начальное состояние жидкая фаза.
- 2. Количество фазовых превращений 4.
- 3. **Точка 1** линия ликвидус, при достижении этой температуры начинается кристаллизация раствора Fe и C.
- 4. **Точка 1 → точка 2** из жидкости выделяются кристаллы аустенита.

5. Точка 2 - линия солидус, произошла полная кристаллизация аустенита. Образовавшиеся кристаллы имеют 0,6 масс. % С в


своём составе.

- 6. **Точка 2 → точка 3** охлаждение аустенитной стали. Без фазовых превращений.
- 7. **Точка 3** начинается рост зёрен феррита в аустенитной стали в тех областях, где углерода оказалось меньше.
- 8. **Точка 3** → **точка 4** охлаждение стали с повышением содержания углерода в аустените.
- 9. **Точка 4** содержание углерода в аустените достигает 0,8 масс.% и происходит его переход в перлит: $\Pi = (\Phi + \Pi)$.

- 10. Точка 4 → фазовых превращений не происходит.
- 11. Конечное состояние при комнатной температуре сталь состоит из феррита и перлита = феррита и цементита (II).

