This article was downloaded by: [NEICON Consortium] On: 9 June 2010 Access details: Access Details: [subscription number 788155938] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Physics

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713395160

High resolution infrared spectroscopy and global vibrational analysis for the $CH_{a}D$ and CHD_{a} isotopomers of methane

O. N. Ulenikov^{ab}; E. S. Bekhtereva^{ab}; S. Albert^a; S. Bauerecker^{ac}; H. Hollenstein^a; M. Quack^a ^a Physical Chemistry, ETH-Zürich, CH-8093 Zürich, Switzerland ^b Laboratory of Molecular Spectroscopy, Physics Department, Tomsk State University, Tomsk, 634050, Russia ^c Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, D-38106, Braunschweig, Germany

Online publication date: 27 May 2010

To cite this Article Ulenikov, O. N. , Bekhtereva, E. S. , Albert, S. , Bauerecker, S. , Hollenstein, H. and Quack, M.(2010) 'High resolution infrared spectroscopy and global vibrational analysis for the CH_3D and CHD_3 isotopomers of methane', Molecular Physics, 108: 7, 1209 – 1240

To link to this Article: DOI: 10.1080/00268976.2010.483131 URL: http://dx.doi.org/10.1080/00268976.2010.483131

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

INVITED ARTICLE

High resolution infrared spectroscopy and global vibrational analysis for the CH₃D and CHD₃ isotopomers of methane[†]

O.N. Ulenikov^{ab}, E.S. Bekhtereva^{ab}, S. Albert^a, S. Bauerecker^{ac}, H. Hollenstein^a and M. Quack^{a*}

^aPhysical Chemistry, ETH-Zürich, CH-8093 Zürich, Switzerland; ^bLaboratory of Molecular Spectroscopy, Physics Department, Tomsk State University, Tomsk, 634050, Russia; ^cInstitute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, D-38106, Braunschweig, Germany

(Received 26 February 2010; final version received 5 March 2010)

We report infrared spectra of CH₃D and CHD₃ in the range 2900 to 9000 cm⁻¹ measured with the Zürich high resolution Fourier transform infrared (FTIR) interferometer Bruker IFS 125 prototype (ZP 2001) at 80 K in a collisional-cooling cell with optical paths ranging from 5 to 10 m. In all, 57 new ro-vibrational bands of CH₃D and 40 for CHD₃ were assigned and analysed. Using a strategy of the direct assignment of the J=0 states of excited vibrational levels, precise experimental values of the band centres with uncertainties in the range of about 0.0001 to 0.0003 cm⁻¹ were obtained. Including 15 previously known band centres of CH₃D and 12 previously known band centres of CHD₃, these data were used as the initial information for the determination of the harmonic frequencies, anharmonic coefficients, and vibrational resonance interaction parameters in an effective hamiltonian. A joint set of 64 parameters reproduces the 124 experimental vibrational energies of both molecules up to 6500 cm⁻¹ with a root mean deviation of $d_{\rm rms} = 0.73 \, {\rm cm}^{-1}$. The results are discussed in relation to intramolecular dynamics on a global potential hypersurface of methane, intramolecular vibrational redistribution, and the spectroscopy of the atmospheres of the earth and planetary systems.

Keywords: infrared spectroscopy; vibration–rotation spectra; CH₃D; CHD₃; overtone and combination bands; spectroscopic parameters; isotopes; methane; FTIR; intramolecular quantum dynamics; potential hypersurfaces; resonances

1. Introduction

Methane is the prototypical hydrocarbon with fundamental importance ranging from the theory of chemical bonding [1,2], rotational dynamics in symmetrical molecules [3], our understanding of the structure of potential hypersurfaces [4-9], unimolecular reaction rate theory [10,11], fundamental bimolecular reaction dynamics [12–15], to even the fundamental physics of chirality and parity violation [16–19]. Methane has also been studied in the context of accurate multidimensional calculations of vibrational dynamics [4,20–25]. Apart from these fundamental aspects methane plays a central role in various fields of science and technology. We might mention here combustion and environmental processes, atmospheric chemistry in the context of the greenhouse effect, planetary science and astrophysics. In all these contexts the understanding of the methane spectra is essential.

The present work is part of a large effort to unravel methane's rovibrational spectra and dynamics up to

high vibrational excitations. Our recent work on the spherical top isotopomers ¹²CH₄ and ¹³CH₄ provides also a guide to the extensive literature impossible to cite in completeness here [26–29]. Recently, we have provided high resolution analyses for the isotopomer CD_2H_2 giving a rather complete picture of vibrational state dynamics covering the spectral range from low excitations to about 6500 cm^{-1} [30–32]. This asymmetric top molecule has many advantages for such an initial study of deutero isotopomers. Here we turn our attention to the symmetric top isotopomers CH₃D and CD_3H . These isotopomers are of interest for a number of reasons. CH₃D is obviously the most abundant deutero isotopomer in natural environments allowing for its detection in the Earth's atmosphere and also in an astrophysical context. CD_3H has been a prototype for anharmonic intramolecular quantum dynamics arising from the strong and very selective coupling between the CH stretching and CH bending modes [33,34]. The isolated CH chromophore in this molecule

*Corresponding author. Email: martin@quack.ch

[†]Dedicated to R.N. Zare on the occasion of his 70th birthday.

provides a spectroscopic window to this mode selective dynamics by allowing analyses extending to excitations exceeding 2 eV (18,500 cm⁻¹), achieved already more than two decades ago [7,20], similar to the case of CF₃H [35,36]. However, these early results were mostly limited to the levels of the CH chromophore itself, excluding other modes. In addition, the spectra taken then were of limited resolution. Recent progress has allowed us to derive highly accurate vibrational level positions including excitation of all modes. The experimental approach involves spectra recorded at sufficiently low temperature either in supersonic jet expansions [29,37] or collisional-cooling cells [32] in such a way that a correct and precise assignment of transitions to the J=0 rotational level of the excited state checked by combination differences in the lower state is possible. By adding the known rotational energy of the lower level of the transition in the vibrational ground state, one obtains a direct and precise result depending on the resolution of the spectra and the signal-to-noise level in the spectra for the excited vibrational level energies. The main advantage of this strategy is to avoid a complete global rovibrational analysis of large numbers of interacting levels. Such a complete global analysis has been done successfully for the main isotopomer ¹²CH₄ only recently up to the octad region around $4500 \,\mathrm{cm}^{-1}$ consisting of 35 interacting levels [26]. We are able now to present correct and precise assignments using our direct approach for 57 newly observed vibrational levels of CH₃D in addition to 15 previously known band centres and for 37 vibrational levels of CD₃H in addition to 10 band centres previously analysed. Our new results extending to $6500 \,\mathrm{cm}^{-1}$ and beyond will provide benchmarks for the understanding of the vibrational dynamics of these isotopomers. A preliminary account of some of our results has been presented in [38,39]. A few bands of CH₃D were subsequently also analysed in [40].

2. Experimental

The Fourier transform infrared (FTIR) spectra of CH_3D and CD_3H have been recorded in the

wavenumber range from 2800 to $9000 \,\mathrm{cm}^{-1}$ with the Zürich FTIR spectrometer Bruker IFS 125 prototype 2001 [41-43]. The nominal instrumental resolution, defined by $1/d_{MPOD}$ (maximum optical path difference) ranged from 0.0027 to 0.0048 cm⁻¹ resulting in essentially Doppler limited spectra. The Doppler widths at 80 K range from about $0.004 \,\mathrm{cm}^{-\hat{1}}$ at 2800 to 0.0096 cm^{-1} at 6600 cm^{-1} . About 100 spectra were typically co-added in each spectral region. A multireflection collisional cooling cell based on White optics and embedded in a Dewar was used for recording the cold spectra [43] similar to the design described in [44-46]. Optical path lengths ranging from 5 to 10 m were used for the measurements. More details of the experimental setup and procedures can be found in [43].

Most of the CH₃D and CD₃H spectra were taken at about 80 K. The total sample pressure of a mixture of CH_3D/CD_3H and He in the cell ranged from 2.8 to 3.5 mbar in most cases. In addition, spectra with a pressure of 0.5 mbar were recorded in order to measure the strong lines without saturation. Pressure broadening can be neglected under these conditions. All spectra were self-apodised. The aperture used was 1 mm. Table 1 summarises the experimental parameters. The wavenumbers were calibrated with OCS at room temperature (2900 to 3600 cm^{-1}) [47] and with ${}^{12}\text{CH}_4$ from 3000 to 6000 cm^{-1} [26,48]. The deuterated samples were purchased from Cambridge Isotope Laboratories. The identity, chemical and isotopic purity (specified to be better than 98%) was obvious from the spectra.

The absolute wavenumber accuracy of nonblended, unsaturated and not too weak lines (about 10,100 assignments) can be estimated to be better than 10^{-4} cm⁻¹ in the range from 2800 to 6600 cm⁻¹.

3. Theoretical background: symmetry and Hamiltonian model

3.1. Point group and molecular symmetry group for the C_{3v} isotopomers of methane

 CH_3D is a prolate symmetric top and CHD_3 is an oblate symmetric top with an equilibrium geometry

Table 1. Experimental setup for the regions $2900-6500 \text{ cm}^{-1}$ of the infrared spectrum of CH₃D and CHD₃.

Region /cm ⁻¹	$\underset{/cm^{-1}}{\text{Resolution}}$	Windows	Source	Detector	Beamsplitter	Opt. filter $/cm^{-1}$	Aperture /mm	v _{mirror} /(kHz)	Electr. filter $/cm^{-1}$	Calib. gas
2800-3700	0.0027	KBr	Globar	InSb	CaF ₂	3000-3600	1.0	40	2600-3700	OCS [47]
3300-4300	0.0033	KBr	Tungsten	InSb	CaF_2	3400-4400	1.0	40	2800-5500	
4100-6000	0.0033	KBr	Tungsten	InSb	CaF_2	4100-6000	1.0	40	3200-6300	¹² CH ₄ [26,48]
5100-6500	0.0048	KBr	Tungsten	InSb	CaF_2	5500-6200	1.0	40	3600-7800	

corresponding to the C_{3v} point group of order 6 (Figure 1).

This point group is isomorphous to the molecular symmetry group M_{S6} , which is a subgroup of the permutation inversion group S_3^* applicable to both isotopomers of methane if the tunnelling substructure of the levels of methane and parity are considered explicitly [49,50].

Table 2 provides the character table for C_{3v} and M_{S6} as well as the induced representation $\Gamma_m \uparrow S_3^*$ generated by the motional species Γ_m in M_{S6} . This is thus the structure of sublevels of A_1 , A_2 , and E in C_{3v} (M_{S6}) including tunnelling, motional and parity assignment for S_3^* (letter symbol with exponent + for positive parity, – for negative parity providing the symmetry

Table 2. Character table for C_{3v} and the isomorphous group M_{S6} with the induced representations $\Gamma(M_{S6}) \uparrow S_3^*$. The point group operations C_3 , σ_v follow standard notation [51] and for the permutations the common cyclic notation is used [49,50,52] with a star indicating space inversion operations. For the irreducible representations the conventional point group labels are used, whereas the species in S_3^* indicate pure permutational species by the letter symbol and parity by the exponent + or - (see [49,50,52,53] for this convention).

	E E	2 <i>C</i> ₃ 2(123)	3σ _v 3(12)*	$\Gamma_m \uparrow \mathbf{S}_3^*$
$\begin{array}{c} A_1 \\ A_2 \\ E \end{array}$	1 1 2	1 1 -1		$(A_1^+) + A_2^- A_2^+ + (A_1^-) E^+ + E^-$

property under the space inversion operation, \hat{P} or E^*). At the resolution of our experiments the tunnelling substructure cannot be observed and thus one might usually label all rovibronic levels by the species A_1, A_2 , E in C_{3v}. However, because of the generalised Pauli principle and approximate separability of rovibrational and nuclear spin wavefunctions, the total allowed symmetry species are the product of the 'motional' (rovibronic or rovibrational) species Γ_m and nuclear spin species Γ_{ns} with $\Gamma_m \otimes \Gamma_{ns} = A_2^{\pm}$ for the protons (Fermions), say in CH₃D. The 2³ nuclear spin functions for the three protons form a reducible representation $D_{\rm R} = 4A_1^+ + 2E^+$, where the four A_1^+ functions correspond to total (H₃) nuclear spin I=3/2 $(-3/2 \leqslant M_I \leqslant +3/2)$ and the two E^+ functions to total (H₃)-nuclear spin I = 1/2 (with $M_I = \pm 1/2$). One can write the (H₃)-nuclear spin multiplets as ${}^{4}A_{1}$ and ^{2}E . Thus the motional (rovibronic) wave functions of species A_2^+ and A_2^- occur combined with nuclear spin species A_1^+ and total (H₃)-nuclear spin (I = 3/2) and the motional species E^+ and E^- occur with nuclear spin species E^+ (and I = 1/2). The A_1^{\pm} motional species have no Pauli-allowed partner among the nuclear spin functions and thus are forbidden by the generalised Pauli principle in the case of CH_3D . This is indicated by the parentheses in $\Gamma_m \uparrow S_3^*$ in Table 2. From this consideration one sees that assigning a symmetry species in S_3^* to the levels of the C_{3v} molecule, CH_3D provides actually additional information. A_1 levels (in C_{3v}) are actually pure A_2^- in S_3^* , with well-defined negative parity, and similarly A_2 levels in C_{3v} result in A_2^+ with pure positive parity and no tunnelling doublet structure. For levels of symmetry species E in C_{3v} one finds a non-resolved tunnelling doublet E^+ and $E^$ with levels of different parity (and both combining with (H₃)-nuclear spin I = 1/2 and thus an extra degeneracy of 2 from $m_I = \pm 1$). Of course, in all cases the further nuclear spin from the one deuteron in CH₃D (with $I_D = 1$) has to be added to the considerations.

Completely analogous considerations apply to CHD₃ where the 3³ nuclear spin functions of (D₃) form a reducible representation corresponding to the (D₃)-nuclear spin multiplet notation ${}^{7}A_{1}^{+}(I=3) + {}^{3}A_{1}^{+}(I=1) + {}^{1}A_{2}^{+}(I=0) + {}^{5}E^{+}(I=2) + {}^{3}E^{+}(I=1)$ [49]. These spin functions for the boson D combine with the motional functions to give Pauli-allowed overall totally symmetric symmetry species A_{1}^{\pm} . Thus all levels in C_{3v} (A_{1}, A_{2}, E) result in tunnelling doublets of different parity A_{1}^{\pm} , A_{2}^{\pm} and E^{\pm} in S₃^{*} and a more complex D₃-nuclear spin multiplet structures as given by the reducible representation indicated above. Again, the extra nuclear spin (1/2) from the single H has to be considered in addition.

Table 3. Values of the fundamental band centres of the CH_3D molecule (in cm⁻¹).

ν	Г	$\nu_0^{\text{exp.}}/\text{cm}^{-1}$	Ref.	Assignment
$ \begin{array}{c} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \\ \nu_5 \\ \nu_6 \end{array} $	$ \begin{array}{c} A_1\\ A_1\\ A_1\\ E\\ E\\ E\\ E\end{array} $	2969.512 2200.041 1306.848 3016.713 1472.022 1166.103	[25] [25] [54] [54] [54]	CH ₃ s-stretch CD stretch CH ₃ s-deform CH ₃ d-stretch CH ₃ d-deform CH ₃ rock

In practice in assigning symmetry species, one uses first the conventional C_{3v} symmetry species for both CH_3D and CD_3H and then derives the substructure of the almost degenerate levels and the corresponding nuclear spin statistical weights from the induced representation in Table 2 and the considerations given above.

The electric dipole selection rules take a very simple form in S_3^* : conservation of nuclear spin symmetry and change of parity in the optical transition, thus

$$A_1^+ \leftrightarrow A_1^-$$
 (Ia)

$$A_2^+ \leftrightarrow A_2^-$$
 (Ib)

$$E^+ \leftrightarrow E^-$$
 (Ic)

with all other transitions being electric dipole forbidden with the approximation of nuclear spin symmetry conservation [49,50,52,53]. For magnetic dipole transitions one has no change of parity in the transition, but these are extremely weak in the infrared spectra and not analysed here.

3.2. The effective rotational-vibrational Hamiltonian

The nine vibrational normal modes q_{λ} of both molecules have the symmetry species A_1 or E in $C_{3\nu}$, three nondegenerate modes q_{λ} ($\lambda = 1, 2, 3$) $\in A_1$ and three doubly degenerate modes q_{μ_1} and q_{μ_2} ($\mu = 4, 5, 6$) $\in E$. Tables 3 and 4 summarise the six vibrational fundamentals as known today for the CH₃D and CHD₃ isotopomers.

The presence of degenerate modes in the C_{3v} symmetric methane isotopomers leads to a more complicated picture of ro-vibrational spectra than for CH_2D_2 [32], especially in excited overtone and combination bands largely governed by symmetry. It is therefore suitable to make use of the symmetry properties of these molecules [3], applying theorems and results of the theory of irreducible tensorial sets, [57,58], for the construction of the molecular hamiltonian, ro-vibrational eigenfunctions, and the various matrix elements as adapted to the C_{3v} type molecules, see e.g. [58,59].

Table 4. Values of the fundamental band centres of the CHD_3 Molecule (in cm⁻¹).

ν	Г	$v_0^{\text{exp.}}/\text{cm}^{-1}$	Ref.	Assignment
$ \begin{array}{c} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \\ \nu_5 \\ \nu_6 \end{array} $	$\begin{array}{c} A_1\\ A_1\\ A_1\\ E\\ E\\ E\\ E\\ E\end{array}$	2992.786 2142.583 1004.548 2250.828 1292.500 1035.920	[This work] ^a [56] [55] [56] [55] [55]	CH stretch CD ₃ s-stretch CD ₃ s-deform CD ₃ d-stretch CD ₃ rock CD ₃ d-deform

Note: ^aRef. [20] gave 2992.75 cm⁻¹ with an estimated measurement (and calibration) uncertainty of 0.02 cm⁻¹, in essential agreement with the present much more accurate result.

On the other hand, the presence of numerous and strong resonance interactions between different vibrational states of both CH_3D and CHD_3 leads to the necessity to use even in a preliminary analysis of infrared spectroscopic data a Hamiltonian model which takes into account explicitly all strong resonance interactions. Using C_{3v} symmetry, the Hamiltonian takes the following form [59]

$$H^{\mathbf{v}.-\mathbf{r}.} = \sum_{\boldsymbol{\nu}\Gamma,\boldsymbol{\nu}'\Gamma'} H^{\boldsymbol{\nu}\Gamma,\boldsymbol{\nu}'\Gamma'},\tag{1}$$

where the summation extends over all interacting vibrational states; $\Gamma = A_1, A_2, E$ is the symmetry species of the vibrational state. The diagonal operators $H^{\nu\Gamma,\nu\Gamma}$ describe the rotational structures of the corresponding vibrational state and can be written in the following form:

$$H_{\text{diag.}} = \sum_{v} H^{vA_1, vA_1} + \sum_{v} H^{vA_2, vA_2} + \sum_{v} H^{vE, vE}.$$
 (2)

The operators H^{vA_i,vA_i} (i=1,2) which describe the rotational-vibrational structures of nondegenerate vibrational states have the form:

$$H^{vA_i, vA_i}$$

$$= |vA_i\rangle \langle vA_i| \{E^{va_i} + B^{va_i}(J_x^2 + J_y^2) + C^{va_i}J_z^2 - D_J^{va_i}J^4 - D_{JK}^{va_i}J^2J_z^2 - D_K^{va_i}J_z^4 + H_J^{va_i}J^6 + H_{JK}^{va_i}J^4J_z^2 + H_{KJ}^{va_i}J^2J_z^4 + H_K^{va_i}J_z^6 + L_J^{va_i}J^8 + \cdots + [(\epsilon'^{va_i}J_z + \epsilon'_J^{va_i}J_zJ^2 + \epsilon'_K^{va_i}J_z^3 + \cdots), (J_+^3 + J_-^3)]_+ + h'^{va_i}(J_+^6 + J_-^6) + \cdots \}.$$
(3)

Here B^{va_i} , C^{va_i} , $D_J^{va_i}$, $D_{JK}^{va_i}$, $D_K^{va_i}$, $H_J^{va_i}$, $H_{JK}^{va_i}$, $H_{KJ}^{va_i}$, $H_K^{va_i}$, $L_J^{va_i}$, ... are the rotational constants and centrifugal distortion parameters, respectively (it should be mentioned that the notations *B* and *C* for the rotational parameters are used in the spectroscopic literature for the oblate symmetric top molecules, like CHD₃; for the prolate symmetric top molecules, like CH₃D, the

1212

notation A is used instead of C). The operators $(J_+^3 + J_-^3)$ connect rotational states $|JK\rangle$ and $|JK'\rangle$ with different values of the quantum numbers K, namely $\Delta K = K - K' = \pm 3$. They account, in particular, for the A_1/A_2 splittings of K=3 levels, and the operators J_+ and J_- have the form of $J_{\pm}=J_x \mp i J_y$. The parameters $\epsilon_J'^a$ and $\epsilon_K'^a$ describe the J and K dependence of the main ϵ'^a parameter. The expression $[\ldots,\ldots]_+$ denotes an anticommutator.

For doubly degenerate vibrational states the $H^{vE,vE}$ operator is

$$H^{\nu E,\nu E} = H_1^{\nu E,\nu E} + H_2^{\nu E,\nu E} + H_3^{\nu E,\nu E},$$
(4)

where $H_1^{vE,vE}$

$$= (|vE_1\rangle\langle vE_1| + |vE_2\rangle\langle vE_2|) \{ E^{ve} + B^{ve}(J_x^2 + J_y^2) + C^{ve}J_z^2 - D_J^{ve}J^4 - D_{JK}^{ve}J^2J_z^2 - D_K^{ve}J_z^4 + H_J^{ve}J^6 + H_{JK}^{ve}J^4J_z^2 + H_{KJ}^{ve}J^2J_z^4 + H_K^{ve}J_z^6 + L_J^{ve}J^8 + \cdots + [(\epsilon'^{ve}J_z + \epsilon'_J^{ve}J_zJ^2 + \epsilon'_K^{ve}J_z^3 + \cdots), (J_+^3 + J_-^3)]_+ \},$$
(5)

$$H_{2}^{vE,vE} = (|vE_{1}\rangle\langle vE_{2}| - |vE_{2}\rangle\langle vE_{1}|)\{2(C\zeta)^{ve}J_{z} + \eta_{J}^{ve}J_{z}J^{2} + \eta_{K}^{ve}J_{z}^{3} + \eta_{JJ}^{ve}J_{z}J^{4} + \eta_{JK}^{ve}J_{z}^{3}J^{2} + \eta_{KK}^{ve}J_{z}^{5} + \eta_{JJJ}^{ve}J_{z}J^{6} + \eta_{JJK}^{ve}J_{z}^{3}J^{4} + \eta_{JKK}^{ve}J_{z}^{5}J^{2} + \eta_{KKK}^{ve}J_{z}^{7} + \cdots\},$$
(6)

and

$$\begin{aligned} H_{3}^{vE,vE} &= (|vE_{2}\rangle\langle vE_{2}| - |vE_{1}\rangle\langle vE_{1}|)\{[iA^{ve}, (J_{+} - J_{-})]_{+} \\ &+ [B^{ve}, (J_{+} + J_{-})]_{+} + [C^{ve}, (J_{+}^{2} + J_{-}^{2})]_{+} \\ &+ [iD^{ve}, (J_{-}^{2} - J_{+}^{2})]_{+} + [F^{ve}, (J_{+}^{4} + J_{-}^{4})]_{+} \\ &+ [iG^{ve}, (J_{-}^{4} - J_{+}^{4})]_{+} \} \\ &+ (|vE_{1}\rangle\langle vE_{2}| + |vE_{2}\rangle\langle vE_{1}|)\{[A^{ve}, (J_{+} + J_{-})]_{+} \\ &+ [iB^{ve}, (J_{-} - J_{+})]_{+} + [iC^{ve}, (J_{+}^{2} - J_{-}^{2})]_{+} \\ &+ [D^{ve}, (J_{+}^{2} + J_{-}^{2})]_{+} + [iF^{ve}, (J_{+}^{4} - J_{-}^{4})]_{+} \\ &+ [G^{ve}, (J_{+}^{4} + J_{-}^{4})]_{+} \}, \end{aligned}$$
(7)

$$\begin{split} A^{ve} &= \frac{1}{2} \alpha^{ve} + \frac{1}{2} \alpha_J^{ve} J^2 + \alpha_K^{ve} J_z^2 + \frac{1}{2} \alpha_{JJ}^{ve} J^4 \\ &+ \alpha_{JK}^{ve} J^2 J_z^2 + \alpha_{KK}^{ve} J_z^4 + \cdots \\ &+ \alpha_{JJK}^{ve} J^4 J_z^2 + + \alpha_{JKK}^{ve} J^2 J_z^4 + \cdots, \\ B^{ve} &= \beta^{ve} J_z + \beta_J^{ve} J_z J^2 + \beta_K^{ve} J_z^3 + \beta_{JJ}^{ve} J^4 J_z + \beta_{JK}^{ve} J^2 J_z^3 + \cdots, \\ C^{ve} &= \frac{1}{2} \gamma^{ve} + \frac{1}{2} \gamma_J^{ve} J^2 + \gamma_K^{ve} J_z^2 + \frac{1}{2} \gamma_{JJ}^{ve} J^4 + \gamma_{JK}^{ve} J^2 J_z^2 + \cdots \\ &+ \gamma_{JJK}^{ve} J^4 J_z^2 + \cdots, \\ D^{ve} &= \delta^{ve} J_z + \delta_J^{ve} J_z J^2 + \delta_K^{ve} J_z^3 + \delta_{JJ}^{ve} J_z J^4 + \delta_{JK}^{ve} J^2 J_z^3 + \cdots, \\ F^{ve} &= \frac{1}{2} \kappa^{ve} + \frac{1}{2} \kappa_J^{ve} J_z^2 + \kappa_K^{ve} J_z^2 + \frac{1}{2} \kappa_{JJ}^{ve} J^4 + \kappa_{JK}^{ve} J^2 J_z^2 + \cdots, \\ G^{ve} &= \theta^{ve} J_z + \theta_J^{ve} J_z J^2 + \theta_K^{ve} J_z^3 + \theta_{JJ}^{ve} J_z J^4 + \theta_{JK}^{ve} J^2 J_z^3 + \cdots. \end{split}$$

In Equation (5) the $E^{ve}, B^{ve}, \ldots, e^{ve}$ parameters have the same meaning as the corresponding ones in Equation (3) with only one exception: although the operators $(J_1^3 + J_2^3)$ connect rotational states $|JK\rangle$ and $|JK'\rangle$ with $\Delta K = K - K' = \pm 3$, they do not split A_1/A_2 levels. The operator $H_2^{vE,vE}$ describes the k - l splittings; other types of operators, $(J_1^n \pm J_2^n)$, connect rotational states $|JK\rangle$ and $|JK'\rangle$ where $\Delta K = K - K' = \pm n$. Of these, the operators with n = 2m provide the $A_1 - A_2$ splittings of energy levels with K = m.

The Fermi-type resonance operators $H^{\nu\Gamma,\nu'\Gamma}$ connect vibrational states of the same symmetries and formally have the same form as expressions (3)–(8). However, the vibrational operators $|\nu\Gamma_{\sigma}\rangle\langle\nu\Gamma_{\sigma'}|$ in these formulae should be exchanged by $|\nu\Gamma_{\sigma}\rangle\langle\nu'\Gamma_{\sigma'}|$, and the parameters $E^{\nu a_i}, B^{\nu a_i}, \ldots, \theta^{\nu e_i}_{JK}, \ldots$ in Equations (3)–(8) should be exchanged by the corresponding resonance operators $E^{\nu a_i,\nu'a_i}, \dots, \theta^{\nu e_i,\nu' e_i}_{JK}, \ldots$.

Finally, the Coriolis-type interaction operators which connect vibrational states of different symmetries, have the following form:

$$\begin{aligned} H^{vA_{1}, v'E} \\ &= |vA_{1}\rangle \langle v'E_{1}|\{[iA^{va_{1}, v'e}, (J_{+} - J_{-})]_{+} \\ &+ [B^{va_{1}, v'e}, (J_{+} + J_{-})]_{+} \\ &+ [C^{va_{1}, v'e}, (J_{+}^{2} + J_{-}^{2})]_{+} + [iD^{va_{1}, v'e}, (J_{-}^{2} - J_{+}^{2})]_{+} \\ &+ [F^{va_{1}, v'e}, (J_{+}^{4} + J_{-}^{4})]_{+} + [iG^{va_{1}, v'e}, (J_{-}^{4} - J_{+}^{4})]_{+} \} \\ &+ |vA_{1}\rangle \langle v'E_{2}|\{[A^{va_{1}, v'e}, (J_{+} + J_{-})]_{+} \\ &+ [iB^{va_{1}, v'e}, (J_{-} - J_{+})]_{+} \\ &+ [iC^{va_{1}, v'e}, (J_{+}^{2} - J_{-}^{2})]_{+} + [D^{va_{1}, v'e}, (J_{+}^{2} + J_{-}^{2})]_{+} \\ &+ [iF^{va_{1}, v'e}, (J_{+}^{4} - J_{-}^{4})]_{+} + [G^{va_{1}, v'e}, (J_{+}^{4} + J_{-}^{4})]_{+} \}. \end{aligned}$$

and

$$\begin{split} H^{\nu A_{2},\nu'E} \\ &= -|\nu A_{2}\rangle \langle \nu' E_{2}|\{[iA^{\nu a_{2},\nu'e},(J_{+}-J_{-})]_{+} \\ &+ [B^{\nu a_{2},\nu'e},(J_{+}+J_{-})]_{+} \\ &+ [C^{\nu a_{2},\nu'e},(J_{+}^{2}+J_{-}^{2})]_{+} + [iD^{\nu a_{2},\nu'e},(J_{-}^{2}-J_{+}^{2})]_{+} \\ &+ [F^{\nu a_{2},\nu'e},(J_{+}^{4}+J_{-}^{4})]_{+} + [iG^{\nu a_{2},\nu'e},(J_{-}^{4}-J_{+}^{4})]_{+} \} \\ &+ |\nu A_{2}\rangle \langle \nu' E_{1}|\{[A^{\nu a_{2},\nu'e},(J_{+}+J_{-})]_{+} \\ &+ [iB^{\nu a_{2},\nu'e},(J_{-}-J_{+})]_{+} \\ &+ [iC^{\nu a_{2},\nu'e},(J_{+}^{2}-J_{-}^{2})]_{+} + [D^{\nu a_{2},\nu'e},(J_{+}^{2}+J_{-}^{2})]_{+} \\ &+ [iF^{\nu a_{2},\nu'e},(J_{+}^{4}-J_{-}^{4})]_{+} + [G^{\nu a_{2},\nu'e},(J_{+}^{4}+J_{-}^{4})]_{+} \}. \end{split}$$

The operators $A^{va_iv'e}, B^{va_iv'e}, \ldots$, etc., can be derived from Equation (8) by replacing the parameters

Table 5. Elements of the G-reduction matrix for the C_{3v} point group.^a

Element	Value
$^{(J)}G^m_{NA_1}$	$\frac{(-\mathrm{i})^J}{2^{1/2}}(1+\delta_{N,0})^{-1/2}(\delta_{m,3N}+(-1)^{(J+3N)}\delta_{m,-3N})$
$^{(J)}G^m_{NA_2}$	$\frac{(-\mathrm{i})^{J+1}}{2^{1/2}}(1-2\delta_{N,0})(1+\delta_{N,0})^{-1/2}(\delta_{m,3N}+(-1)^{(J+3N+1)}\delta_{m,-3N})$
$^{(J)}G_{NE1}^m$	$\frac{(-i)^J}{2^{1/2}}(\delta_{m,3N+1}+(-1)^{(J+3N+1)}\delta_{m,-(3N+1)})$
$^{(J)}G_{NE2}^m$	$\frac{(-i)^{J+1}}{2^{1/2}}(\delta_{m,3N+1}+(-1)^{(J+3N)}\delta_{m,-(3N+1)})$
$^{(J)}G^m_{(N+1+\{(J-1)/3\})E1}$	$\frac{(-i)^J}{2^{1/2}}(\delta_{m,3N+2}+(-1)^{(J+3N)}\delta_{m,-(3N+2)})$
$^{(J)}G^m_{(N+1+\{(J-1)/3\})E2}$	$\frac{(-i)^{J-1}}{2^{1/2}}(\delta_{m,3N+2}+(-1)^{(J+3N+1)}\delta_{m,-(3N+2)})$

Note: ^aThe index N takes the following values: $N = 0, 1, ..., \{J/3\}$ for the states of A_1 and A_2 symmetry; $N = 0, 1, ..., \{(J-1)/3\}$ for the states of E symmetry. The nomenclature of the rotational states is illustrated also in Figure 2.

 α, β, \dots by $\alpha^{va_i, v'e}$, $\beta^{va_i, v'e}, \dots$, etc. (i=1, 2). The last type of Coriolis resonance interactions has the following form:

$$H^{\nu A_{1},\nu'A_{2}}$$

$$= |\nu A_{1}\rangle \langle \nu' A_{2}| \{2(C\zeta)^{\nu a_{1},\nu'a_{2}}J_{z}$$

$$+ \eta_{J}^{\nu a_{1},\nu'a_{2}}J_{z}J^{2} + \eta_{K}^{\nu a_{1},\nu'a_{2}}J_{z}^{3} + \eta_{JJ}^{\nu a_{1},\nu'a_{2}}J_{z}J^{4} + \eta_{JK}^{\nu a_{1},\nu'a_{2}}J_{z}^{3}J^{2}$$

$$+ \eta_{KK}^{\nu a_{1},\nu'a_{2}}J_{z}^{5} + \eta_{JJJ}^{\nu a_{1},\nu'a_{2}}J_{z}J^{6} + \eta_{JJK}^{\nu a_{1},\nu'a_{2}}J_{z}^{3}J^{4}$$

$$+ \eta_{JKK}^{\nu a_{1},\nu'a_{2}}J_{z}^{5}J^{2} + \eta_{KKK}^{\nu a_{1},\nu'a_{2}}J_{z}^{7} + \cdots \}.$$
(11)

3.3. Symmetrised rotational-vibrational functions

Since the C_{3v} symmetry group has three irreducible representations A_1 , A_2 , and E (with the two components E_1 and E_2), every vibration-rotation wave functions should be symmetric (A_1), antisymmetric (A_2), or be transformed under symmetry operations according to one from two lines (E_1 or E_2) of the irreducible representation E. Thus every vibrationrotation state function should have the form [58,59]

$$|v\gamma_{v}, JK\gamma_{r}, m\gamma_{s}\rangle \equiv (|v\gamma_{v}\rangle \otimes |JK\gamma_{r}\rangle)_{s}^{\gamma}.$$
 (12)

It should be mentioned that the sets of indices $v\gamma_v$, $JK\gamma_r$, and $m\gamma s$ are single valued and determine every vibration-rotation state function. In Equation (12) γ_v , γ_r , and γ denote symmetries of vibrational, rotational, and vibrational-rotational states, respectively; *s* is the line of the irreducible representation γ . The index *m* distinguishes between the vibrational-rotational states of the same symmetry; $0 \le K \le J$ with total angular momentum quantum number *J*; the symbol \otimes denotes a direct tensorial product.

In accordance with [58,59], the pure rotational functions $|Jk\gamma_r\sigma\rangle$ can be written with the help of elements of the so-called *G*-reduction matrix (for the C_{3v} point symmetry group they are presented in Table 5) in the form

$$Jk\gamma_r\sigma\rangle = \sum_k {}^{(J)}G^k_{\gamma rs}|Jk\rangle.$$
(13)

Here the index *s* denotes the line of the 'rotational' irreducible representation γ_r ; $|Jk\rangle$ denotes the (m=0) part of the usual well-known rotational functions [3,60]

$$|Jkm\rangle = \exp(-ik\varphi)d_{km}^{J}(\vartheta)\exp(-im\psi).$$
 (14)

In Equations (13) and (14), $J \ge k \ge -J$. Since for a free molecule the index *m* in the functions (14) is nonessential, we omitted it both in Equation (13) and further on in this paper.

For molecules belonging to the C_{3v} symmetry group, using the data from Table 5, one can write the rotational functions (13) in an explicit form as

$$2^{1/2}|JK\gamma_r\sigma\rangle = C'_{JK\gamma_r\sigma}\{|JK\rangle + (-1)^l(-1)^{J+K}|J-K\rangle\},$$
(15)

where the coefficients $C_{JK\gamma,\sigma}^l$ are presented in Table 6.

In order to take into account the definition of the so-called tensorial product of two irreducible tensorial values [57,61], we write

$$(A^{\Gamma} \otimes B^{\Gamma'})^{\gamma}_{\sigma} = ([\gamma])^{1/2} \sum_{ss'} \begin{pmatrix} \gamma & \Gamma & \Gamma' \\ \sigma & s & s' \end{pmatrix} A^{\Gamma}_{s} B^{\Gamma'}_{s'}, \quad (16)$$

and using Equation (15), the symmetrised vibrationalrotational functions (12) can be written in a more traditional form. In this case:

(1) For the A_1 - (or A_2)-type vibrational states the ro-vibrational wavefunctions have the simple form of the usual products of vibrational

Table 6. Coefficients $C'_{JK\gamma,\sigma}$ of symmetrised rotational functions.

$\gamma_1 \sigma_1$	$\gamma_2 \sigma_2$	$\gamma_3 \sigma_3$	Value	$\gamma_1 \sigma_1$
even	0	A_1	0	$(-i)^{J}2^{1/2}$
odd anv	0	A_2 A_1	1	$-(-i)^{J+1}2^{1/2}$ $(-1)^{J}$
uny	5, 0, 7,	A_2	1	$(-1)^{J+1}$
	1, 4, 7,	E_1	0	$(-1)^{J}$
	2, 5, 8,	$ \begin{array}{c} E_2\\ E_1\\ E_2 \end{array} $	0 1	$(-1)^{J}$ $(-1)^{J-1}$

Table 7. Coefficients $A_{JKm\gamma s}^{\gamma,\sigma}$ and $B_{JKm\gamma s}^{\gamma,\sigma}$ of symmetrised rotational–vibrational functions.

J	K	mγs	$\gamma_r \sigma$	$A_{JKm\gamma s}^{\gamma_r\sigma}$	$B^{\gamma_r\sigma}_{JKm\gamma s}$
any	$k \neq 0, 3, 6, 9, \dots$	A_1	E_1	1	1
		A_2	E_2 E_1		-1
		E_1	E_2 E_1	-1	
		E_2	$E_2 \\ E_1$		1 1
anv	$k = 3, 6, 9, \ldots$	$1E_{1}$	E_2 A_1	1 1	
5		$1E_2$	A_2 A_1		$1 \\ -1$
		$2E_1$	A_2 A_1	1 1	
		$2E_2$	A_2 A_1	-	1
		-	A_2	-1	1
even	k = 0	$E_1 \\ E_1$	$egin{array}{c} A_1 \ A_1 \end{array}$	21/2	$2^{1/2}$
odd	k = 0	E_2 E_2	A_2 A_2	$-2^{1/2}$	$2^{1/2}$

functions $|vA_1\rangle$ (or $|vA_2\rangle$) and pure rotational functions (15),

$$|vA_1, JK, \gamma\sigma\rangle = |vA_1\rangle|JK\gamma_r\sigma\rangle,$$
 (17)

or

$$|vA_2, JK, \gamma\sigma\rangle = |vA_2\rangle|JK\gamma_r\sigma'\rangle,$$
 (18)

respectively. In Equation (18), $\gamma_r = A_1$ when $\gamma = A_2$ and $\gamma_r = A_2$ when $\gamma = A_1$; furthermore one has $\gamma_r \sigma = E1$ when $\gamma \sigma = E2$ and $\gamma_r \sigma = E2$ when $\gamma \sigma = E1$.

(2) For the *E*-type vibrational states ro-vibrational functions have a more complicated form,

$$2^{1/2} |vE, JK, m\gamma_r s\rangle = \sum_{\gamma_r \sigma} A_{JKm\gamma s}^{\gamma_r \sigma} |vE1\rangle |JK\gamma_r \sigma\rangle + \sum_{\gamma_r \sigma} B_{JKm\gamma s}^{\gamma_r \sigma} |vE2\rangle |JK\gamma_r \sigma\rangle, \quad (19)$$

Table 8. Non-zero 3Γ symbols $\begin{pmatrix} \gamma_1 & \gamma_2 & \gamma_3 \\ \sigma_1 & \sigma_2 & \sigma_3 \end{pmatrix}$ of the C_{3v} symmetry group.^a

$\gamma_1 \sigma_1$	$\gamma_2 \sigma_2$	$\gamma_3 \sigma_3$	Value	$\gamma_1 \sigma_1$	$\gamma_2 \sigma_2$	$\gamma_3 \sigma_3$	Value
$\begin{array}{c} A_1 \\ A_1 \\ A_1 \\ A_1 \\ A_1 \end{array}$	$\begin{array}{c} A_1\\ A_2\\ E_1\\ E_2 \end{array}$	$\begin{array}{c} A_1\\ A_2\\ E_1\\ E_2 \end{array}$	$1 \\ 1/2^{1/2} \\ 1/2^{1/2}$	$\begin{array}{c} A_2\\ E_1\\ E_1 \end{array}$		$E_2 \\ E_1 \\ E_2$	$\begin{array}{c} 1/2^{1/2} \\ -1/2 \\ 1/2 \end{array}$

Note: ^aOther non-zero 3Γ symbols are connected with the values given in the table by the relations

$$\begin{pmatrix} \gamma_1 & \gamma_2 & \gamma_3 \\ \sigma_1 & \sigma_2 & \sigma_3 \end{pmatrix} = \begin{pmatrix} \gamma_2 & \gamma_3 & \gamma_1 \\ \sigma_2 & \sigma_3 & \sigma_1 \end{pmatrix} = (-1)^{\gamma_1 + \gamma_2 + \gamma_3} \begin{pmatrix} \gamma_1 & \gamma_3 & \gamma_2 \\ \sigma_1 & \sigma_3 & \sigma_2 \end{pmatrix},$$

where $(-1)^{A_1} = (-1)^E = +1; (-1)^{A_2} = -1.$

where the coefficients $A_{JKmys}^{\gamma,\sigma}$ and $B_{JKmys}^{\gamma,\sigma}$ are presented in Table 7. In Equation (16) [γ] denotes the dimension of the irreducible representation γ , namely $[A_1] = [A_2] = 1$ and [E] = 2;

$$\begin{pmatrix} \gamma & \Gamma & \Gamma' \\ \sigma & s & s' \end{pmatrix}$$

are 3Γ symbols of the corresponding symmetry group. Table 8 presents non-zero 3Γ symbols for the C_{3v} symmetry group.

4. Analysis of the experimental data

The spectra of both the CH₃D and CHD₃ species were measured in the region of $2900-9000 \text{ cm}^{-1}$. The corresponding overviews of the recorded spectra are shown in Figures 3 and 4. The regions of very strong absorbance in both figures correspond to the fundamental bands. In Figure 3, the bands v_1 and v_4 are clearly pronounced near 3000 cm⁻¹. Similarly, the fundamental band v_1 is clearly seen in Figure 4. The weaker, but, as a rule, also well-recognised bands belong to doubly excited first overtone and combinational bands (they are marked on Figures 3 and 4). The total number of such bands as seen in absorption is 21 (27 if one takes into account the presence of both allowed subbands of symmetries A_1 and E in the bands $2v_4$, $2v_5$, $2v_6$, $v_4 + v_5$, $v_4 + v_6$, and $v_5 + v_6$) for any of the two symmetric top methane isotopomers. A number of weak bands, belonging to triple excitations of vibrational quanta and appearing, as a rule, by strong resonance interactions with stronger first overtone and combinational bands, also can be seen in the pictures of the overview spectra. As is well known, at higher excitations the Fermi resonance polyad system of the CH chromophore in CHD₃ (involving v_1 and v_5) becomes dominant in absorption [20]. In total, we were

Figure 2. Nomenclature of states of different rotational symmetry species in C_{3v} for a given value of quantum number *J*: (a) *J* is divisible by 3; (b) *J* - 1 is divisible by 3; (c) *J* + 1 is divisible by 3. It should be noted that the indices $n\Gamma$ determine uniquely the *K* index and vice versa; for *nA* indices K = 3n at $0 \le n \le \{J/3\}$; for *nE* indices K = 3n + 1 at $0 \le n \le \{(J-1)/3\}$, or K = 3(n - [(J-1)/3]) - 1 at $n \ge 1 + \{(J-1)/3\}$. The symbol $\{B\}$ above denotes the integer part of the number *B*.

able to assign ro-vibrational transitions to 57 (for CH₃D) and 40 (for CHD₃) previously unknown bands. Transitions with values of the quantum number $J \le 8$ to 12 for the strong bands and $J \le 5$ to 6 for the weak

bands were assigned in the spectra recorded at a temperature of about 80 K.

As in our previous analysis of the CH_2D_2 low temperature ro-vibrational spectra [32], a line

Figure 3. Survey spectrum as decadic absorbance $lg(I_0/I)$ of CH₃D in the region of 2900–6500 cm⁻¹. Experimental conditions are presented in Table 1.

assignment in the low temperature spectra was much easier than the assignment of 'room temperature' spectra because of the smaller number of lines in the cold spectra. As an illustration, Figure 5 presents a small part of the spectrum of CH_3D recorded at 80 K in the region of 4128.50 to 4129.75 cm⁻¹ (upper trace). For comparison, a spectrum in the same region previously recorded with our BOMEM FTIR spectrometer at room temperature is shown in the lower trace of Figure 5. The great improvement in the new data is clearly visible. On the basis of our new experimental data, more than 5700 transitions were assigned to 57 newly identified bands of CH_3D , and more than 4400 transitions were assigned to 40 newly identified bands of CHD_3 . The rotational assignment was confirmed with the help of the Ground State Combination Differences (GSCD) method, and the ground state energies were taken from [62] for CH_3D and [63] for CHD_3 (Table 9). Because of numerous and strong resonance interactions, an effective Hamiltonian of the form defined by Equations (1)–(11) was used for the calculation and preliminary prediction of line positions for both molecules.

Figure 3. Continued.

To make a vibrational assignment, some additional criteria were used. Firstly, preliminary estimates of the band centres were made on the basis of the methane intramolecular potential functions determined earlier from analysis of 94 experimental band centres of CH_2D_2 (see [32] and references cited therein). The second criterion for the vibrational symmetry assignment arose from the analysis of pronounced sets of *P* transitions in the experimental spectra. One of them is the set of transitions of the type

$$\langle v\gamma_v, J | K, e \rangle \leftarrow \langle v_{\text{ground}}, J' = J + 1 | K' = 1, e \rangle, \quad (20)$$

where notations of the upper and lower ro-vibrational states correspond to Equation (12); K=1 for the A_1 -,

and K=0 for the *E*-type vibrational bands. In this case, if the set of transitions with $J+1=\ldots, 6, 5, 4, \ldots$, Equation (20), is limited by the value J+1=2, one can expect that a corresponding set of transitions belongs to a band of the A_1 symmetry. When the set of transitions is limited by the value J+1=1, one can be sure that a corresponding set of transitions belongs to the $\Delta K = -1$ subband of an *E*-type vibrational band.

Similarly, if a set of transitions $J+1=\ldots,6,5,$ 4,... with

$$\langle v\gamma_{\nu}, J | K, a_2/a_1 | \leftarrow \langle v_{\text{ground}}, J' = J + 1 | K' = 3, a_1/a_2 |,$$
(21)

Figure 4. Survey spectrum as decadic absorbance $lg(I_0/I)$ of CHD₃ in the region of 2900–6500 cm⁻¹. Experimental conditions are presented in Table 1.

is limited by the value J + 1 = 3, 4, or 2, one can expect that a corresponding set of transitions belongs to a vibrational band of the A_1 symmetry, or to a $\Delta K = +1$, or $\Delta K = -1$ subband of an *E*-type vibrational band, respectively. As an additional criterion, the set of transitions

$$\langle v\gamma_{\nu}, J | K, a_2/a_1 | \leftarrow \langle v_{ground}, J' = J + 1 | K' = 0, a_1/a_2 |,$$
(22)

can be used as well. This assignment procedure is illustrated by Figures 6 and 7. Tables 10 and 11 provide examples of numerical results in the procedure. It is thus important to stress that the band centres of practically all bands were found from an experimental transition assigned in the spectrum. The total list of experimental band centres is presented in column 5 of Table 12 for CH_3D .

The same assignment procedure was used also for the analysis of the experimental spectrum of CHD_3 . The list of band centres for the bands analysed is presented in column 5 of Table 13.

5. Results of the vibrational analysis

As a first step in the theoretical analysis of highresolution spectra of the C_{3v} symmetric isotopomers of

Downloaded By: [NEICON Consortium] At: 10:56 9 June 2010

Figure 4. Continued.

methane, we present here a pure vibrational analysis of all band centres of CH_3D and CHD_3 as known now up to about 9000 cm⁻¹. The analysis was carried out with the Hamiltonian model of Section 3.2 which takes into account both the anharmonicity of vibrations, and some types of pure vibrational resonance interactions:

$$H^{\text{vib.}} = \sum_{\nu l \gamma_{\nu}, \, \tilde{\nu} \tilde{l} \gamma_{\nu}} |\nu l \gamma_{\nu} \rangle \langle \tilde{\nu} \tilde{l} \gamma_{\nu} | H_{\nu l \gamma_{\nu} \, \tilde{\nu} \tilde{l} \gamma_{\nu}}.$$
(23)

Here the summation includes all vibrational states studied.

As mentioned in Section 4, the use of the symmetrised wave functions is suitable in the theoretical study of symmetric top molecules. Following this strategy, we used symmetrised vibrational functions of the type

$$|v_1 v_2 v_3\rangle|[(v_4 l_4 \gamma_4) \otimes (v_5 l_5 \gamma_5)]^{\gamma_{45}} \otimes (v_6 l_6 \gamma_6)\rangle^{\gamma}, \quad (24)$$

in the construction of the elements $H_{\nu l\gamma \, \bar{\nu} l\gamma}$, Equation (23) where γ_{λ} denotes the symmetry of the elementary vibrational functions $|\nu_{\lambda} \ l_{\lambda}\rangle$, and γ_{45} denotes a symmetry of that part of the full vibrational wave function, which depends on the doubly degenerate coordinates q_{4s} and q_{5s} (s = 1, 2).

 $2_{2}(E) - 1_{1}(E)$ $f_3(E) - 6_4(E)$ $10_3(E) - 10_4(E)$ $5_3(E) - 5_4(E)$ $4_3(E) - 4_4(E)$ $9_3(E) - 9_4(E)$ $8_3(E) - 8_4(E)$ $7_{2}(E) - 7_{4}(E)$ Absorbance 4128.6 4128.8 4129.0 4129.2 4129.4 4129.6 \widetilde{v}/cm^{-1}

Figure 5. Small portion of the spectrum of the CH₃D molecule. Upper trace: Bruker IFS 125 Zürich prototype (ZP 2001) spectrum at 80 K. Lines belonging to the $v_1 + v_6$, $v_4 + v_6(A_1)$, and $v_4 + v_6(E)$ bands are marked by dark triangles, dark circles, and open circles, respectively. Lower trace: Bomem DA002 spectrum at 293 K (conditions commonly used in [20]).

Table 9. Ground state parameters of the CH_3D and CHD_3 isotopomers of methane (in cm⁻¹).^a

Parameter	CH ₃ D [62]	CHD ₃ [63]
1	2	3
$\begin{array}{c} \hline A(C) \\ B \\ D_J/10^4 \\ D_{JK}/10^4 \\ D_K/10^4 \\ H_J/10^8 \\ H_{JK}/10^8 \\ H_{KJ}/10^8 \\ L_J/10^{12} \\ L_{JK}/10^{12} \\ L_{JK}/10^{12} \\ L_{KKJ}/10^{12} \\ L_{KKJ}/10^{12} \\ L_{KKJ}/10^{12} \\ L_{K}/10^{12} \\ L_{K}/10^$	$\begin{array}{c} 3.880193378 \\ 5.25082109 \\ 0.5262994 \\ 1.264339 \\ -0.7896593 \\ 0.143479 \\ 1.214490 \\ -0.67214 \\ -0.16436 \\ -0.1836 \\ 1.490 \\ 0.32 \\ \end{array}$	$\begin{array}{c} 2.6289695\\ 3.2791847\\ 0.49494\\ -0.38315\\ 0.13391\\ 0.2127\\ -0.3298\\ 0.1874\\ -0.0178\\ -0.134\\ 0.171\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$
$\tilde{h}_3/10^{10}$	0.32503	1.0191

Note: ^aThese parameters were determined from ground state combination differences. Direct measurements of the far infrared spectrum exist as well [4] (pressure broadened).

In our present analysis we used two types of matrix elements in Equation (23):

(a) diagonal elements $H_{\nu l \gamma \nu l \gamma}$. It is possible to show that all diagonal elements $H_{\nu l \gamma \nu l \gamma}$ have

the form

$$H_{\nu l\gamma\nu l\gamma} = \sum_{\lambda} \omega_{\lambda} \left(v_{\lambda} + \frac{d_{\lambda}}{2} \right) + \sum_{\lambda,\mu \ge \lambda} x_{\lambda\mu} \left(v_{\lambda} + \frac{d_{\lambda}}{2} \right) \left(v_{\mu} + \frac{d_{\mu}}{2} \right) + \sum_{\lambda,\mu \ge \lambda,\nu \ge \mu} y_{\lambda\mu\nu} \left(v_{\lambda} + \frac{d_{\lambda}}{2} \right) \left(v_{\mu} + \frac{d_{\mu}}{2} \right) \left(v_{\nu} + \frac{d_{\nu}}{2} \right) + \sum_{\lambda} g_{\lambda\lambda} l_{\lambda}^{2} + \sum_{\lambda,\mu > \lambda} g_{\lambda\mu} l_{\lambda} l_{\mu},$$
(25)

where $d_{\lambda} = 1$ for the nondegenerate modes $q_{\lambda} = 1, 2, 3$, and $d_{\lambda} = 2$ for the doubly degenerate vibrational modes $q_{\lambda} = 4, 5, 6$.

(b) 'resonance interaction' elements of the type $H_{vl\gamma \tilde{v}\tilde{l}\gamma}$ ($vl \neq \tilde{v}\tilde{l}$). Because of numerous perturbations even in 'pure vibrational' spectra of both molecules, a correct analysis has to take into account resonance interactions between the corresponding interacting vibrational states. In order to decide which type of vibrational states should be connected by resonance interactions, we firstly made calculations of the absolute values of ratios

$$\frac{\langle v\gamma|k_{\lambda\mu\nu}\{(q_{\lambda}\otimes q_{\mu})\otimes q_{\nu}\}|v'\gamma\rangle}{(E_{\nu}-E_{\nu'})}$$
(26)

and

$$\frac{\langle v\gamma|k_{\lambda\mu\nu\xi}\{(q_{\lambda}\otimes q_{\mu})\otimes (q_{\nu}\otimes q_{\xi})\}|v'\gamma\rangle}{(E_{\nu}-E_{\nu'})}.$$
 (27)

Figure 6. Set of transitions, ${}^{Q}P_{0}(J)$, for the A_{1} -type band, $v_{5} + 3v_{6}$, of the CH₃D isotopomer. The first line of the progression, which corresponds to the transition ${}^{Q}P_{0}(1)$ with $J^{\text{upper}} = 0$, can be recognised beyond doubt. The lower part of the Figure 6 shows in more detail the section of the spectrum close to the transition ${}^{Q}P_{0}(1)$. Assigned lines of some other bands also indicated. See also Figure 8.

The latter have been calculated with the methane potential function estimated on the basis of highly accurate experimental CH_2D_2 data in [32].

Both the harmonic frequencies ω_{λ} , and the parameters $k_{\lambda...\nu}$ (effective anharmonic coupling constants in normal mode notations) are quite different for CH₃D and CHD₃. Therefore the vibrational resonance interactions are also quite different for these molecules. As the analysis shows, for our present investigation the resonance interactions are important, as follows:

(1)
$$H_{\nu l\gamma, \tilde{\nu} l\gamma} = \frac{k_{i\lambda\lambda}}{2(2^{1/2})} \left\{ \frac{2\nu_i \pm 1 + 1}{4} \right\}^{1/2} (q_{\lambda}^+ q_{\lambda}^- + q_{\lambda}^- q_{\lambda}^+),$$
(28)

Figure 7. Analogous set of transitions, ${}^{Q}P_{0}(J)$, for the *E*-type band, $\nu_{3} + 3\nu_{5}$ of the CHD₃ isotopomer. The first line of the progression, which corresponds to the transition ${}^{P}P_{1}(1)$ with $J^{upper} = 0$, again can be recognised beyond doubt (see also the lower part of the Figure 7 and caption to Figure 6). See also Figure 9.

if $|vl\gamma\rangle = (\dots, v_i, \dots, v_\lambda l_\lambda \gamma_\lambda, \dots)$ and $|\tilde{v}l\gamma\rangle = (\dots, v_i \pm 1, \dots, v_\lambda \mp 2l_\lambda \gamma_\lambda, \dots)$. In this case, we took into account $v_i = v_1$ and $v_\lambda = v_5$ for CH₃D and CHD₃.

(2)
$$H_{\nu l\gamma, \tilde{\nu} \tilde{l}\gamma} = \frac{F_{ii,\lambda\lambda}}{2^{1/2}} \left\{ \frac{v_i \pm 1 + 1}{2} \right\}^{1/2} \left\{ \frac{v_i \pm 1}{2} \right\}^{1/2} \times (q_{\lambda}^+ q_{\lambda}^- + q_{\lambda}^- q_{\lambda}^+),$$
(29)

if $|vl\gamma\rangle = (\dots, v_i, \dots, v_\lambda l_\lambda \gamma_\lambda, \dots)$ and $|\tilde{v}\tilde{l}\gamma\rangle = (\dots, v_i \pm 2, \dots, v_\lambda \mp 2l_\lambda \gamma_\lambda, \dots)$. For CH₃D one should take $v_i = v_1$ and $v_\lambda = v_4$; and for CHD₃ one should take $v_i = v_3$ and $v_\lambda = v_6$. For the CHD₃ isotopomer one has:

(3)
$$H_{\nu l\gamma, \tilde{\nu} \tilde{l}\gamma} = H_{\tilde{\nu} \tilde{l}\gamma, \nu l\gamma} = \frac{\kappa_{345}}{4} (\nu_3 + 1)^{1/2} (q_4^+ q_5^- + q_4^- q_5^+).$$

(30)

Here $\tilde{v}_1 = v_1$, $\tilde{v}_2 = v_2$, $\tilde{v}_3 = v_3 + 1$, $\tilde{v}_4 = v_4 - 1$, $\tilde{v}_5 = v_5 + 1$, $\tilde{v}_6 = v_6$.

For the CH₃D isotopomer one has:

(4)
$$H_{\nu l\gamma, \bar{\nu} l\gamma} = H_{\bar{\nu} l\gamma, \nu l\gamma} = \frac{F_{3356}}{4(2^{1/2})} \{ \nu_3(\nu_3 - 1) \}^{1/2} \times (q_5^+ q_6^- + q_5^- q_6^+)$$
 (31)

Figure 8. Level scheme relating to Figure 6.

Figure 9. Level scheme relating to Figure 7.

Table 10. Line positions and levels for the transitions $[J'=0](upper \ vibr. st.) \leftarrow [J''=1](gr. \ vibr. st.)$ for some absorption bands of CH₃D (in cm⁻¹).

Band		Transition	$J'' K'' \gamma_r''$	$E_{\rm rot.}''/hc$	$E'_{\rm vib.}/hc$
$ \frac{v_3 + v_3 + v_3}{2v_5 + v_6} \\ 2v_3 + v_5 \\ 2v_5 + v_6 \\ 2v_5 + v_6 \\ v_1 + v_6 \\ v_4 + v_6 \\ v_4 + v_6 \\ v_3 + 2v_5 \\ v_3 + 2v_5 \end{array} $	$(A_1) \\ (1E) \\ (E) \\ (A_1) \\ (2E) \\ (E) \\ (A_1) \\ (E) \\ (A_1) \\ (E) \\ $	3927.4877 4049.5611 4058.7280 4073.1815 4093.3113 4113.4594 4155.7331 4161.2319 4207.5285 4232.6136	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.7602 9.1306 9.1306 7.7602 9.1306 9.1306 7.7602 9.1306 7.7602 9.1306 7.7602 9.1306	3935.2479 4058.6917 4067.8586 4080.9417 4102.4419 4122.5901 4163.4933 4170.3625 4215.2887 4241.7442

Table 11. Line positions and levels for the transitions $[J'=0](upper \ vibr. st.) \leftarrow [J''=1](gr. \ vibr. \ st.)$ for some absorption bands of CHD₃ (in cm⁻¹).

Band		Transition	$J'' K'' \gamma_r''$	$E_{\rm rot.}''/hc$	$E'_{\rm vib.}/hc$
$ \frac{2\nu_{3} + \nu_{4}}{\nu_{1} + \nu_{5}} \\ \nu_{2} + \nu_{4} \\ 2\nu_{4} \\ \nu_{2} + \nu_{5} + \nu_{6} \\ 2\nu_{4} \\ \nu_{3} + \nu_{4} + \nu_{5} $	$(E) (E) (E) (A_1) (A_1) (E) $	4206.4244 4255.7536 4350.6155 4451.2228 4456.4283 4480.4003 4523.1538	$ \begin{array}{c} 1 & 1 & e \\ 1 & 1 & e \\ 1 & 1 & e \\ 1 & 0 & a_2 \\ 1 & 0 & a_2 \\ 1 & 1 & e \\ 1 & 1 & e \end{array} $	5.9080 5.9080 5.9080 6.5582 6.5582 5.9080 5.9080	4212.3324 4261.6616 4356.5235 4457.7810 4462.9865 4486.3083 4529.0618
$v_4 + v_5 + v_6$ $v_2 + 2v_5$ $v_3 + 3v_5$	$(1E) \\ (A_1) \\ (E)$	4552.0213 4692.3241 4849.3922	1 1 <i>e</i> 1 0 <i>a</i> ₂ 1 1 <i>e</i>	5.9080 6.5582 5.9080	4557.9293 4698.8823 4855.3003

Downloaded By: [NEICON Consortium] At: 10:56 9 June 2010

Table 12. Values of the experimental band centres of CH_3D (in cm⁻¹).^a

Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.
1	2	3	4	5	6	1	2	3	4	5	6
v_6, E v_3, A_1 v_5, E	1163.29 1309.77 1471.99	1160.89 1307.34 1472.14	1160.74 1307.48 1472.16	1161.103 1306.848 1472.022	[54] [54] [54]	$v_2 + v_3 + v_6, E$ $4v_6, 2E$ $v_3 + 3v_6, E$	4637.57 4664.03 4796.64	4639.30 4643.18 4769.91	4639.33 4643.49 4769.92		
v_2, A_1 $2v_6, A_1$ $2v_6, E$	2194.60 2325.81 2328.39	2199.34 2316.62 2322.61	2199.08 2316.37 2322.44	2200.041 2316.273 2323.289	[25] [25] [25]	$v_3 + 3v_6, A_1$ $v_2 + 2v_3, A_1$ $v_2 + v_5 + v_6, E$	4787.06 4801.80 4795.16	4781.90 4782.83 4801.06	4782.04 4782.83 4801.10	4781.529	tw
$v_3 + v_6, E$ $2v_3, A_1$ $v_5 + v_6, E$ $v_5 + v_6, A_1$	2471.97 2605.94 2626.16 2636.27	2465.14 2598.43 2623.17 2633.43	2465.14 2598.57 2623.13 2633.37	2465.458 2597.681 2623.433 2633.155	[25] [25] [25] [25]	$ \begin{array}{l} \nu_2 + \nu_5 + \nu_6, \ A_1 \\ 2\nu_3 + 2\nu_6, \ A_1 \\ 2\nu_3 + 2\nu_6, \ E \\ \nu_5 + 3\nu_6, \ 1E \end{array} $	4805.27 4927.39 4929.97 4939.93	4811.54 4901.65 4907.66 4924.69	4811.54 4901.65 4907.72 4924.76	4811.172 4901.422	tw tw
$v_3 + v_5, E$ 2 v_5, A_1 2 v_5, E	2779.73 2938.18 2941.01	2776.61 2910.14 2940.22	2776.73 2910.01 2940.25	2776.287 2910.120 2940.098	[25] [25] [25]	$v_5 + 3v_6, 2E$ $v_5 + 3v_6, A_1$ $v_5 + 3v_6, 3E$	4944.88 4954.99 4970.26	4926.39 4935.08 4955.49	4926.63 4935.11 4955.70	4934.354	tw
v_1, A_1 v_4, E $v_2 + v_6, E$ $3v_6, E$ $3v_6, A_1$	2939.47 3012.02 3335.62 3490.14 3495.30	2969.61 3015.80 3342.42 3471.84 3483.83	2969.49 3015.90 3342.24 3471.66 3483.79	2969.512 3016.713 3342.573 3471.465 3482.240	[25] [25] <i>tw</i> <i>tw</i> <i>tw</i>	$v_{2} + v_{3} + v_{5}, E$ $3v_{3} + v_{6}, E$ $v_{3} + v_{5} + 2v_{6}, A_{1}$ $v_{3} + v_{5} + 2v_{6}, 1E$ $v_{2} + v_{5} + 2v_{6}, 2E$	4964.26 5048.52 5087.69 5095.23 5107.92	4964.94 5027.63 5073.33 5077.52 5093.52	4964.98 5027.40 5073.48 5077.57 5093.61		
$v_2 + v_3, A_1$ $v_3 + 2v_6, A_1$ $v_3 + 2v_6, E$	3497.63 3633.40 3635.98	3499.31 3617.78 3623.78	3499.25 3617.71 3623.77	3499.718 3616.793 3625.011	tw tw tw	$v_2 + 2v_5, A_1$ $v_2 + 2v_5, E$ $4v_3, A_1$	5127.41 5128.94 5157.46	5103.61 5132.28 5135.13	5103.53 5132.29 5134.70	5103.572 5132.103	tw tw
$v_2 + v_5, E$ $2v_3 + v_6, E$ $v_5 + 2v_6, A_1$ $v_5 + 2v_6, 1E$	3663.26 3767.05 3782.14 3789.67	3667.83 3752.70 3775.03 3778.97	3667.72 3752.74 3775.05 3778.91	3668.078 3753.889 3779.769	tw tw tw	$v_1 + v_2, A_1$ $2v_5 + 2v_6, 1A_1$ $2v_3 + v_5 + v_6, E$ $v_2 + v_4, E$	5130.90 5249.01 5225.85 5232.90	5164.61 5206.46 5206.50 5207.26	5164.53 5206.55 5206.68 5207.25	5165.046	tw
$v_5 + 2v_6, 2E$ $3v_3, A_1$ $v_3 + v_5 + v_6, E$ $v_3 + v_5 + v_6, A_1$ $2v_4 + v_5 + v_6$	3802.36 3888.50 3932.81 3942.92	3794.54 3874.44 3924.55 3935.47 4059.64	3794.53 3874.39 3924.62 3935.48 4059.68	3874.741 3935.248 4058 692	tw tw	$ \begin{aligned} 2v_5 + 2v_6, & 1E \\ 2v_3 + v_5 + v_6, & A_1 \\ 2v_5 + 2v_6, & 2E \\ 2v_5 + 2v_6, & 3E \\ 2v_5 + 2v_6, & 3E \end{aligned} $	5208.26 5235.96 5250.55 5251.59 5273.35	5216.66 5221.92 5223.41 5237.32 5262.33	5216.66 5221.83 5223.60 5237.40 5262.47	5215.206	tw
$2v_5 + v_6, 1E 2v_3 + v_5, E 2v_5 + v_6, A_1 2v_5 + v_6, 2E$	4094.02 4073.87 4086.05 4106.27	4039.04 4066.77 4081.40 4101.00	4039.08 4066.73 4081.44 4101.02	4038.692 4067.859 4080.942 4102.442	tw tw tw tw	$2v_5 + 2v_6, 2A_1$ $v_1 + 2v_6, A_1$ $v_1 + 2v_6, E$ $v_4 + 2v_6, 1E$	5255.34 5322.46	5269.72 5275.64 5313.31	5269.69 5275.68 5313.41	5276.520	tw
$v_1 + v_6, E$ $v_4 + v_6, A_1$ $v_4 + v_6, E$ $v_2 + 2v_5 A_1$	4095.86 4167.85 4167.39 4245.18	4122.20 4164.13 4170.47 4215.16	4122.10 4164.18 4170.50 4214.98	4122.590 4163.493 4170.363 4215 289	tw tw tw	$v_4 + 2v_6, 2E$ $v_4 + 2v_6, A_1$ $3v_3 + v_5, E$ $v_2 + 2v_5 + v_6$ 1F	5325.50 5324.58 5354.40 5399.24	5313.66 5325.99 5336.62 5364.60	5313.67 5326.05 5336.54 5364.43	5314.220 5325.677	tw tw
$v_3 + 2v_5, A_1$ $v_3 + 2v_5, E$ $v_1 + v_3, A_1$ $v_3 + v_4, E$	4246.71 4246.97 4312.35	4241.83 4279.17 4312.78	4241.92 4278.54 4312.86	4241.744 4313.422	tw tw	$v_{3} + 2v_{5} + v_{6}, H_{1}$ $v_{3} + 2v_{5} + v_{6}, A_{1}$ $v_{3} + 2v_{5} + v_{6}, 2E$ $v_{1} + v_{3} + v_{6}, E$	5390.66 5410.89 5403.56	5379.92 5400.18 5428.93	5380.03 5400.24 5428.32		
$2v_2, A_1$ $3v_5, E$ $3v_5, A_1$ $v_1 + v_5 - E$	4326.87 4403.97 4407.04 4391.15	4342.50 4356.14 4404.27 4440.42	4342.27 4356.27 4404.27 4440 71	4344.123 4356.890 4404.366 4439 733	tw tw tw tw	$v_3 + v_4 + v_6, A_1$ $v_3 + v_4 + v_6, E$ $2v_2 + v_6, E$ $3v_5 + v_6 = 1F$	5467.09 5466.63 5445.62 5542.96	5458.03 5464.37 5467.76 5497.43	5458.07 5464.39 5467.84 5497 71	5456.630 5464.627	tw tw
$v_1 + v_5, E$ $v_4 + v_5, E$ $v_2 + 2v_6, A_1$ $v_2 + 2v_6, E$	4467.68 4475.88 4478.46	4472.68 4480.34 4486.33	4472.63 4480.28 4486.34	4472.657 4486.893	tw tw	$ \begin{aligned} 2v_3 + 2v_5, & A_1 \\ 3v_5 + v_6, & A_1 \\ 2v_3 + 2v_5, & E \end{aligned} $	5537.28 5560.11 5538.82	5498.22 5512.94 5527.10	5498.28 5512.82 5527.11		
$v_4 + v_5, A_1$ $4v_6, A_1$ $4v_6, 1E$ $v_1 + 2v_3, A_1$	4471.12 4653.71 4656.29 5542.16	4486.84 4619.20 4625.20 5572.34	4486.76 4619.24 4625.31 5571.13	4484.820 4618.447 4626.909	tw tw tw	$3v_5 + v_6, 2E$ $3v_5 + v_6, 3E$ $v_1 + v_5 + v_6, E$ $v_3 + v_5 + 3v_6, 2E$	5549.99 5573.29 5539.71 6249.40	5535.59 5564.92 5583.15 6221.60	5535.69 5564.85 5583.55 6221.98		
$\begin{aligned} 2\nu_3 + \nu_4, & E \\ \nu_1 + \nu_5 + \nu_6, & A_1 \\ \nu_4 + \nu_5 + \nu_6, & A_1 \\ \nu_2 + 3\nu_6, & E \end{aligned}$	5599.08 5549.82 5613.93 5617.95	5593.53 5594.30 5617.51 5617.74	5593.45 5594.51 5617.45 5617.98	5593.699	tw	$v_3 + v_5 + 3v_6, A_1$ $v_2 + 2v_5 + v_6, 1E$ $v_2 + 2v_3 + v_5, E$ $v_3 + v_5 + 3v_6, 3E$	6259.52 6260.30 6251.80 6274.79	6231.56 6236.08 6246.67 6251.66	6231.65 6236.32 6246.70 6251.96	6236.184	tw

Table 12. Continued.

Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.
1	2	3	4	5	6	1	2	3	4	5	6
$v_4 + v_5 + v_6, 1E$ $v_4 + v_5 + v_6, 2E$	5617.83 5624.50	5621.09 5625.33	5621.04 5625.26	5627.609	tw	$v_2 + 2v_5 + v_6, A_1$ $v_2 + 2v_5 + v_6, 2E$	6251.81 6272.03	6255.65 6275.45	6255.90 6275.65		
$v_2 + 3v_6, A_1$	5623.11	5629.73	5630.11	5625 075	<i>t</i>	$4\nu_3 + \nu_6, E$	6316.52	6282.61	6282.14	6200 100	<i>4</i>
$2\nu_2 + \nu_3, A_1$ $\nu_1 + \nu_2 + \nu_3$	5627.48	5641 37	5641 27	5055.975	ιw	$v_1 + v_2 + v_6, L$	6341.83	6337 79	6337.95	6337 064	tw tw
$v_4 + v_5 + v_6, 5L$ $v_2 + 3v_5 - E$	5707 64	5658 39	5658 40			$v_2 + v_4 + v_6, H_1$ $v_2 + v_4 + v_6, E$	6341.05	6344 13	6344 26	0557.004	LVV
$v_3 + 3v_5, E$ $v_2 + 3v_5, A_1$	5710.71	5703.00	5703.03			$2\nu_2 + \nu_4 + \nu_6, E$ $2\nu_2 + \nu_5 + 2\nu_6, 1E$	6387.26	6346.99	6347.41		
$\nu_1 + \nu_3 + \nu_5, E$	5697.91	5747.02	5746.79			$2\nu_3 + \nu_5 + 2\nu_6, A_1$	6379.73	6352.08	6352.39		
$5\nu_6, 1E$	5819.09	5763.38	5763.88			$2\nu_5 + 3\nu_6, 1E$	6381.60	6364.91	6365.40		
$v_3 + v_4 + v_5, E$	5765.98	5766.80	5766.68	5767.069	tw	$2v_5 + 3v_6, 2E$	6405.24	6365.90	6365.83		
$\nu_2 + \nu_3 + 2\nu_6, A_1$	5776.73	5774.13	5774.30			$2v_5 + 3v_6, 1A_1$	6396.67	6367.40	6367.76		
$5\nu_6, A_1$	5824.25	5775.37	5776.00			$2v_5 + 3v_6, 2A_1$	6410.40	6373.88	6374.11		
$4\nu_5, A_1$	5863.95	5775.85	5775.10			$2\nu_3 + \nu_5 + 2\nu_6, 2E$	6399.95	6375.02	6375.12		
$v_2 + v_3 + 2v_6, E$	5779.31	5780.12	5780.36			$5v_3, A_1$	6412.97	6380.48	6379.50		
$v_3 + v_4 + v_5, A_1$	5769.42	5780.96	5/80.81			$2v_5 + 3v_6, 3E$	6416.89	6390.36	6390.74		
$5v_6, 2E$	50/1 15	5000 65	5800.26			$v_2 + v_3 + 2v_5, A_1$	6424.49	6400.94	6400.88		
$4\nu_5, 1E$ $2\nu \pm \nu E$	5792.20	5807.34	5807.30			$\nu_1 + 3\nu_6, L$ $2\nu_1 + 3\nu_2 AF$	6411.55	6423 10	6423 52		
$2v_2 + v_5, L$ $v_1 + 2v_5, A_1$	5839.62	5829 74	5822.83			$2v_5 + 3v_6, +L$ $v_2 + v_2 + 2v_5, 2E$	6428.03	6426 52	6426 64		
$v_1 + v_4$ E	5877 43	5855.01	5854 93	5855 063	tw	$v_2 + v_3 + 2v_5, 2L$ $v_1 + 3v_6 A_1$	6416 71	6428.61	6428.96		
$v_1 + 2v_5, E$	5865.48	5864.26	5864.22	5864.066	tw	$3v_2, A_1$	6396.80	6429.44	6429.58	6428.364	tw
$2\nu_1, A_1$	5841.96	5903.96	5903.74	5904.157	tw	$v_4 + 3v_6, A_1$	6479.38	6456.32	6456.49		
$4\nu_5, 2\dot{E}$	5870.09	5904.62	5905.27			$\nu_4 + 3\nu_6, 1E$	6478.92	6461.98	6462.30		
$\nu_3 + 4\nu_6, A_1$	5959.12	5914.19	5914.43			$v_4 + 3v_6, 2E$	6483.62	6462.67	6462.81		
$v_2 + 2v_3 + v_6, E$	5925.90	5919.16	5919.30			$v_1 + v_2 + v_3, A_1$	6433.09	6467.13	6467.58		
$\nu_3 + 4\nu_6, 1E$	5961.70	5920.19	5920.49			$3\nu_3 + \nu_5 + \nu_6, E$	6505.40	6477.36	6477.31		
$v_4 + 2v_5, A_1$	5920.36	5925.52	5925.28			$v_4 + 3v_6, 3E$	6485.00	6481.00	6481.26		
$v_2 + v_5 + 2v_6, A_1$	5928.87	5935.11	5935.44			$3\nu_3 + \nu_5 + \nu_6, A_1$	6515.51	6487.03	6486.98		
$v_3 + 4v_6, 2E$	5026 40	5020.22	5020 46			$v_2 + v_3 + v_4, E$	6501.98	6496.8/	6496.90		
$v_2 + v_5 + 2v_6$, 1L $v_2 + 2v_1 = 1E$	5022.27	5939.25	5040 61	5040 240	tw	$\nu_3 + 2\nu_5 + 2\nu_6, 1A_1$	6536.40	651/18	6514 18		
$\nu_4 + 2\nu_5, 1E$ $\nu_1 + 2\nu_2, 2E$	5922.27	5953.85	5953 54	3940.240	ιw	$\nu_3 + 2\nu_5 + 2\nu_6, 1L$ $\nu_2 + 2\nu_2 + 2\nu_2, 2F$	6554 13	6518.84	6519 11		
$v_4 + 2v_5, 2E$ $v_2 + v_5 + 2v_6, 2E$	5949 10	5954 77	5955.06			$v_3 + 2v_5 + 2v_6, 2E$ $v_2 + 2v_5 + 2v_6, 3E$	6555 18	6533.45	6533 56		
$2v_4, A_1$	5935.55	5980.41	5980.42	5980.416	tw	$v_3 + 2v_5 + 2v_6, 5E$ $v_2 + 3v_5, E$	6588.67	6545.98	6546.27		
$2\nu_4, E$	5986.09	6022.14	6022.08	6022.214	tw	$\nu_3 + 2\nu_5 + 2\nu_6, 2A_1$	6576.94	6559.06	6559.21		
$2\nu_3 + 3\nu_6, E$	6089.62	6047.35	6047.62			$\nu_1 + \nu_3 + 2\nu_6, A_1$	6559.46	6573.62	6573.10		
$\nu_2 + 3\nu_3, A_1$	6063.04	6051.50	6051.36			$\nu_1 + \nu_3 + 2\nu_6, E$	6562.04	6579.53	6579.08		
$2\nu_3 + 3\nu_6, A_1$	6094.78	6061.00	6061.35			$2\nu_2 + 2\nu_6, A_1$	6563.76	6587.87	6588.30		
$v_5 + 4v_6, 1A_1$	6101.93	6069.67	6069.99			$v_2 + 3v_5, A_1$	6591.74	6592.69	6592.79		
$v_5 + 4v_6, 1E$	6099.56	6075.89	6076.09			$2\nu_2 + 2\nu_6, E$	6566.34	6593.86	6593.76		
$v_5 + 4v_6, 2E$	6109.47	6075.94	6076.56			$4\nu_3 + \nu_5, E$	6621.46	6594.24	6594.36		
$v_5 + 4v_6, 3E$	6122.16	6085.99	6086.48			$\nu_3 + \nu_4 + 2\nu_6, 1E$	6620.68	6604.12	6604.23		
$v_2 + v_3 + v_5 + v_6, E$	6095.18	6095.08	6095.28			$v_3 + v_4 + 2v_6, 2E$	6623.72	6604.4/	6604.48		
$v_2 + v_3 + v_5 + v_6, A_1$	6140.01	6114 58	6115 21			$\nu_3 + \nu_4 + 2\nu_6, A_1$	6580.67	6631 77	6632.23		
$v_5 + 4v_6, 2A_1$ $3v_5 + 2v_5, A_1$	6207.88	6170.88	6170 75			$\nu_1 + \nu_2 + \nu_5, L$ $2\nu_2 + 2\nu_2 + \nu_5, L$	6600.34	6636.08	6636.49		
$3v_3 + 2v_6, A_1$ $3v_2 + 2v_6, E$	6210.46	6177.08	6177.01			$2\nu_3 + 2\nu_5 + \nu_6, 1L$ $2\nu_2 + 2\nu_5 + \nu_6, 4$	6681 76	6636.80	6637 41		
$v_2 + v_5 + 3v_6$, 1E	6244.45	6220.01	6220.21			$3\nu_5 + 2\nu_6, 1E$	6680.73	6650.99	6651.19		
$\nu_2 + \nu_4 + \nu_5, E$	6660.69	6660.50	6660.46			$4\nu_5 + \nu_6, 3E$	7022.66	6985.72	6985.86		
$3v_5 + 2v_6, 1A_1$	6697.88	6664.24	6664.26			$v_1 + v_4 + v_6, A_1$	7027.73	6995.48	6995.56		
$3v_5 + 2v_6, 2E$	6705.41	6665.11	6665.18			$\nu_1 + \nu_4 + \nu_6, E$	7027.27	7001.80	7001.86		
$3v_5 + 2v_6, 3E$	6718.10	6667.74	6667.76			$4\nu_5 + \nu_6, 2A_1$	7037.38	7024.77	7024.85		
$v_2 + v_4 + v_5, A_1$	6664.13	6674.67	6674.59			$v_1 + 2v_3 + v_5, E$	6991.18	7032.76	7032.24		
$2\nu_3 + 2\nu_5 + \nu_6, 2E$	6701.99	6681.82	6681.84			$v_1 + 2v_5 + v_6, A_1$	6980.65	7037.53	7038.38		
$3\nu_5 + 2\nu_6, 2A_1$	6708.48	6691.49	6691.69			$2\nu_3 + \nu_4 + \nu_5, E$	7050.77	7041.40	7041.23		

Table 12. Continued.

Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.
1	2	3	4	5	6	1	2	3	4	5	6
$v_1 + 2v_3 + v_6, E$	6697.76	6715.55	6714.73			$v_1 + 2v_5 + v_6, 1E$	6989.23	7047.67	7047.65		
$3v_5 + 2v_6, 4E$	6741.40	6726.03	6726.30			$v_2 + 2v_3 + 2v_6, A_1$	7064.12	7050.15	7050.49		
$v_1 + v_5 + 2v_6, A_1$	6690.14	6727.18	6727.79			$v_3 + 5v_6, 1E$	7123.47	7055.28	7055.99		
$\nu_1 + \nu_5 + 2\nu_6, 1E$	6697.67	6732.00	6732.41			$\nu_2 + 2\nu_3 + 2\nu_6, E$	7066.70	7055.93	7056.36		
$2\nu_3 + \nu_4 + \nu_6, A_1$	6752.83	6732.82	6732.84			$2\nu_3 + \nu_4 + \nu_5, A_1$	7054.22	7056.74	7056.48		
$2\nu_3 + \nu_4 + \nu_6, E$	6752.37	6739.97	6739.93			$v_4 + 2v_5 + v_6, 1E$	7057.54	7060.49	7060.33		
$v_2 + 4v_6, A_1$	6759.34	6747.30	6747.98			$\nu_1 + 2\nu_5 + \nu_6, 2E$	7000.87	7061.02	7061.35		
$\nu_1 + \nu_5 + 2\nu_6, 2E$	6710.36	6749.24	6749.49			$\nu_3 + 5\nu_6, A_1$	7128.63	7067.27	7068.12		
$\nu_2 + 4\nu_6, 1E$	6761.92	6753.30	6754.04			$v_2 + v_5 + 3v_6, 1E$	7064.49	7067.50	7068.05		
$2\nu_2 + \nu_3 + \nu_6, E$	6741.00	6757.28	6757.62			$v_2 + v_5 + 3v_6, 2E$	7069.44	7068.66	7069.43		
$v_4 + v_5 + 2v_6, 1E$	6762.04	6760.91	6760.90			$\nu_4 + 2\nu_5 + \nu_6, 2E$	7064.88	7076.66	7076.38		
$v_4 + v_5 + 2v_6, 2E$	6766.40	6763.16	6763.23			$v_3 + 4v_5, A_1$	7144.43	7077.40	7076.66		
$v_4 + v_5 + 2v_6, 3E$	6770.03	6764.65	6764.72			$v_2 + v_5 + 3v_6, A_1$	7079.56	7077.84	7078.35		
$\nu_2 + 4\nu_6, 2E$	6769.66	6771.28	6772.23			$v_4 + 2v_5 + v_6, 1A_1$	7070.02	7079.38	7079.61		
$v_4 + v_5 + 2v_6, 1A_1$	6773.48	6772.12	6772.12			$v_4 + 2v_5 + v_6, 3E$	7069.56	7082.48	7082.26		
$3\nu_3 + 2\nu_5, A_1$	6815.89	6772.21	6771.88			$v_4 + 2v_5 + v_6, 4E$	7078.22	7085.60	7085.81		
$v_4 + v_5 + 2v_6, 2A_1$	6783.19	6775.21	6775.14			$v_3 + 5v_6, 2E$	7138.95	7091.25	7092.37		
$3\nu_3 + 2\nu_5, E$	6817.42	6791.00	6791.11			$2\nu_2 + \nu_3 + \nu_5, E$	7086.63	7097.09	7097.34		
$v_4 + v_5 + 2v_6, 4E$	6785.71	6798.30	6798.24			$\nu_2 + \nu_5 + 3\nu_6, 3E$	7094.83	7097.93	7097.53		
$v_3 + 3v_5 + v_6, 1E$	6845.60	6802.44	6802.25			$\nu_3 + 4\nu_5, 1E$	7167.19	7099.99	7100.20		
$v_3 + 3v_5 + v_6, A_1$	6862.76	6810.87	6810.74			$v_4 + 2v_5 + v_6, 2A_1$	7084.65	7110.02	7109.69		
$v_3 + 3v_5 + v_6, 2E$	6852.64	6831.24	6831.37			$2\nu_4 + \nu_6, 1E$	7083.52	7124.34	7124.51		
$v_1 + 3v_3, A_1$	6823.88	6852.03	6849.83			$v_3 + 2v_4, A_1$	7149.89	7132.12	/131.50		
$3v_3 + v_4, E$	6872.33	6859.21	6858.78			$v_1 + v_3 + v_4$, 1E	7176.88	7156.01	/155.2/		
$v_3 + 3v_5 + v_6, 3E$	68/5.94	6861.54	6861.59			$2v_4 + v_6, 2E$	7134.53	/15/.93	/15/.89		
$v_1 + v_3 + v_5 + v_6, E$	6845.47	6886.88	6886.76			$v_3 + 4v_5, 2E$	/1/1.80	/160.13	7160.06		
$6v_6, 1A_1$	6983.74	689/.01	6898.21			$2v_4 + v_6, A_1$	/133.61	/1/0.61	/1/0.53		
$v_1 + v_3 + v_5 + v_6, A_1$	6855.58	6898.60	6898.30			$v_2 + 3v_3 + v_6, E$	7251.01	/184.50	/184.52		
$6\nu_6, 1E$	6986.32	6903.10	6904.28			$2\nu_3 + 4\nu_6, A_1$	7252.50	/190.03	/190.52		
$v_2 + v_3 + 3v_6, E$	0917.82	0908.40	0908.93			$2\nu_3 + 4\nu_6, 1E$	7201.00	/195.10	7100.00		
$\nu_3 + \nu_4 + \nu_5 + \nu_6, A_1$	6006.04	6010.01	6011.00			$5V_5, 1E$	7165.66	7204 52	7204.06		
$2\nu_2 + 2\nu_3, A_1$	6015 11	6012 41	6012 20			$v_1 + v_3 + 2v_5, A_1$	7145.00	7204.33	7204.00		
$\nu_3 + \nu_4 + \nu_5 + \nu_6, 1L$	6006.02	6015 22	6015.00			$v_1 + v_3 + 2v_5, E$	7260 77	7206.40	7208.31		
$+\nu_5 + \nu_6, 1L$	6021 78	6016 36	6016 24			$v_5 \pm 5v_6, 1E$ $v_5 \pm 5v_6, 2E$	7265 73	7200.11	7207.19		
$v_3 + v_4 + v_5 + v_6, 2L$	60221.78	6020 / 5	6021.06			$v_5 + 3v_6, 2E$	7216 71	7216 77	7216.43		
$6v_c 2E$	6994.06	6920.99	6922.46			$2v_3 + v_4 + 2v_5, 2r_1$	7261 33	7217.83	7218.35		
$2v_2 + v_5 + v_6 - E$	6901.98	6922 76	6923.19			$v_5 + 5v_6 + 1A_1$	7260.98	7218 13	7218.85		
$4v_5 + v_6 + 1A_1$	7002 43	6932.22	6932.82			$v_5 + 5v_6, 111$	7275.84	7222.20	7223 55		
$v_2 + v_4 + v_5 + v_6$, 3E	6924.77	6932.72	6932.56			$v_{2} + v_{2} + v_{5} + 2v_{6}$, A_{1}	7227.81	7226.05	7226.55		
$2v_2 + v_5 + v_6$, A ₁	6912.09	6933.58	6933.93			$v_2 + v_3 + v_5 + 2v_6$, 1E	7235.34	7230.34	7230.74		
$2v_2 + 3v_5$, E	6997.80	6940.78	6940.64			$v_2 + v_4 + 2v_5$, 1E	7218.61	7233.30	7233.25		
$6v_6, 2A_1$	7006.96	6950.97	6952.78			$v_5 + 5v_6, 3E$	7291.11	7237.35	7238.36		
$4\nu_5 + \nu_6, 2E$	7011.01	6956.58	6956.46			$2\nu_2 + 2\nu_5, A_1$	7253.16	7240.76	7241.03		
$2\nu_1 + \nu_6, E$	6994.12	6973.88	6967.38			$5v_5, A_1$	7324.07	7242.41	7243.04		
$2\nu_3 + 3\nu_5, A_1$	7000.87	6984.90	6984.83			$\nu_3 + \nu_4 + 2\nu_5, 2E$	7223.59	7245.10	7244.68		
$\nu_2 + \nu_3 + \nu_5 + 2\nu_6, 2E$	7248.03	7246.40	7246.83			$2\nu_3 + \nu_5 + 3\nu_6, 3E$	7565.68	7530.35	7530.67		
$2v_2 + 2v_5, E$	7254.70	7268.16	7268.44			$v_2 + v_3 + 2v_5 + v_6, 1E$	7558.29	7532.84	7532.97		
$v_5 + 5v_6, 4E$	7311.54	7270.48	7271.78			$2v_5 + 4v_6, 3A_1$	7585.02	7545.40	7546.08		
$2\nu_1 + \nu_5, E$	7276.02	7278.79	7272.77			$v_2 + v_3 + 2v_5 + v_6, A_1$	7549.72	7546.80	7547.17		
$2\nu_1 + \nu_3, A_1$	7226.52	7284.26	7283.59			$v_1 + 4v_6, A_1$	7569.51	7556.01	7556.61		
$\nu_1 + \nu_4 + \nu_5, E$	7314.15	7292.20	7292.25			$v_1 + 4v_6, 1E$	7572.09	7561.89	7562.57		
$v_1 + 2v_2, A_1$	7261.46	7303.55	7303.82			$v_2 + v_3 + 2v_5 + v_6, 2E$	7569.94	7567.26	7567.55		
$v_2 + 4v_3, A_1$	7325.30	7304.82	7304.36			$v_1 + 4v_6, 2E$	7579.83	7579.77	7580.65		
$\nu_1 + \nu_4 + \nu_5, A_1$	7317.59	7306.37	7306.37			$2\nu_5 + 4\nu_6, 5E$	7612.98	7581.91	7582.83		

Table 12. Continued.

Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.
1	2	3	4	5	6	1	2	3	4	5	6
$v_3 + 2v_4, E$	7277.07	7308.76	7308.52			$v_4 + 4v_6, 1E$	7635.04	7597.14	7597.67		
$3\nu_3 + 3\nu_6, E$	7368.94	7315.85	7315.90			$\nu_4 + 4\nu_6, 2E$	7638.08	7597.49	7597.93		
$5v_5, 2E$	7330.21	7320.21	7320.09			$\nu_1 + \nu_2 + \nu_3 + \nu_6, E$	7567.42	7599.14	7598.85		
$3\nu_3 + 3\nu_6, A_1$	7374.10	7330.45	7330.51			$v_4 + 4v_6, 1A_1$	7637.16	7608.79	7609.54		
$2\nu_2 + \nu_4, E$	7342.32	7342.53	7342.72			$v_4 + 4v_6, 2A_1$	7646.28	7609.82	7610.31		
$\nu_1 + 3\nu_5, E$	7285.17	7359.80	7359.05			$6v_3, A_1$	7654.76	7610.51	7608.78		
$v_3 + v_5 + 4v_6, 1A_1$	7405.34	7360.99	7361.52			$3\nu_3 + \nu_5 + 2\nu_6, A_1$	7658.11	7618.98	7619.10		
$v_1 + 3v_5, A_1$	7288.24	7363.48	7364.47			$3\nu_3 + \nu_5 + 2\nu_6, 1E$	7665.64	7622.82	7622.85		
$v_3 + v_5 + 4v_6, 1E$	7402.97	7364.46	7364.94			$v_2 + v_3 + v_4 + v_6, A_1$	7634.46	7624.32	7624.52		
$\nu_2 + 2\nu_5 + 2\nu_6, 1A_1$	7416.85	7364.49	7365.05			$v_2 + v_3 + v_4 + v_6, E$	7633.99	7630.66	7630.84		
$v_2 + 2v_3 + v_5 + v_6, E$	7381.52	7367.24	7367.79			$v_4 + 4v_6, 3E$	7644.44	7634.15	7634.82		
$v_3 + v_5 + 4v_6, 2E$	7412.87	7368.02	7368.84			$3v_3 + v_5 + 2v_6, 2E$	7678.34	7638.54	7638.64		
$v_4 + 3v_5, 1E$	7370.12	7374.31	7373.87			$v_3 + 2v_5 + 3v_6, 1E$	7684.07	7654.03	7654.04		
$v_2 + 2v_5 + 2v_6, 1E$	/3/6.40	7376.39	7376.72			$v_3 + 2v_5 + 3v_6, 2E$	7/07.71	7657.25	7657.84		
$v_2 + 2v_5 + 2v_6, 2E$	7394.05	7379.85	7380.46			$v_3 + 2v_5 + 3v_6, 1A_1$	7699.13	7662.02	7662.44		
$v_3 + v_5 + 4v_6, 3E$	7425.56	7380.62	7381.11			$v_3 + 2v_5 + 3v_6, 2A_1$	7/12.86	/66/.36	7667.59		
$v_2 + 2v_3 + v_5 + v_6, A_1$	7391.63	7384.62	7383.32			$v_2 + 3v_5 + v_6, 1E$	7705.40	7669.44	7670.09		
$v_4 + 3v_5, 2E$	7370.48	7389.54	7389.90			$v_2 + 2v_3 + 2v_5, A_1$	7/11.89	7673.24	7673.73		
$v_2 + 2v_5 + 2v_6, 3E$	7395.09	7394.15	7394.61			$v_3 + 2v_5 + 3v_6, 3E$	7/19.36	7686.00	7686.29		
$v_4 + 3v_5, A_1$	7373.93	7403.71	7404.02			$v_2 + 3v_5 + v_6, A_1$	7722.55	7688.05	7688.05		
$v_3 + v_5 + 4v_6, 2A_1$	7443.42	/405.46	/406.31			$v_2 + 2v_3 + 2v_5, E$	7712.44	//04.12	//04.24		
$v_4 + 3v_5, 3E$	7380.44	7416.81	7416.24			$v_2 + 3v_5 + v_6, 2E$	7/12.44	7706.20	7706.62		
$v_2 + 2v_5 + 2v_6, 2A_1$	/392.51	/419.0/	7419.61			$v_3 + 2v_5 + 3v_6, 4E$	//44./4	//10./3	//18.28		
$4\nu_3 + 2\nu_6, A_1$	/4/4.69	7424.74	7424.30			$v_1 + v_3 + 3v_6, E$	//1/.10	//18.26	//10.86		
$v_1 + v_2 + 2v_6, A_1$	7401.08	7429.20	7429.73			$v_1 + v_3 + 3v_6, A_1$	7771.27	7721.50	7721.17		
$4\nu_3 + 2\nu_6, E$	7402.66	7431.00	7430.02			$4\nu_3 + \nu_5 + \nu_6, E$	1111.21	7725.90	772616		
$v_1 + v_2 + 2v_6, L$	7405.00	7433.10	7455.72			$v_2 + 3v_5 + v_6, 3E$	7791 29	7741.01	7741 47		
$2v_4 + v_5, 1E$	7775 18	7441.20	7441.74			$4\nu_3 + \nu_5 + \nu_6, A_1$	776 47	7741.91	7741.47		
$2v_4 + v_5, A_1$ $v_5 + v_5 + 2v_5, 1F$	7423.40	7403.77	7403.37			$v_3 + v_4 + 3v_6, A_1$ $v_5 + v_4 + 3v_6, A_1$	7776.01	77/0 70	7750.04		
$v_2 + v_4 + 2v_6, 1E$	7477 31	7469.15	7469.39			$v_3 + v_4 + 3v_6, 1E$	7780.71	7750.38	7750.04		
$v_2 + v_4 + 2v_6, 2E$ $v_1 + v_2 + 2v_1 = 4$	7476 30	7409.30	7/82 23			$v_3 + v_4 + 3v_6, 2E$	7721 57	7752.36	7751 /8		
$v_2 + v_4 + 2v_6, m_1$ $2v_5 \pm 4v_6, 14$	7532.09	7489.43	7490 18			$v_1 + v_2 + 2v_3, n_1$ $v_1 + v_2 + v_5 + v_6$	7706.96	7756 75	7757 54		
$2v_5 + 4v_6, 121_1$ $2v_5 + v_5 + 3v_6, 1F$	7535 35	7401.82	7492.10			$v_1 + v_2 + v_5 + v_6, L$ $v_2 + v_4 + 3v_6, 3F$	7782.09	7768 72	7768.99		
$2v_3 + v_5 + 5v_6, 1L$ $2v_4 + v_5 - 2E$	7432 37	7492 10	7491 62			$v_3 + v_4 + 5v_6, 5L$ $v_1 + v_2 + v_5 + v_6 A_1$	7717.07	7768 73	7769.15		
$2v_4 + v_5, 2E$ $2v_2 + v_5 + 3v_6, 2E$	7540.30	7495 73	7496 41			$v_1 + v_2 + v_3 + v_6, m_1$	7782.00	7770.02	7769.96		
$2v_3 + v_5 + 3v_6, 2E$ $2v_5 + 4v_6 + 1E$	7544 57	7502 12	7502.60			$2v_2 + 2v_3 + v_4, E$ $2v_2 + 2v_5 + 2v_6 = 1E$	7826.44	7777 67	7778 47		
$2v_5 + 4v_6, 12$ $2v_5 + 4v_6, 2A_1$	7560.68	7504 56	7505.56			$3v_5 + 3v_6 + 1E$	7845.45	7780.20	7781 15		
$2v_5 + 4v_6$, $2E$	7562.21	7507.77	7508.49			$2v_2 + 2v_5 + 2v_6$, 12	7842.55	7780.54	7781.05		
$v_2 + 3v_2 + v_5$, E	7525.62	7509.70	7509.69			$v_2 + v_4 + v_5 + v_6$, A1	7784.68	7787.52	7787.70		
$2v_2 + v_5 + 3v_6$, A ₁	7550.41	7511.62	7511.75			$v_2 + v_4 + v_5 + v_6, 1E$	7788.58	7791.28	7791.44		
$2\nu_5 + 4\nu_6, 3E$	7563.26	7518.46	7519.20			$3v_5 + 3v_6, 2E$	7847.54	7793.47	7793.72		
$2\nu_5 + 4\nu_6, 4E$	7571.00	7521.02	7521.59			$v_2 + v_4 + v_5 + v_6, 2E$	7795.25	7795.34	7795.50		
$5v_3 + v_6, E$	7570.82	7524.58	7523.59			$2\nu_3 + 2\nu_5 + 2\nu_6, 2E$	7844.08	7798.12	7798.43		
$3v_5 + 3v_6, 1A_1$	7820.28	7799.38	7800.09			$\nu_3 + \nu_4 + \nu_5 + 2\nu_6, 1E$	8058.19	8049.14	8049.09		
$3v_5 + 3v_6, 2A_1$	7862.60	7799.82	7799.84			$\nu_3 + \nu_4 + \nu_5 + 2\nu_6, 2E$	8062.55	8051.11	8051.14		
$v_2 + v_4 + v_5 + v_6, 3E$	7798.24	7811.05	7811.19			$\nu_3 + \nu_4 + \nu_5 + 2\nu_6, 3E$	8066.18	8052.59	8052.62		
$2\nu_3 + 2\nu_5 + 2\nu_6, 3E$	7845.13	7811.55	7811.79			$4\nu_5 + 2\nu_6, 1A_1$	8125.54	8054.29	8054.33		
$3v_5 + 3v_6, 3E$	7852.49	7815.13	7815.58			$4\nu_3 + 2\nu_5, E$	8082.35	8054.63	8053.79		
$3v_5 + 3v_6, 4E$	7875.79	7817.99	7818.44			$v_3 + v_4 + v_5 + 2v_6, 1A_1$	8069.62	8058.46	8058.48		
$5v_3 + v_5, E$	7874.82	7836.54	7835.47			$4\nu_5 + 2\nu_6, 1E$	8141.16	8060.28	8060.39		
$2\nu_3 + 2\nu_5 + 2\nu_6, 2A_1$	7866.89	7837.79	7837.91			$v_3 + v_4 + v_5 + 2v_6, 2A_1$	8079.33	8063.26	8063.15		
$\nu_2 + \nu_3 + 3\nu_5, E$	7885.63	7840.63	7840.85			$4\nu_5 + 2\nu_6, 2E$	8158.80	8064.97	8065.90		
$3v_5 + 3v_6, 5E$	7877.88	7846.36	7846.82			$4v_5 + 2v_6, 3E$	8159.85	8077.70	8078.58		
$\nu_1 + 2\nu_3 + 2\nu_6, A_1$	7852.50	7858.66	7857.90			$v_3 + v_4 + v_5 + 2v_6, 4E$	8081.86	8085.18	8085.13		

Table 12. Continued.

Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.
1	2	3	4	5	6	1	2	3	4	5	6
$v_1 + v_5 + 3v_6, 1E$	7842.32	7862.88	7862.75			$v_1 + v_2 + 2v_5, A_1$	8025.80	8090.96	8091.01		
$\nu_1 + \nu_5 + 3\nu_6, 2E$	7847.28	7869.80	7870.83			$v_1 + v_2 + 2v_5, E$	8027.34	8092.37	8093.31		
$\nu_1 + 2\nu_3 + 2\nu_6, E$	7855.08	7871.22	7871.24			$2\nu_3 + 3\nu_5 + \nu_6, 1E$	8134.61	8101.25	8101.86		
$2\nu_3 + \nu_4 + 2\nu_6, 1E$	7905.26	7878.40	7878.40			$4\nu_5 + 2\nu_6, 2A_1$	8157.27	8102.42	8103.38		
$2\nu_3 + \nu_4 + 2\nu_6, 2E$	7908.30	7878.63	7878.55			$4\nu_5 + 2\nu_6, 3A_1$	8181.61	8108.02	8108.46		
$v_1 + v_5 + 3v_6, A_1$	7857.39	7880.58	7881.01			$4\nu_3 + \nu_4, E$	8131.88	8109.55	8108.59		
$v_2 + v_3 + 3v_5, A_1$	7888.71	7884.06	7884.22			$v_2 + v_4 + 2v_5, A_1$	8110.05	8109.70	8109.60		
$3v_5 + 3v_6, 3A_1$	7911.28	7886.61	7887.23			$2\nu_3 + 3\nu_5 + \nu_6, A_1$	8151.77	8110.61	8111.22		
$2\nu_3 + \nu_4 + 2\nu_6, A_1$	7907.38	7889.88	7889.91			$2\nu_3 + 3\nu_5 + \nu_6, 2E$	8141.65	8111.55	8111.53		
$\nu_1 + \nu_5 + 3\nu_6, 3E$	7872.66	7899.55	7900.43			$2\nu_1 + 2\nu_6, A_1$	8145.43	8111.67	8104.82		
$v_4 + v_5 + 3v_6, 1A_1$	7917.33	7900.95	7901.09			$2\nu_1 + 2\nu_6, E$	8148.01	8117.67	8110.87		
$v_4 + v_5 + 3v_6, 2A_1$	7945.70	7903.46	7903.83			$\nu_1 + 4\nu_3, A_1$	8091.89	8119.83	8116.26		
$v_4 + v_5 + 3v_6, 1E$	7911.92	7903.66	7903.86			$\nu_2 + \nu_4 + 2\nu_5, 1E$	8111.96	8125.21	8125.50		
$v_4 + v_5 + 3v_6, 2E$	7921.24	7907.17	7907.39			$\nu_1 + \nu_4 + 2\nu_6, 1E$	8176.73	8136.78	8137.11		
$\nu_4 + \nu_5 + 3\nu_6, 3E$	7927.91	7908.31	7908.66			$\nu_1 + \nu_4 + 2\nu_6, 2E$	8179.77	8137.13	8137.38		
$3\nu_3 + 2\nu_5 + \nu_6, 1E$	7967.78	7913.41	7913.21			$\nu_2 + \nu_4 + 2\nu_5, 2E$	8116.93	8138.03	8137.84		
$v_4 + v_5 + 3v_6, 4E$	7930.89	7918.56	7918.93			$4\nu_5 + 2\nu_6, 4E$	8163.41	8139.47	8139.87		
$v_4 + v_5 + 3v_6, 5E$	7943.64	7922.87	7923.08			$2\nu_3 + 3\nu_5 + \nu_6, 3E$	8164.95	8139.64	8139.64		
$3\nu_3 + 2\nu_5 + \nu_6, A_1$	7959.20	7923.05	7923.24			$\nu_1 + \nu_4 + 2\nu_6, A_1$	8178.84	8149.41	8149.70		
$v_1 + v_2 + v_3 + v_5, E$	7880.72	7931.24	7931.23			$\nu_1 + 2\nu_3 + \nu_5 + \nu_6, E$	8137.56	8154.27	8152.73		
$3\nu_3 + 2\nu_5 + \nu_6, 2E$	7979.42	7938.34	7938.60			$\nu_1 + 2\nu_3 + \nu_5 + \nu_6, A_1$	8147.67	8163.63	8162.10		
$v_3 + 3v_5 + 2v_6, 1A_1$	7999.40	7941.01	7941.10			$v_2 + 2v_4, A_1$	8133.54	8168.88	8169.24		
$v_2 + v_3 + v_4 + v_5, E$	7952.29	7947.25	7947.20			$v_1 + 2v_5 + 2v_6, 1E$	8121.90	8171.09	8172.27		
$v_4 + v_5 + 3v_6, 3A_1$	7916.74	7951.35	7951.64			$2\nu_3 + \nu_4 + \nu_5 + \nu_6, A_1$	8194.85	8182.30	8182.08		
$v_3 + 3v_5 + 2v_6, 1E$	7982.25	7951.41	7951.23			$4v_5 + 2v_6, 5E$	8206.44	8182.91	8183.41		
$v_3 + 3v_5 + 2v_6, 2E$	8006.93	/959.44	/959.53			$v_1 + 2v_5 + 2v_6, 1A_1$	8138.01	8183.12	8183.24		
$v_3 + 3v_5 + 2v_6, 3E$	8019.63	7960.30	/960.6/			$v_1 + 2v_5 + 2v_6, 2E$	8139.54	8183.82	8184.94		
$v_2 + v_3 + v_4 + v_5, A_1$	1955.12	7961.42	7961.33			$2v_3 + v_4 + v_5 + v_6$, 1E	8198.75	8180.31	8180.00		
$v_2 + 4v_5, A_1$	8045.55	7905.00	7005.12			$v_1 + 2v_5 + 2v_6, 5E$	8140.39	8189.11	8189.30		
$v_3 + 3v_5 + 2v_6, 2A_1$	0010.01	7905.00	7905.19			$2\nu_3 + \nu_4 + \nu_5 + \nu_6, 2E$	0203.42	0190.41	0190.10		
$\nu_2 + 4\nu_5, 1L$	7078 20	7900.02	7907.40			$\nu_4 + 2\nu_5 + 2\nu_6, 1L$	8204 20	8204 16	8204 10		
$v_1 + 3v_3 + v_6, E$	8024.80	7007 54	7007 13			$v_4 + 2v_5 + 2v_6, 1A_1$	8274 30	8204.10	8204.10		
$3\nu_3 + \nu_4 + \nu_6, A_1$	8024.09	8003.05	8003 51			$5v_3 + 5v_5, E$	8184.00	8205.55	8205.24		
$5\nu_3 + \nu_4 + \nu_6, L$	8024.45	8018 11	8005.51			$v_2 + 2v_4, L$ $2v_2 + v_3 + v_4 + v_5 = 3E$	8208 40	8205.72	8205.70		
$2v_1 + v_2, A_1$ $v_2 + 3v_5 + 2v_6, AF$	8042.90	8020.46	8020.66			$2v_3 + v_4 + v_5 + v_6, 5L$ $v_1 + 2v_2 + 2v_6, 2A$	8162 35	8208.53	8200.27		
$v_3 + v_5 + v_5 + 2v_6, +L$	7994 75	8027.56	8027.69			$v_1 + 2v_5 + 2v_6, 2A_1$ $v_4 + 2v_5 + 2v_6, 2A_1$	8214 59	8211.94	8211.95		
$v_1 + v_3 + v_5 + 2v_6, n_1$ $v_1 + v_2 + v_5 + 2v_6, 1E$	8002.28	8032.18	8032.15			$v_4 + 2v_5 + 2v_6, 2H_1$ $v_4 + 2v_5 + 2v_6, 2E$	8216.49	8218.94	8219 38		
$4v_2 + 2v_5 = A_1$	8080.81	8034 21	8033 11			$v_4 + 2v_5 + 2v_6, 2E$ $v_4 + 2v_5 + 2v_6, 3E$	8219 53	8219.65	8219.94		
$v_1 + v_2 + v_4$, E	8071.93	8042.95	8043.14			$v_2 + 4v_5 + v_6, 1E$	8297.51	8221.82	8221.14		
$v_1 + v_2 + v_5 + 2v_6$, 2E	8014.97	8048.38	8048.34			$v_4 + 2v_5 + 2v_6$, 4E	8221.47	8223.04	8223.06		
$v_2 + 4v_5, 2E$	8051.47	8049.04	8049.21			$v_2 + 4v_5 + v_6, 1A_1$	8303.01	8227.19	8227.65		
$v_4 + 2v_5 + 2v_6, 3A_1$	8218.61	8231.30	8231.72			$v_4 + 3v_5 + v_6, 1E$	8498.13	8499.42	8499.15		
$v_4 + 2v_5 + 2v_6, 5E$	8237.85	8231.82	8231.72			$v_1 + 3v_5 + v_6, A_1$	8435.71	8502.45	8501.81		
$v_3 + 4v_5 + v_6, 2E$	8311.59	8250.95	8251.09			$2\nu_3 + \nu_4 + 2\nu_5, 1E$	8501.30	8509.12	8508.80		
$3\nu_3 + 3\nu_5, A_1$	8277.37	8252.78	8252.41			$\nu_1 + 3\nu_5 + \nu_6, 3E$	8448.89	8517.14	8518.12		
$2v_4 + 2v_6, 1A_1$	8230.68	8263.10	8263.50			$2\nu_3 + \nu_4 + 2\nu_5, 2E$	8506.28	8519.24	8519.68		
$v_4 + 2v_5 + 2v_6, 6E$	8243.82	8263.20	8263.14			$v_4 + 3v_5 + v_6, 1A_1$	8508.61	8522.48	8522.23		
$2\nu_4 + 2\nu_6, 1E$	8233.26	8269.10	8269.56			$v_4 + 3v_5 + v_6, 2A_1$	8508.91	8525.22	8525.66		
$v_3 + 2v_4 + v_6, 1E$	8373.36	8272.50	8264.39			$v_4 + 3v_5 + v_6, 2E$	8512.51	8529.09	8529.53		
$v_3 + 4v_5 + v_6, 3E$	8323.24	8278.51	8278.63			$v_4 + 3v_5 + v_6, 3E$	8519.18	8533.36	8533.77		
$v_1 + v_3 + v_4 + v_6, A_1$	8326.02	8293.08	8292.51			$v_4 + 3v_5 + v_6, 3A_1$	8528.92	8535.58	8535.20		
$2\nu_4 + 2\nu_6, 2A_1$	8284.72	8294.56	8294.66			$v_3 + 5v_5, A_1$	8623.71	8538.81	8539.21		
$\nu_1 + \nu_3 + \nu_4 + \nu_6, E$	8325.56	8298.75	8298.18			$v_4 + 3v_5 + v_6, 4E$	8522.16	8548.93	8549.38		
$2v_4 + 2v_6, 2E$	8281.22	8301.24	8301.24			$v_4 + 3v_5 + v_6, 5E$	8538.79	8570.93	8570.51		

Table 12. Continued.

Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.
1	2	3	4	5	6	1	2	3	4	5	6
$3v_3 + v_4 + v_5, E$	8321.90	8307.69	8306.98			$2v_1 + 2v_3, A_1$	8444.13	8571.84	8570.30		
$\nu_1 + 3\nu_3 + \nu_5, E$	8270.76	8312.25	8310.50			$2\nu_4 + \nu_5 + \nu_6, 1E$	8517.18	8575.41	8576.13		
$v_3 + 4v_5 + v_6, 2A_1$	8337.96	8315.95	8316.11			$\nu_3 + 2\nu_4 + \nu_5, 1E$	8667.27	8578.98	8571.51		
$2\nu_4 + 2\nu_6, 3E$	8282.88	8319.92	8319.94			$2\nu_3 + 2\nu_4, E$	8554.39	8579.03	8578.48		
$3\nu_3 + \nu_4 + \nu_5, A_1$	8325.34	8321.40	8320.67			$6v_5, 1A_1$	8728.28	8585.24	8573.74		
$5v_5 + v_6, 1E$	8451.85	8331.50	8331.90			$2\nu_4 + \nu_5 + \nu_6, 1A_1$	8527.29	8587.22	8587.50		
$v_1 + v_3 + 2v_5 + v_6, A_1$	8284.32	8338.41	8338.72			$v_1 + v_3 + v_4 + v_5, E$	8611.50	8589.29	8588.68		
$5v_5 + v_6, 1A_1$	8447.89	8340.97	8341.33			$2\nu_4 + \nu_5 + \nu_6, 2E$	8563.82	8599.83	8598.78		
$v_1 + v_3 + 2v_5 + v_6, 1E$	8292.89	8344.87	8344.53			$2\nu_4 + \nu_5 + \nu_6, 3E$	8574.86	8602.39	8602.05		
$v_3 + v_4 + 2v_5 + v_6, 1E$	8352.75	8348.65	8348.41			$v_1 + v_3 + v_4 + v_5, A_1$	8614.94	8603.46	8602.80		
$v_1 + v_3 + 2v_5 + v_6, 2E$	8304.54	8359.49	8359.59			$v_1 + 2v_4, A_1$	8773.49	8609.67	8608.92		
$v_3 + v_4 + 2v_5 + v_6, 2E$	8630.09	8362.67	8362.38			$v_3 + 5v_5, 2E$	8629.85	8613.22	8613.03		
$5v_5 + v_6, 2E$	8458.90	8364.15	8365.07			$2\nu_4 + \nu_5 + \nu_6, 2A_1$	8571.63	8618.04	8617.66		
$v_3 + v_4 + 2v_5 + v_6, 1A_1$	8365.22	8369.45	8369.48			$6\nu_5, 1E$	8775.03	8622.95	8623.57		
$v_3 + v_4 + 2v_5 + v_6, 3E$	8364.76	8370.64	8370.34			$2\nu_1 + \nu_4, E$	8708.56	8634.08	8624.00		
$v_3 + v_4 + 2v_5 + v_6, 4E$	8373.43	8375.66	8375.67			$2\nu_4 + \nu_5 + \nu_6, 4E$	8580.82	8640.34	8639.91		
$2\nu_3 + 4\nu_5, 1E$	8455.26	8379.42	8379.66			$\nu_1 + \nu_3 + 3\nu_5, E$	8587.89	8655.44	8654.55		
$5v_5 + v_6, 3E$	8482.19	8396.70	8397.20			$v_3 + v_4 + 3v_5, 1E$	8664.38	8662.69	8662.11		
$\nu_3 + \nu_4 + 2\nu_5 + \nu_6, \ 2A_1$	8379.85	8396.98	8396.61			$\nu_1 + \nu_3 + 3\nu_5, A_1$	8590.96	8664.47	8664.87		
$2\nu_3 + 4\nu_5, A_1$	8453.72	8401.33	8402.30			$v_3 + v_4 + 3v_5, 2E$	8664.75	8680.59	8680.64		
$2\nu_3 + 2\nu_4, A_1$	8503.84	8405.58	8396.48			$6v_5, 2E$	8779.63	8680.93	8681.77		
$2\nu_1 + \nu_5 + \nu_6, E$	8418.97	8412.50	8406.73			$v_3 + v_4 + 3v_5, A_1$	8668.19	8694.75	8694.76		
$2\nu_1 + \nu_5 + \nu_6, A_1$	8429.08	8423.09	8416.92			$v_3 + v_4 + 3v_5, 3E$	8674.71	8705.19	8704.48		
$2\nu_1 + \nu_3 + \nu_6, E$	8300.87	8425.50	8425.00			$2\nu_1 + 2\nu_5, A_1$	8705.47	8714.27	8710.43		
$v_1 + v_4 + v_5 + v_6, A_1$	8454.80	8428.90	8429.14			$2\nu_1 + 2\nu_5, E$	8707.01	8722.82	8717.73		
$v_1 + v_4 + v_5 + v_6, 1E$	8458.70	8430.18	8430.23			$v_1 + v_4 + 2v_5, A_1$	8747.83	8725.70	8725.82		
$5v_5 + v_6, 2A_1$	8469.01	8431.82	8431.96			$\nu_1 + \nu_4 + 2\nu_5, 1E$	8749.73	8729.92	8728.78		
$v_1 + v_4 + v_5 + v_6, 2E$	8465.37	8436.74	8436.96			$2\nu_1 + \nu_3 + \nu_5, E$	8581.83	8743.35	8743.13		
$2\nu_3 + 4\nu_5, 2E$	8459.87	8438.78	8438.60			$v_3 + 2v_4 + v_5, A_1$	8714.37	8747.53	8746.91		
$v_3 + 2v_4 + v_6, 2E$	8424.36	8441.47	8441.26			$v_1 + v_4 + 2v_5, 2E$	8754.71	8754.03	8754.07		
$v_1 + 2v_3 + v_4, E$	8462.66	8441.50	8440.42			$\nu_1 + 2\nu_4, E$	8778.82	8767.16	8/6/.51		
$v_1 + v_4 + v_5 + v_6, 3E$	8468.35	8454.00	8453.97			$6v_5, 2A_1$	8/8/.31	8//2.11	8771.89		
$v_3 + 2v_4 + v_6, A_1$	8423.44	8454.15	8453.90			$v_3 + 2v_4 + v_5, 2E$	8/21.26	8//5.86	8775.16		
$\nu_1 + 2\nu_3 + 2\nu_5, A_1$	8435.59	8462.07	8459.48			$v_1 + 4v_5, A_1$	8726.14	8805.58	8803.34		
$5v_5 + v_6, 4E$	8498.45	8480.52	8480.61			$v_1 + 4v_5, 1E$	8/2/.68	8810.43	8809.10		
$v_1 + 3v_5 + v_6, 1E$	8418.55	8486.59	8487.84			$v_1 + 4v_5, 2E$	8/32.29	8817.49	8818.78		
$v_1 + 3v_5 + v_6, 2E$	8425.59	8489.73	8489.20			$v_4 + 4v_5, 1E$	8817.59	8819.06	8818.38		
$2\nu_3 + \nu_4 + 2\nu_5, A_1$	8499.40	8490.85	8490.34			$\nu_4 + 4\nu_5, 1A_1$	8815.68	8834.26	8834.79		
$v_1 + 2v_3 + 2v_5, E$	8437.12	8497.13	8496.72			$\nu_4 + 4\nu_5, 2E$	8816.85	8841.59	8841.04		
$v_3 + 5v_5, 1E$	8620.63	8498.89	8498.70			$3v_1, A_1$	8/11.48	8857.31	8857.17		
$v_4 + 4v_5, 3E$	8822.57	8862.59	8863.04			$2\nu_4 + 2\nu_5, 3E$	8867.19	8925.06	8924.61		
$3v_4, E$	8821.20	8872.55	8870.97			$2\nu_4 + 2\nu_5, 1A_1$	8816.65	8929.69	8929.86		
$\nu_4 + 4\nu_5, 2A_1$	8830.62	88/5.72	88/4.88			$2\nu_4 + 2\nu_5, 2A_1$	88/5.61	8958.02	895/.09		
$2\nu_4 + 2\nu_5, 1E$	8818.18	8897.20	8898.13			\mathfrak{IV}_4, A_1	8922.29	9019.01	9018.53		
$2\nu_4 + 2\nu_5, 2E$	8861.84	8901.36	8900.60								

Note: ^aValues presented in column 2 were calculated with the parameters from Tables I (cc-pVQZ) and VI of [64]. Band centres presented in columns 3 and 4 were calculated with the parameters from Tables 14 and 15 of the present paper. Experimental values of the band centres are given in column 5.

if $\tilde{v}_1 = v_1$, $\tilde{v}_2 = v_2$, $\tilde{v}_3 = v_3 - 2$, $\tilde{v}_4 = v_4$, $\tilde{v}_5 = v_5 + 1$, $\tilde{v}_6 = v_6 + 1$ (for CHD₃).

For the CHD₃ isotopomer one has:

(5)
$$H_{\nu l\gamma, \tilde{\nu} l\gamma} = H_{\tilde{\nu} l\gamma, \nu l\gamma} = \frac{F_{1333}}{4} \{ v_1(v_3+1)(v_3+2)(v_3+3) \}^{1/2}$$

(32)

if $\tilde{v}_1 = v_1 - 1$, $\tilde{v}_2 = v_2$, $\tilde{v}_3 = v_3 + 3$, $\tilde{v}_4 = v_4$, $\tilde{v}_5 = v_5$, $\tilde{v}_6 = v_6$. In Equations (28)–(31) $q_{\lambda}^+ = (q_{\lambda 1} + iq_{\lambda 2})$ and $q_{\lambda}^- = (q_{\lambda 1} - iq_{\lambda 2})$ are the 'creation' and 'annihilation' operators for doubly degenerate vibrational modes q_{λ} , which increase and decrease the value of the quantum Downloaded By: [NEICON Consortium] At: 10:56 9 June 2010

Table 13. Values of the experimental band centres of CHD_3 (in cm⁻¹).^a

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	exp.	Ref.
	1	2	3	4	5	6	1	2	3	4	5	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ν_3, A_1	1006.10	1004.39	1004.42	1004.548	[55]	$v_2 + 2v_3, A_1$	4172.90	4140.72	4140.70	4139.233	tw
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ν_6, E	1036.91	1035.45	1035.52	1035.920	[55]	$\nu_2 + \nu_3 + \nu_6, E$	4208.76	4188.41	4187.84		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ν_5, E	1292.77	1292.12	1292.26	1292.500	[55]	$\nu_2 + 2\nu_6, A_1$	4209.37	4200.37	4199.83		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2\nu_3, A_1$	1997.74	1991.23	1991.47	1991.084	[56]	$\nu_2 + 2\nu_6, E$	4222.38	4205.82	4205.43		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\nu_3 + \nu_6, E$	2044.64	2043.41	2043.20	2041.441	[56]	$2\nu_3 + \nu_4, E$	4232.88	4212.28	4212.28	4212.332	tw
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2\nu_6, A_1$	2056.31	2059.87	2059.77	2058.9	[56]	$\nu_1 + \nu_5, E$	4258.52	4261.91	4262.35	4261.662	tw
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2\nu_6, E$	2069.31	2066.28	2066.32	2066.3	[56]	$v_3 + v_4 + v_6, A_1$	4280.56	4269.94	4269.87		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	v_2, A_1	2143.71	2144.30	2144.41	2142.583	[56]	$v_3 + v_4 + v_6, E$	4279.11	4274.10	4274.37		
$ \begin{aligned} & y_2 + y_5, L & 229, 84 \ 2301, 102 \ 2301, 103 \ 2301, 105 \ [56] \ 2y_2, A_1 & 429, 84 \ 2491, 55 \ 4293, 54 \ 4291, 57 \ 4291, 55 \ 4293, 54 \ 4291, 57 \ 4294, 37 \ 107 \ $	v_4, E	2252.04	2251.58	2251.30	2250.828	[56]	$3\nu_3 + \nu_5, E$	4264.60	42/4.37	42/5.11		
$ \begin{aligned} & y_{2} + y_{0}, R & 232.8.81 \ 232.0.1 \ 232.1.2 & y_{4} + 2y_{0}, 1 E & 429.3.34.0.429.5.3 \ 4294.3.5 \ 4494.3.5 \$	$v_3 + v_5, E$	2297.84	2301.02	2301.08	2301.165	[56]	$2v_2, A_1$	4269.78	4290.38	4291.79	1001 007	
$ \begin{aligned} & y_2 + y_6, L & 230.05 & 238.40 & 238.27 & y_4 + 2y_6, A_1 & 4303.01 & 4296.01 & 4295.51 \\ & 2y_5, A_1 & 2855.53 & 2564.65 & 2564.72 & 2564.676 & [8] & y_4 + 2y_6, A_1 & 4303.09 & 4301.56 & 4301.78 \\ & 2y_5, E & 2887.14 & 2885.58 & 2885.60 & 2886.043 & [8] & 2y_4 + y_6, A_1 & 4327.77 & 4324.90 & 4325.27 \\ & 3y_5, A_1 & 2986.85 & 2992.73 & 2992.85 & 2992.786 & tr & v_2 + v_6, A_1 & 4325.77 & 4324.90 & 4325.27 \\ & 2y_3 + y_6, E & 307.12 & 3006.31 & 3009.39 & v_4 + v_5 + 2y_6, IE & 4365.07 & 4369.43 & 4369.10 \\ & 3y_6, E & 3071.21 & 3006.31 & 3007.32 & v_3 + v_5 + 2y_6, IE & 4365.07 & 4363.04 & 4356.69 & 4365.69 & 3076.09 & 3077.24 & v_5 + 3y_6, IE & 4365.07 & 4383.07 & 4382.66 \\ & v_5 + 2y_6, A_1 & 3005.68 & 3076.09 & 3077.24 & v_5 + 3y_6, 2E & 4387.40 & 4417.11 & 4416.00 \\ & v_5 + v_6, A_1 & 3105.29 & 3177.37 & 3177.28 & 3178.224 & tr & v_5 + 3y_6, 3E & 4387.40 & 4417.11 & 4416.00 \\ & v_5 + v_6, E & 3185.29 & 3177.37 & 3177.28 & 3178.224 & tr & v_5 + 3y_6, 3E & 4387.40 & 4417.11 & 4416.00 \\ & v_5 + v_6, E & 3185.29 & 3177.37 & 3177.83 & 3179.204 & tr & v_5 + v_9, A_1 & 4453.27 & 4439.72 & 4439.34 \\ & v_4 + v_6, E & 3279.82 & 3279.50 & 3279.53 & 3279.044 & tv & v_5 + v_9, E & 4435.27 & 4437.55 & 4457.65 & 4457.781 & tr \\ & v_5 + v_5, E & 3328.45 & 5294.01 & 3294.60 & v_5 + v_5 + v_6, E & 4353.39 & 4486.02 & 4486.30 & 4486.308 & tw \\ & v_5 + v_6, E & 3349.19 & 3356.52 & 3356.91 & v_3 + v_4 + v_5, E & 4534.318 & 4512.442.987 & tr \\ & v_5 + v_6, E & 3349.19 & 3356.52 & 3356.91 & v_3 + v_4 + v_5, E & 4534.318 & 4529.29 & 4529.86 & 4529.062 & tw \\ & v_5 + v_6, E & 3349.19 & 3356.52 & 3356.91 & v_3 + v_4 + v_5, E & 4534.318 & 4512.442.987 & tr \\ & v_5 + v_6, E & 3349.19 & 3356.52 & 3356.91 & v_3 + v_4 + v_5, E & 4534.318 & 4512.4426.90 & tw \\ & v_5 + v_6, E & 3349.19 & 3356.52 & 3357.90 & 3379.08 & 3579.90 & v_4 + v_5 + v_6, I & 4533.39 & 4486.02 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30 & 4486.30$	$v_5 + v_6, A_1$	2328.81	2326.71	2327.12			$\nu_4 + 2\nu_6, 1E$	4291.55	4293.48	4293.54	4294.337	tw
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$v_5 + v_6, E$	2330.65	2338.40	2338.27	2564 (76	10.21	$v_4 + 2v_6, 2E$	4306.01	4296.01	4295.51		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2\nu_5, A_1$	2565.53	2564.63	2564.72	2564.676	[83]	$v_4 + 2v_6, A_1$	4303.09	4301.56	4301.78		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2v_5, E$	2587.14	2585.58	2585.60	2586.043	[83]	$2\nu_3 + \nu_5 + \nu_6, A_1$	4327.77	4324.90	4325.27		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$5v_3, A_1$	29/4.91	2965.28	2965.65	2966.055	IW	$2v_3 + v_5 + v_6, E$	4329.01	4334.84	4334.68	1256 524	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	v_1, A_1	2986.85	2992.73	2992.85	2992.786	tw	$v_2 + v_4, E$	4358.41	4356.34	4356.39	4356.524	tw
$ \begin{aligned} & 36_{0}, E & 3011, 21 & 3005, 31 & 3005, 32 & 91 + 91 + 20_{0}, 2E & 4351, 34 + 316, 37 + 471, 24 \\ & 91 + 20_{0}, E & 3077, 80 & 3077, 25 & 91 + 30_{0}, 1E & 4356, 27 & 4382, 23 & 4382, 26 & 4382, 26 & 4382, 26 & 4382, 26 & 4382, 26 & 4382, 26 & 4382, 26 & 4382, 26 & 4382, 26 & 4382, 26 & 4382, 26 & 4390, 86 & 91 + 91 + 91 + 91 + 91 + 91 + 91 + 91$	$2v_3 + v_6, E$	2071.21	3024.37	3024.47	3023.400	lW	$v_3 + v_5 + 2v_6$, 1E	4303.07	4309.43	4309.10		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$5v_6, E$	30/1.21	2076.00	2075.25			$v_3 + v_5 + 2v_6, 2E$	4357.54	43/8.3/	43/7.24		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_3 + 2v_6, A_1$	2078 60	2077.80	2077.24			$v_5 + 3v_6, 1E$	4303.23	4382.03	4382.00		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_3 + 2v_6, L$	2007 22	2002.40	2002.28			$\nu_5 + 5\nu_6, A_1$	4308.70	4303.07	4362.07		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5\nu_6, A_1$	2165 54	2151 77	2151 71	2154 241	<i>t</i> 10	$v_3 + v_5 + 2v_6, A_1$	43/2.30	4392.20	4390.80		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_2 + v_3, A_1$	2185 20	2177 27	2177 20	2178 224	<i>tw</i>	$v_5 + 3v_6, 2E$	4392.92	4394.00	4393.72		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_2 + v_6, L$	3240.60	3240.48	3240 56	3170.224	l W	$v_5 + 3v_6, 3E$	4307.40	4417.11	4410.09		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_3 + v_4, L$	3247.07	3276 11	3276.12	5257.745	ιw	$v_2 + v_3 + v_5, L$	1/150 38	1157.72	1157.57	1157 781	<i>t</i> 14?
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$v_4 + v_6, A_1$ $v_4 + v_6, F$	3270.82	3270.44	3270.12	3270 044	t14?	$2v_4, A_1$	1473 18	1163 15	1163 54	1162 087	1 VV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2v_2 + v_6, L$ $2v_2 + v_5 E$	3288.45	3294.01	3294 60	5277.044	<i>L W</i>	$v_2 + v_5 + v_6, H_1$ $v_2 + v_5 + v_6, E$	4475.03	4475 14	4474 69	4402.907	LVV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_2 + v_5 + v_6 - A_1$	3335 52	3337 39	3337 29	3338 729	tw	$2\nu_{4}$ E	4483 39	4486.02	4486 30	4486 308	tw
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_2 + v_5 + v_6, E$	3337.36	3348.33	3347.70	5550.125	211	$v_2 + v_4 + v_5$, A ₁	4534.30	4511.81	4511.14	1100.200	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_5 + 2v_6, 1E$	3349.19	3356.52	3356.91			$v_2 + v_4 + v_5, E$	4534.18	4529.92	4529.86	4529.062	tw
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_5 + 2v_6, 2E$	3360.35	3361.30	3361.20			$v_4 + v_5 + v_6, 1E$	4565.93	4555.42	4555.81		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_5 + 2v_6, A_1$	3364.04	3380.07	3379.55			$\nu_4 + \nu_5 + \nu_6, 2E$	4564.59	4558.56	4558.60	4557.929	tw
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_2 + v_5, E$	3432.47	3431.23	3431.33	3430.959	tw	$v_4 + v_5 + v_6, 3E$	4567.89	4569.51	4570.22		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_4 + v_5, A_1$	3537.68	3523.29	3523.09	3523.509	tw	$v_4 + v_5 + v_6, A_1$	4566.31	4573.71	4573.54		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\nu_4 + \nu_5, E$	3537.56	3533.86	3533.63	3533.031	tw	$2\nu_3 + 2\nu_5, A_1$	4559.15	4576.98	4577.94		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$v_3 + 2v_5, A_1$	3569.57	3578.83	3579.08	3578.927	tw	$2\nu_3 + 2\nu_5, E$	4580.76	4592.93	4593.39		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\nu_3 + 2\nu_5, E$	3591.18	3596.56	3596.41			$\nu_3 + 2\nu_5 + \nu_6, 1E$	4608.22	4623.53	4623.09		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$2v_5 + v_6, 1E$	3602.55	3610.05	3610.07			$v_3 + 2v_5 + v_6, 2E$	4627.99	4631.36	4631.17		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$2v_5 + v_6, 2E$	3622.32	3619.31	3619.80			$2v_5 + 2v_6, 1A_1$	4622.06	4643.27	4642.97		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$2v_5 + v_6, A_1$	3626.00	3642.70	3642.09			$2\nu_5 + 2\nu_6, 2A_1$	4652.66	4648.42	4649.27		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$3v_5, E$	3839.89	3838.48	3838.26	3838.040	tw	$2\nu_5 + 2\nu_6, 1E$	4635.06	4650.86	4650.69		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$3v_5, A_1$	3883.11	3880.39	3880.01			$\nu_3 + 2\nu_5 + \nu_6, A_1$	4631.68	4653.61	4652.32		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4\nu_3, A_1$	3937.63	3926.37	3926.84			$2v_5 + 2v_6, 2E$	4643.67	4664.16	4663.78		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_1 + v_3, A_1$	3983.22	3988.59	3988.56	3988.646	tw	$2v_5 + 2v_6, 3E$	4660.36	4695.20	4693.85		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3v_3 + v_6, E$	4016.73	3998.34	3998.31	3997.988	tw	$\nu_2 + 2\nu_5, A_1$	4701.21	4698.56	4698.45	4698.882	tw
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\nu_1 + \nu_6, E$	4023.45	4027.14	4027.06	4027.331	tw	$\nu_2 + 2\nu_5, E$	4722.82	4719.51	4719.33		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2v_3 + 2v_6, A_1$	4060.60	4039.58	4039.58			$\nu_4 + 2\nu_5, 1E$	4803.18	4788.90	4788.49		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2v_3 + 2v_6, E$	40/3.60	4046./1	4046.76			$v_4 + 2v_5, 2E$	4824.92	4816.35	481/.85		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_3 + 3v_6, E$	4082.23	4107.55	4105.88			$v_4 + 2v_5, A_1$	4824.68	4818.38	4818.14	1055 200	<i>4</i>
$4v_{6}, A_{1}$ $4v_{08,02}, 4109,00, 4107,39$ $5v_{3}, A_{1}$ $4855.89, 4874.00, 4875.15$ $4v_{6}, 1E$ $4081.62, 4109.53, 4108.20$ $3v_{5} + v_{6}, A_{1}$ $4876.04, 4883.04, 4882.94$ $4v_{6}, 2E$ $4120.63, 4114.07, 4113.72$ $v_{3} + 3v_{5}, A_{1}$ $4886.12, 4892.33, 4891.71$ $3v_{5} + v_{6}, 1E$ $4877.88, 4894.74, 4894.09$ $2v_{3} + v_{5} + 2v_{6}, 2E$ $5351.42, 5370.98, 5369.95$ $3v_{5} + v_{6}, 2E$ $4917.42, 4913.25, 4913.55$ $v_{2} + v_{4} + v_{6}, A_{1}$ $5392.31, 5377.64, 5377.32$	$v_3 + 3v_6, A_1$	4108.23	410/.3/	4100.00			$v_3 + 3v_5, E$	4842.90	4833.03	4033.19	4833.300	IW
$4v_{6}, 1E$ $4v_{01}, 02, 4109, 35, 4100, 20$ $5v_{5} + v_{6}, A_{1}$ $487, 0.04, 4883, 04, 4882, 94$ $4v_{6}, 2E$ $4120.63, 4114.07, 4113, 72$ $v_{3} + 3v_{5}, A_{1}$ $4886.12, 4892.33, 4891, 71$ $3v_{5} + v_{6}, 1E$ $4877.88, 4894.74, 4894.09$ $2v_{3} + v_{5} + 2v_{6}, 2E$ $5351.42, 5370.98, 5369.95$ $3v_{5} + v_{6}, 2E$ $4917.42, 4913.25, 4913.55$ $v_{2} + v_{4} + v_{6}, A_{1}$ $5392.31, 5377.64, 5377.32$	$4\nu_6, A_1$	4008.02	4109.06	410/.39			SV_3, A_1	4833.89	48/4.00	48/3.13		
$v_{06}, 2E$ $4120.05, 4114.07, 4115.72$ $v_3 + 5v_5, A_1$ $4880.12, 4892.55, 4891.71$ $3v_5 + v_6, 1E$ $4877.88, 4894.74, 4894.09$ $2v_3 + v_5 + 2v_6, 2E$ $5351.42, 5370.98, 5369.95$ $3v_5 + v_6, 2E$ $4917.42, 4913.25, 4913.55$ $v_2 + v_4 + v_6, A_1$ $5392.31, 5377.64, 5377.32$	$+\nu_6, 1E$	4001.02	4109.33	4108.20			$3v_5 + v_6, A_1$	40/0.04	4003.04	4002.94		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4\nu_6, \Delta E$	4120.03	4114.0/	4113.72			$\nu_3 + 3\nu_5, A_1$	4000.12	4072.33	4071./1		
	$3v_5 + v_6, 1E$ $3v_5 + v_6, 2E$	4917.42	4913.25	4913.55			$2\nu_3 \pm \nu_5 \pm 2\nu_6, 2E$ $\nu_2 \pm \nu_4 \pm \nu_6, A_1$	5392.31	5377.64	5377.32		

Table	13.	Continued.

Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	exp.	Ref.
1	2	3	4	5	6	1	2	3	4	5	6
$3v_5 + v_6, 3E$ $4v_3 + v_6, E$ $v_1 + 2v_3, A_1$ $3v_3 + 2v_6, A_1$ $3v_3 + 2v_6, E$ $v_1 + v_3 + v_6, E$ $5v_6, 1E$ $v_1 + 2v_6, A_1$ $v_1 + 2v_6, E$ $5v_6, A_1$ $v_1 + 2v_6, A_1$	4922.95 4981.09 4965.13 5041.05 5054.06 5021.46 5061.52 5042.55 5055.55 5087.53 5094.23	4948.34 4956.30 4968.23 5019.48 5023.31 5025.59 5045.67 5049.64 5056.88 5059.04	4946.98 4956.32 4968.15 5018.80 5022.82 5025.15 5045.28 5049.15 5056.49 5056.49	4968.171	tw	$v_{5} + 4v_{6}, 1E$ $v_{2} + v_{4} + v_{6}, E$ $v_{3} + v_{5} + 3v_{6}, 1E$ $v_{3} + v_{5} + 3v_{6}, 2E$ $v_{5} + 4v_{6}, 1A_{1}$ $v_{3} + v_{5} + 3v_{6}, A_{1}$ $v_{5} + 4v_{6}, 2E$ $v_{5} + 4v_{6}, 2A_{1}$ $v_{2} + 2v_{3} + v_{5}, E$ $v_{3} + v_{5} + 3v_{6}, 3E$ $v_{3} + v_{5} + 3v_{6}, 3E$	5372.77 5390.85 5375.06 5402.91 5376.46 5373.21 5417.31 5409.94 5459.60 5397.38	5379.68 5380.24 5394.41 5397.93 5402.75 5407.19 5415.30 5428.65 5431.31 5432.10	5379.99 5380.28 5392.64 5397.30 5403.33 5405.35 5413.33 5426.52 5430.88 5429.83 5426.24		
$ \begin{aligned} 4\nu_5, A_1 \\ 4\nu_5, 1E \\ \nu_2 + 3\nu_3, A_1 \\ 5\nu_6, 2E \\ \nu_3 + 4\nu_6, 1E \\ \nu_1 + \nu_2, A_1 \\ 2\nu_3 + 3\nu_6, A_1 \\ \nu_3 + 4\nu_6, 2E \\ 2\nu_3 + 3\nu_6, E \\ \nu_3 + 4\nu_6, A_1 \\ \nu_4 + 2\nu_4 + \nu_5 E \end{aligned} $	5094.23 5115.84 5160.81 5139.55 5133.28 5128.37 5104.79 5094.27 5078.78 5081.27 5217.76	5092.73 5113.68 5117.20 5131.04 5132.72 5135.02 5135.91 5137.93 5139.44 5139.82 5169.36	5092.00 5112.87 5117.16 5130.32 5131.14 5134.96 5133.71 5135.25 5136.50 5136.77 5168.96	5135.054	tw	$v_3 + 2v_4, A_1$ $v_5 + 4v_6, 3E$ $v_3 + 2v_4, E$ $2v_4 + v_6, 1E$ $v_2 + v_3 + v_5 + v_6, A_1$ $v_2 + v_3 + v_5 + v_6, E$ $3v_3 + 2v_5, A_1$ $v_2 + v_5 + 2v_6, 1E$ $v_2 + v_5 + 2v_6, 2E$ $2v_4 + v_6, A_1$ $2v_5 + v_5 + v_5 + v_5$	5439.58 5361.61 5472.59 5470.48 5495.62 5497.46 5534.27 5498.24 5509.40 5502.03 5516.34	5435.12 5449.54 5458.73 5473.10 5474.89 5486.29 5486.88 5491.04 5496.29 5507.24 5510.37	5436.24 5447.91 5459.38 5473.29 5474.15 5485.01 5486.53 5491.03 5495.58 5508.19 5511 18		
$v_2 + 2v_3 + v_6, E$ $3v_3 + v_4, E$ $4v_5, 2E$ $v_2 + v_3 + 2v_6, A_1$ $v_2 + v_3 + 2v_6, E$ $v_2 + 3v_6, E$ $v_2 + 3v_6, A_1$ $v_1 + v_4, E$ $2v_2 + v_3 + v_5 + v_6$	5201.61 5180.68 5234.47 5247.48 5228.95 5254.96 5241.08 5265.39	5170.30 5171.24 5176.53 5219.78 5220.42 5224.17 5229.65 5235.78 5237.99	5108.70 5171.49 5175.49 5218.32 5219.24 5222.86 5228.85 5235.59 5238.24	5237.638	tw	$2v_{3} + v_{4} + v_{5}, L$ $2v_{4} + v_{6}, 2E$ $v_{2} + v_{5} + 2v_{6}, A_{1}$ $v_{1} + 2v_{5}, A_{1}$ $v_{1} + 2v_{5}, E$ $v_{3} + v_{4} + v_{5} + v_{6}, 1E$ $2v_{3} + v_{4} + v_{5}, A_{1}$ $v_{3} + v_{4} + v_{5} + v_{6}, 2E$ $v_{3} + v_{4} + v_{5} + v_{6}, 3E$	5504.95 5513.08 5510.16 5531.78 5562.85 5516.46 5564.19	5510.37 5512.50 5514.43 5514.98 5535.82 5548.17 5560.22 5566.44	5511.16 5513.48 5513.32 5515.04 5535.84 5547.73 5561.73 5567.60 5567.90	5515.603 5535.919	tw tw
$2v_3 + v_4 + v_6, A_1$ $4v_3 + v_5, E$ $2v_3 + v_4 + v_6, E$ $v_1 + v_3 + v_5, E$ $3v_3 + v_5 + v_6, A_1$ $v_3 + v_4 + 2v_6, 1E$ $v_3 + v_4 + 2v_6, 2E$ $v_1 + v_5 + v_6, A_1$ $2v_2 + v_3, A_1$	5205.39 5226.29 5263.93 5253.85 5305.55 5292.47 5306.94 5294.25 5307.33	5257.99 5241.08 5246.81 5273.96 5292.60 5295.66 5296.03 5299.48 5300.93	5238.24 5241.99 5247.83 5273.74 5292.59 5295.30 5295.84 5299.20 5301.98	5273.275	tw	$v_{3} + v_{4} + v_{5} + v_{6}, SE$ $v_{3} + v_{4} + v_{5} + v_{6}, A_{1}$ $2v_{2} + v_{5}, E$ $3v_{3} + 2v_{5}, E$ $v_{4} + v_{5} + 2v_{6}, 1A_{1}$ $v_{4} + v_{5} + 2v_{6}, 2E$ $v_{4} + v_{5} + 2v_{6}, 2E$ $v_{4} + v_{5} + 2v_{6}, 3E$	5564.57 5554.52 5555.88 5577.30 5589.80 5577.18 5593.60 5587.00	5570.77 5572.13 5574.67 5577.89 5578.31 5578.53 5587.97 5598.19	5570.44 5573.37 5575.52 5578.02 5578.62 5579.67 5588.34 5598.08		
$\begin{aligned} & 2v_2 + v_3, & x_1 \\ & v_3 + v_4 + 2v_6, & A_1 \\ & v_4 + 3v_6, & 1E \\ & v_1 + v_5 + v_6, & E \\ & v_4 + 3v_6, & 2E \\ & v_4 + 3v_6, & 3E \\ & 2v_2 + v_6, & E \\ & 3v_3 + v_5 + v_6, & E \\ & 2v_3 + v_5 + 2v_6, & 1E \\ & v_2 + v_3 + v_4, & E \\ & 2v_3 + v_5 + 2v_6, & A_1 \\ & v_3 + 2v_5 + 2v_6, & 2E \\ & 2v_5 + 3v_6, & 3E \end{aligned}$	5304.02 5326.25 5296.09 5297.32 5298.78 5321.87 5316.03 5307.40 5362.58 5371.78 5366.27 5651.18 5679.41	5301.16 5301.60 5309.02 5310.63 5311.96 5318.47 5321.07 5337.07 5350.49 5352.16 5367.75 5681.43 5682.34	5301.45 5300.90 5308.67 5309.83 5312.36 5318.74 5322.02 5336.46 5350.40 5352.79 5367.03 5679.76 5681.89			$v_{4} + v_{5} + 2v_{6}, 3E$ $v_{4} + v_{5} + 2v_{6}, 4E$ $2v_{3} + 2v_{5} + v_{6}, 1E$ $2v_{3} + 2v_{5} + v_{6}, 2E$ $v_{2} + v_{4} + v_{5}, E$ $2v_{3} + 2v_{5} + v_{6}, A_{1}$ $v_{3} + 2v_{5} + 2v_{6}, 1A_{1}$ $v_{3} + 2v_{5} + 2v_{6}, 2A_{1}$ $v_{3} + 2v_{5} + 2v_{6}, 1E$ $2v_{5} + 3v_{6}, 1E$ $2v_{5} + 3v_{6}, 2E$ $v_{2} + 4v_{3}, A_{1}$ $v_{1} + 3v_{6}, A_{1}$	5590.56 5599.44 5619.36 5640.28 5640.16 5623.04 5629.57 5660.50 5642.57 5637.31 5657.09 6144.39 6042.31	5601.38 5601.98 5616.02 5626.53 5635.09 5643.60 5661.76 5662.30 5665.30 5672.90 5674.65 6081.26 6082.04	5600.65 5600.17 5616.21 5626.87 5635.23 5642.76 5660.33 5662.00 5664.14 5674.01 5673.73 6081.12 6081.24		
$2\nu_{5} + 3\nu_{6}, 1A_{1}$ $2\nu_{5} + 3\nu_{6}, 2A_{1}$ $\nu_{2} + \nu_{3} + 2\nu_{5}, A_{1}$ $\nu_{3} + 2\nu_{5} + 2\nu_{6}, 3E$ $2\nu_{4} + \nu_{5}, 1E$	5660.77 5663.32 5721.18 5667.87 5728.99	5687.04 5707.04 5708.68 5712.28 5725.11	5686.57 5705.49 5707.97 5710.19 5725.55			$v_4 + 3v_5, 2E$ $v_4 + 3v_5, 3E$ $v_3 + 4v_5, A_1$ $4v_3 + v_4, E$ $v_3 + 4v_5, 1E$	6113.62 6113.98 6096.39 6155.99 6118.00	6096.94 6105.31 6113.21 6116.92 6133.03	6098.44 6104.39 6113.16 6117.03 6132.89		

Table 13. Continued.

Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	exp.	Ref.
1	2	3	4	5	6	1	2	3	4	5	6
$\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$	2 5742.79 5743.15 5690.46 5762.92 5762.13 5761.77 5766.61 5831.59 6037.24 5798.96 5820.45 5832.76 5831.30 5851.19 5852.41 5820.69 5854.64 5855.27 5856.33 5874.81 5880.87 5931.06 5922.25 5907.92 5927.78 5947.46 5932.60 5958.51 5911.61	3 5728.41 5741.61 5743.08 5750.86 5755.03 5758.66 5774.25 5785.21 5809.93 5813.36 5817.23 5824.59 5830.47 5842.59 5842.79 5842.79 5842.79 5842.79 5842.79 5842.79 5842.79 5842.79 5842.55 5860.31 5865.64 5890.57 5898.56 5902.55 5910.04 5922.99 5925.91 5926.62 5935.89 5941.50	4 5727.48 5741.15 5740.88 5750.88 5750.88 5756.65 5758.85 5773.17 5784.81 5810.54 5810.54 5815.51 5816.81 5824.45 5830.58 5844.59 5842.89 5842.89 5865.81 5869.24 5890.57 5898.05 5902.47 5990.01 5922.90 5925.35 5925.86 5935.64 5942.36 5945.19	5 5759.766 5865.004	6 tw	$\frac{1}{1}$ $\frac{v_1 + v_2 + v_3, A_1}{6v_6, 2A_1}$ $\frac{v_2 + 3v_3 + v_6, E}{4v_5 + v_6, 1E}$ $\frac{4v_5 + v_6, 1E}{4v_5 + v_6, 2E}$ $\frac{2v_3 + 4v_6, 1E}{2v_3 + 4v_6, 2E}$ $\frac{2v_3 + 4v_6, 2E}{2v_3 + 4v_6, 41}$ $\frac{4v_5 + v_6, 1A_1}{4v_5 + v_6, 1A_1}$ $\frac{v_2 + 4v_6, 1E}{2v_3 + 4v_5, 2E}$ $\frac{5v_3 + v_5, E}{3v_3 + v_4 + v_6, E}$ $\frac{4v_5 + v_6, 2A_1}{4v_5 + v_6, 2A_1}$ $\frac{v_1 + 2v_3 + v_5, E}{2v_2 + v_3 + 3v_6, A_1}$ $\frac{v_2 + 4v_6, 1E}{v_2 + 4v_6, 1E}$ $\frac{v_2 + 4v_6, 2E}{4v_5 + v_6, 2A_1}$ $\frac{v_1 + 2v_3 + v_5, E}{2v_2 + v_3 + 3v_6, E}$ $\frac{v_2 + 2v_3 + 2v_6, E}{v_2 + 2v_3 + 2v_6, E}$ $\frac{v_2 + 2v_3 + 2v_6, A_1}{v_4 + 4v_6, 2E}$ $\frac{4v_5 + v_6, 3E}{4v_5 + v_6, 3E}$	2 6140.59 6037.24 6212.48 6131.58 6076.07 6151.35 6092.68 6102.08 6169.81 6131.69 6154.10 6079.67 6231.35 6155.03 6244.35 6182.84 6173.59 6235.92 6234.46 6214.34 6235.92 6287.36 6287.36 6258.34 6255.96 6245.34 6301.82 6221.71	3 6133.64 6143.39 6146.68 6148.13 6153.25 6157.38 6160.77 6166.74 6166.81 6170.88 6173.42 6174.23 6179.48 6180.77 6186.69 6188.79 6192.40 6197.14 6202.61 6208.54 6214.22 6247.81 6248.86 6248.94 6250.04 6250.32 6251.14 6255.32	4 6133.28 6142.19 6145.95 6147.17 6150.99 6157.64 6162.92 6166.31 6166.57 6168.82 6169.52 6178.64 6179.18 6185.92 6187.41 6195.34 6197.28 6203.16 6208.37 6212.82 6245.90 6247.54 6249.40 6247.74 6247.74 6247.54 6252.00 6252.95	5	6
$\begin{aligned} & \sum_{v_3 + 2v_6, +2v_6, +2$	582.71 582.71 5939.98 5971.79 6154.27 6050.24 6005.08 6015.02 5896.76 6005.69 6007.17 6070.63 6087.05 6020.17 6070.51 6083.32 6085.32 6089.25 6057.31 6370.92 6325.64 6336.46 6279.14 6355.50 6293.61 6345.11 6345.85	5950.61 5968.44 5967.23 5968.93 5974.63 6001.50 6009.12 6011.67 6035.15 6039.98 6040.50 6040.55 6045.02 6054.83 6058.84 6061.40 6063.64 6070.59 6329.10 6329.46 6332.80 6333.29 6335.18 6339.14 6345.48	5957.40 5969.02 5967.38 5968.55 5974.34 6000.98 6008.40 6009.23 6033.64 6038.92 6039.41 6039.53 6044.16 6053.98 6057.29 6060.12 6063.21 6069.44 6330.15 6329.01 6333.21 6333.31 6335.46 6338.82 6343.24 6344.89			$\begin{aligned} & v_{3} + v_{6}, 5L \\ & v_{4} + 4v_{6}, 1A_{1} \\ & 4v_{3} + v_{5} + v_{6}, A_{1} \\ & v_{1} + v_{3} + v_{6}, E \\ & v_{1} + v_{4} + v_{6}, E \\ & 4v_{3} + v_{5} + v_{6}, E \\ & 2v_{2} + 2v_{3}, A_{1} \\ & v_{1} + v_{3} + v_{5} + v_{6}, E \\ & 3v_{3} + v_{5} + 2v_{6}, 1E \\ & 3v_{3} + v_{5} + 2v_{6}, 1E \\ & 3v_{3} + v_{5} + 2v_{6}, 2E \\ & v_{3} + v_{4} + 3v_{6}, 1E \\ & v_{1} + v_{3} + v_{5} + v_{6}, E \\ & v_{3} + v_{4} + 3v_{6}, 2E \\ & v_{3} + v_{4} + 3v_{6}, 3E \\ & 2v_{3} + v_{4} + 2v_{6}, A_{1} \\ & v_{4} + 4v_{6}, 2A_{1} \\ & v_{1} + v_{5} + 2v_{6}, 1E \\ & 3v_{3} + v_{4} + v_{5}, E \\ & v_{2} + v_{5} + 3v_{6}, 1E \\ & v_{2} + v_{5} + 3v_{6}, 1E \\ & v_{2} + v_{2} + v_{5}, 2E \\ & v_{1} + v_{4} + v_{5}, A_{1} \\ & v_{2} + v_{5} + 3v_{6}, 2E \end{aligned}$	6291.71 6298.90 6268.99 6229.12 6270.17 6268.71 6270.84 6330.66 6291.34 6342.17 6300.14 6324.69 6301.60 6329.07 6290.69 6342.29 6314.48 6484.19 6519.10 6533.73 6519.70 6506.38 6505.76 6537.42 6541.42	6253.32 6258.94 6262.97 6264.07 6266.37 6269.20 6273.09 6291.62 6305.18 6309.09 6311.85 6312.49 6315.08 6315.72 6315.08 6315.72 6319.95 6320.40 6325.72 6509.62 6514.00 6515.30 6519.92 6526.55 6528.57 6528.71	6259.77 6265.88 6264.36 6262.72 6267.96 6273.21 6292.53 6304.62 6307.77 6310.25 6311.58 6313.75 6314.60 6314.88 6319.19 6318.93 6319.16 6325.78 6510.48 6513.79 6513.26 6520.35 6522.07 6528.44 6526.28 6526.83		

Table 13. Continued.

Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	exp.	Ref.
1	2	3	4	5	6	1	2	3	4	5	6
$2\nu_2 + 2\nu_6, E$	6358.11	6347.14	6347.52			$2\nu_3 + \nu_4 + \nu_5 + \nu_6, 1E$	6546.84	6537.26	6539.59		
$5v_5, 1E$	6350.39	6348.32	6346.81			$\nu_1 + \nu_4 + \nu_5, E$	6505.64	6540.93	6542.52		
$v_1 + v_5 + 2v_6, A_1$	6329.32	6352.33	6351.20			$v_2 + v_5 + 3v_6, 3E$	6546.95	6549.09	6547.22		
$v_5 + 5v_6, 1A_1$	6353.95	6356.73	6356.60			$2\nu_3 + \nu_4 + \nu_5 + \nu_6, 2E$	6548.18	6551.01	6553.16		
$v_5 + 5v_6, 1E$	6355.79	6358.96	6359.34			$v_2 + 2v_4, E$	6552.70	6552.20	6553.19		
$v_5 + 5v_6, 2E$	6378.12	6367.16	6366.50			$2\nu_4 + 2\nu_6, 3E$	6516.47	6554.45	6555.17		
$v_2 + v_3 + v_4 + v_6, E$	6406.13	6380.54	6380.96			$2\nu_3 + \nu_4 + \nu_5 + \nu_6, 3E$	6550.15	6555.31	6557.81		
$v_5 + 5v_6, 3E$	6383.64	6381.79	6381.27			$v_1 + 2v_5 + v_6, 1E$	6547.02	6558.10	6557.61		
$v_2 + v_3 + v_4 + v_6, A_1$	6407.59	6384.90	6385.57			$\nu_1 + 2\nu_5 + \nu_6, 2E$	6566.79	6567.36	6567.34		
$5v_5, A_1$	6393.61	6390.22	6388.55			$2\nu_3 + \nu_4 + \nu_5 + \nu_6, A_1$	6548.57	6567.47	6569.92		
$v_2 + v_4 + 2v_6, 1E$	6407.57	6390.37	6389.82			$v_3 + v_4 + v_5 + 2v_6, 1E$	6577.32	6576.79	6576.93		
$v_2 + v_4 + 2v_6, 2E$	6422.03	6394.16	6393.36			$v_3 + v_4 + v_5 + 2v_6, 1A_1$	6577.44	6577.53	6577.19		
$2\nu_3 + 2\nu_4, A_1$	6414.52	6394.17	6395.50			$\nu_3 + \nu_4 + \nu_5 + 2\nu_6, 2A_1$	6589.94	6577.60	6576.73		
$\nu_1 + \nu_2 + \nu_5, E$	6396.18	6398.53	6398.58			$3\nu_3 + 2\nu_5 + \nu_6, 1E$	6576.35	6580.58	6576.73		
$v_2 + v_4 + 2v_6, A_1$	6419.12	6399.19	6399.11			$2\nu_2 + \nu_3 + \nu_5, E$	6591.31	6582.38	6582.87		
$v_2 + 3v_3 + v_5, E$	6451.65	6413.39	6412.95			$3\nu_3 + 2\nu_5 + \nu_6, 2E$	6596.12	6589.84	6586.00		
$2\nu_3 + 2\nu_4, E$	6447.53	6415.16	6415.76			$\nu_3 + \nu_4 + \nu_5 + 2\nu_6, 2E$	6587.14	6590.36	6589.82		
$v_5 + 5v_6, 4E$	6428.29	6418.86	6419.28			$v_1 + 2v_5 + v_6, A_1$	6570.48	6590.74	6589.63		
$v_3 + v_5 + 4v_6, 1A_1$	6388.33	6421.66	6420.63			$\nu_4 + \nu_5 + 3\nu_6, 1E$	6582.50	6592.12	6592.20		
$2v_3 + v_5 + 3v_6, 1E$	6370.79	6429.08	6425.03			$v_4 + v_5 + 3v_6, 1A_1$	6584.22	6595.20	6596.78		
$v_3 + v_5 + 4v_6, 1E$	6373.49	6434.87	6432.14			$\nu_4 + \nu_5 + 3\nu_6, 2E$	6583.84	6595.85	6596.65		
$3\nu_2, A_1$	6378.53	6438.24	6442.15			$\nu_3 + \nu_4 + \nu_5 + 2\nu_6, 3E$	6590.71	6597.42	6597.51		
$2\nu_3 + \nu_5 + 3\nu_6, A_1$	6368.94	6441.57	6438.33			$\nu_4 + \nu_5 + 3\nu_6, 3E$	6585.80	6600.72	6601.07		
$v_3 + v_5 + 4v_6, 2E$	6384.65	6447.02	6443.35			$2\nu_2 + \nu_5 + \nu_6, A_1$	6600.22	6601.96	6602.94		
$2\nu_4 + 2\nu_6, 1A_1$	6473.38	6448.45	6448.71			$\nu_4 + \nu_5 + 3\nu_6, 4E$	6609.46	6605.42	6605.48		
$2\nu_3 + \nu_5 + 3\nu_6, 2E$	6393.11	6452.93	6449.15			$\nu_3 + \nu_4 + \nu_5 + 2\nu_6, 4E$	6593.74	6607.53	6606.87		
$v_3 + v_5 + 4v_6, 2A_1$	6421.82	6457.61	6453.77			$3\nu_3 + 2\nu_5 + \nu_6, A_1$	6599.81	6613.23	6608.29		
$v_3 + 2v_4 + v_6, 1E$	6461.57	6459.96	6461.88			$2v_2 + v_5 + v_6, E$	6602.06	6613.65	6614.09		
$2v_2 + v_4, E$	6447.44	6460.69	6462.15			$v_4 + v_5 + 3v_6, 2A_1$	6605.21	6614.84	6614.95		
$v_2 + 2v_3 + v_5 + v_6, A_1$	6503.81	6467.31	6465.24			$v_2 + v_3 + v_4 + v_5, A_1$	6652.63	6620.41	6620.45		
$v_3 + v_5 + 4v_6, 3E$	6429.19	6467.58	6464.36			$v_4 + v_5 + 3v_6, 3A_1$	6615.11	6623.16	6622.25		
$v_2 + 2v_3 + v_5 + v_6, E$	6505.65	6471.18	6469.93			$v_2 + v_3 + v_4 + v_5, E$	6652.51	6632.11	6632.31		
$5v_5, 2E$	6480.06	6474.02	6472.04			$v_4 + v_5 + 3v_6, 5E$	6610.61	6635.70	6635.21		
$4\nu_3 + 2\nu_5, E$	6516.65	6474.62	6476.08			$2\nu_3 + 2\nu_5 + 2\nu_6, 1A_1$	6622.43	6641.53	6641.29		
$v_5 + 5v_6, 2A_1$	6437.50	6477.37	6475.00			$2\nu_3 + 2\nu_5 + 2\nu_6, 2A_1$	6653.36	6644.61	6644.96		
$4\nu_3 + 2\nu_5, A_1$	6495.04	6477.59	6477.96			$3v_4, E$	6628.31	6646.47	6647.83		
$2v_3 + v_5 + 3v_6, 3E$	6398.64	64/9./6	6476.10			$2v_3 + 2v_5 + 2v_6$, 1E	6635.43	6648.12	6647.75		
$2v_4 + 2v_6, 1E$	6486.38	6482.95	6483.10			$v_2 + v_4 + v_5 + v_6$, 1E	6671.91	6652.77	6653.41		
$3v_3 + v_4 + v_5, A_1$	6484.31	6484.05	6487.37			$\nu_2 + \nu_4 + \nu_5 + \nu_6, 2E$	6673.25	6655.95	6655.98		
$v_1 + v_3 + 2v_5, A_1$	6504.58	6484.55	6483.04			$2v_3 + 2v_5 + 2v_6, 2E$	6644.04	6659.81	6659.16		
$v_3 + 2v_4 + v_6, 2E$	6496.03	6485.51	6487.36			$v_2 + v_4 + v_5 + v_6, 3E$	66/5.21	6664.08	6664.39		
$v_3 + 2v_4 + v_6, A_1$	6493.12	6492.43	6494.91			$\nu_2 + \nu_4 + \nu_5 + \nu_6, A_1$	66/3.63	6666.53	6666.83		
$v_1 + v_3 + 2v_5, E$	6526.19	6498.94	6497.35			$v_3 + 2v_5 + 3v_6, 1E$	6646.28	6680.43	66/8.75		
$v_2 + v_5 + 3v_6, A_1$	6517.26	6502.52	6501.94			$2v_3 + 2v_5 + 2v_6, 3E$	6660.73	6687.95	6686.06		
$v_2 + v_3 + v_5 + 2v_6$, 1 <i>E</i>	6522.57	6505.59	6504.41			$v_3 + 2v_5 + 3v_6, 2E$	6666.05	6689.00	6687.66		
$2v_4 + 2v_6, 2A_1$	6522.30	6509.50	6509.47			$v_3 + 2v_5 + 3v_6, 3E$	6688.37	6689.09	6688.63		
$2v_5 + 4v_6, 1E$	6647.89	6692.77	6694.03			$v_4 + 2v_5 + 2v_6, 2A_1$	6864.69	6884.17	6884.52		
$v_3 + 2v_4 + v_5$, 1E	6/17/.17	6701.18	6700.98			$v_2 + v_4 + 2v_5, 1E$	6901.81	6887.83	6888.08		
$5\nu_4, A_1$	6694.32	6702.84	6704.33			$\nu_1 + 4\nu_3, A_1$	6885.60	6893.79	6893.16		
$2\nu_5 + 4\nu_6, 1A_1$	6634.88	6702.87	6700.55			$2\nu_1 + \nu_6, E$	6891.63	6899.53	6899.19		
$v_2 + 2v_3 + 2v_5, A_1$	6726.49	6703.06	6/02.34			$v_4 + 2v_5 + 2v_6, 3A_1$	6883.07	6900.65	6900.29		
$v_3 + 2v_5 + 3v_6, 1A_1$	6669.73	6/03.35	6701.42			$2v_3 + 3v_5 + v_6, 1E$	6872.91	6905.94	6905.58		
$2v_5 + 4v_6, 2A_1$	6665.81	6703.36	6702.41			$v_2 + v_4 + 2v_5, 2E$	6923.54	6908.36	6909.72		
$2v_5 + 4v_6, 2E$	6656.49	6705.95	6704.02			$v_4 + 2v_5 + 2v_6, 6E$	6879.92	6914.94	6913.95		
$v_3 + 2v_5 + 3v_6, 2A_1$	6672.28	6711.81	6709.37			$\nu_2 + \nu_4 + 2\nu_5, A_1$	6923.30	6915.61	6915.56		

Table 13. Continued.

Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	exp.	Ref.
1	2	3	4	5	6	1	2	3	4	5	6
$2v_5 + 4v_6, 3E$	6673.18	6718.60	6717.73			$2\nu_3 + 3\nu_5 + \nu_6, 2E$	6912.45	6919.79	6919.61		
$\nu_2 + 2\nu_3 + 2\nu_5, E$	6748.11	6721.60	6720.48			$v_3 + 3v_5 + 2v_6, 1E$	6903.05	6925.78	6923.35		
$2v_5 + 4v_6, 4E$	6686.90	6723.27	6720.82			$v_3 + 3v_5 + 2v_6, 2E$	6914.21	6945.87	6943.90		
$v_3 + 2v_4 + v_5, 2E$	6750.30	6/33.31	6/36.10			$3\nu_5 + 3\nu_6, 1A_1$	6910.96	6946.82	6946.28		
$v_3 + 2v_4 + v_5, A_1$	6/50.06	6742.46	6743.06			$2\nu_3 + 3\nu_5 + \nu_6, 3E$	6917.97	6951.84	6949.98		
$2v_4 + v_5 + v_6, 1A_1$	6/48.29	6744.21	6/45.6/			$v_3 + 3v_5 + 2v_6, 3E$	6953.75	6955.61	6955.09		
$2v_5 + 4v_6, 5E$	6/01.14	6749.63	6746.50			$3v_5 + 3v_6, 1E$	6912.80	6958.31	6958.13		
$2v_4 + v_5 + v_6$, 1E	6/50.13	6753.28	6753.89			$v_3 + 3v_5 + 2v_6, 1A_1$	6917.90	6961.68	6959.45		
$v_2 + v_3 + 2v_5 + v_6$, 1E	6/64.56	6/53.63	6/52.12			$3v_5 + 3v_6, 2A_1$	69/2.82	6965.12	6966.44		
$v_3 + 2v_5 + 3v_6, 4E$	6699.42	6/5/.09	0/03.92			$3v_5 + 3v_6, 2E$	6935.13	6967.79	6966.09		
$v_2 + v_3 + 2v_5 + v_6, 2E$	0/84.33	0/02.30	0/01.10			$2v_4 + 2v_5, 1A_1$	098/.41	09/2.22	6972.40		
$v_1 + 3v_5, E$	0/03.33	0/03.48	0/03.32			$v_2 + v_3 + 3v_5, E$	0990.34	09/8.32	6977.03		
$3v_3 + 3v_5, E$	6767.20	6772.86	6771.70			$v_3 + 3v_5 + 2v_6, 2A_1$	0940.28	0983.4/	6985.01		
$v_2 + 2v_5 + 2v_6$, IA_1	6770.06	6772.02	6774.52			$5v_5 + 5v_6, 5E$	7000.02	6000.02	6080.01		
$2\nu_4 + \nu_5 + \nu_6, 2E$	6781 56	6775 11	6778.06			$2\nu_4 + 2\nu_5, 1E$	6074 17	6000 56	6088 80		
$2\nu_4 + \nu_5 + \nu_6, JL$	6708 32	6777 50	6777 71			$v_1 \pm 3v_3 \pm v_6, L$	6052 34	6003 40	6001 56		
$\nu_2 + 2\nu_5 + 2\nu_6, 2A_1$ $\nu_1 + 2\nu_2 + 2\nu_1 = 1E$	6780.30	6780.03	6770 12			$5v_5 + 5v_6, +E$	7012.54	7000 /1	7008 60		
$v_2 + 2v_5 + 2v_6, 1L$ $2v_4 + v_5 + v_6, 24$	6784 71	6781.02	6782.66			$v_2 + 3v_5 + v_6, A_1$ $2v_4 + 2v_5 + 2F$	7020.42	7015 75	7018 17		
$2v_4 + v_5 + v_6, 2211$ $v_2 + v_2 + 2v_5 + v_6$	6788.02	6785.19	6782.00			$2v_4 + 2v_5, 2L$	7020.42	7018.01	7016.28		
$2v_2 + v_3 + 2v_5 + v_6, m_1$	6715.88	6786 34	6783 18			$2v_1 + 2v_2 + 3v_5, 24$	7042 27	7020 52	7021 45		
$2v_5 + v_6, 5m$	6782.63	6792 72	6793.49			$3v_{5} + 3v_{6}$ 5E	6957.87	7021.09	7018 68		
$v_2 + 2v_5 + 2v_6$, $4L$	6789.00	6793 76	6792 62			$v_2 + 3v_5 + v_6, 5L$	7014 51	7021.07	7019.83		
$2v_2 + 2v_3 + 2v_6, 2E$ $2v_2 + v_4 + 2v_5, 1E$	6780 10	6795.65	6798 91			$v_2 + 3v_5 + 2v_6$, 12 $v_2 + 3v_5 + 2v_6$ 4E	6964.81	7023.86	7020.03		
$3v_2 + 3v_5$, A ₁	6848.91	6801.11	6801.54			$2v_4 + 2v_5, 3E$	7041.79	7034.86	7034.74		
$v_1 + 3v_5, A_1$	6806.78	6810.73	6810.31			$v_1 + 2v_2 + 2v_6$, A ₁	7027.50	7037.37	7035.16		
$v_2 + 2v_5 + 2v_6, 3E$	6805.69	6824.37	6822.28			$v_2 + 3v_5 + v_6, 2E$	7054.05	7039.62	7039.29		
$v_3 + v_4 + 2v_5 + v_6$, 1E	6828.54	6827.11	6826.32			$2\nu_3 + 4\nu_5, A_1$	7083.92	7045.05	7046.54		
$2\nu_2 + 2\nu_5, A_1$	6819.55	6834.27	6835.16			$\nu_1 + 2\nu_3 + 2\nu_6, E$	7040.50	7050.12	7048.15		
$v_3 + v_4 + 2v_5 + v_6, 2E$	6849.64	6841.83	6841.44			$2\nu_3 + 4\nu_5, 1E$	7105.53	7054.85	7054.00		
$v_3 + v_4 + 2v_5 + v_6, 1A_1$	6829.99	6842.68	6844.76			$v_1 + 4v_6, A_1$	7054.46	7056.26	7055.31		
$2\nu_3 + \nu_4 + 2\nu_5, 2E$	6801.83	6842.89	6844.37			$v_1 + v_3 + 3v_6, E$	7058.60	7066.29	7064.46		
$2v_1 + v_3, A_1$	6841.94	6848.20	6848.33	6848.112	tw	$\nu_1 + 4\nu_6, 1E$	7067.46	7067.71	7066.68		
$v_3 + v_4 + 2v_5 + v_6, 2A_1$	6848.43	6851.55	6853.83			$3v_5 + 3v_6, 3A_1$	6989.40	7070.39	7066.74		
$v_4 + 2v_5 + 2v_6, 1E$	6843.19	6855.01	6855.47			$v_2 + 3v_5 + v_6, 3E$	7059.58	7074.70	7072.72		
$2\nu_2 + 2\nu_5, E$	6841.16	6855.22	6856.03			$v_4 + 3v_5 + v_6, 1E$	7097.70	7085.32	7084.81		
$v_3 + v_4 + 2v_5 + v_6, 3E$	6851.87	6857.24	6858.09			$v_1 + v_3 + 3v_6, A_1$	7084.61	7088.99	7087.06		
$v_4 + 2v_5 + 2v_6, 2E$	6864.93	6861.63	6862.10			$v_4 + 3v_5 + v_6, 2E$	7099.04	7090.53	7090.10		
$v_4 + 2v_5 + 2v_6, 3E$	6857.66	6863.12	6865.98			$v_3 + v_4 + 3v_5, 1E$	7065.08	7093.47	7095.46		
$v_4 + 2v_5 + 2v_6, 1A_1$	6854.74	6864.55	6865.01			$\nu_1 + 4\nu_6, 2E$	7106.47	7101.76	7100.43		
$v_4 + 2v_5 + 2v_6, 4E$	6872.79	6868.05	6868.80			$v_3 + v_4 + 3v_5, 2E$	7108.18	7105.12	7104.12		
$v_3 + v_4 + 2v_5 + v_6, 4E$	6853.57	6868.19	6868.94			$v_4 + 3v_5 + v_6, 1A_1$	7099.42	7107.12	7106.53		
$2\nu_3 + 3\nu_5 + \nu_6, A_1$	6871.07	6869.12	6864.91			$v_4 + 3v_5 + v_6, 3E$	7101.00	7108.05	7109.54		
$2v_3 + v_4 + 2v_5, A_1$	6801.59	68/3.35	68/3./3			$2\nu_1 + \nu_5, E$	7105.89	7115.98	/116.0/	7115.499	tw
$v_4 + 2v_5 + 2v_6, 5E$	6875.46	6873.73	6874.88			$v_1 + v_2 + 2v_3, A_1$	7138.23	7116.19	7115.54		
$v_3 + v_4 + 3v_5, A_1$	7065.20	7118.46	7119.50			$v_1 + v_3 + v_5 + 2v_6, A_1$	7327.94	7354.58	7352.70		
$v_4 + 3v_5 + v_6, 4E$	/139.20	/122.32	/124.79			$v_1 + v_5 + 3v_6, 2E$	/352.43	/358.34	/357.22		
$v_4 + 3v_5 + v_6, 2A_1$	7140.30	7128.89	7128.78			$v_3 + 5v_5, 1E$	7351.34	7371.21	7370.73		
$v_3 + v_4 + 3v_5, 3E$	/108.54	/136.54	/13/.21			$v_3 + 3v_5, A_1$	/394.57	13/8.78	/3/9.81		
$v_4 + 3v_5 + v_6, 3A_1$	/146.19	/152.6/	/153.00			$v_1 + v_5 + 3v_6, 3E$	1357.95	/ 386.49	/ 584.59		
$v_3 + 4v_5 + v_6, 1E$	/135.21	/103.91	/104./0			$v_4 + 4v_5, 3E$	/403.9/	/ 59 5.84	7401.21		
$v_1 + v_2 + v_3 + v_6, E$	/183.55	/16/.53	/166.51			$3v_5 + v_6, 1A_1$	/386.70	/402.86	/401.31		
$v_4 + 3v_5 + v_6, 5E$	/144.37	/16/.82	/166.43			$v_1 + v_2 + v_3 + v_5, E$	/40/.25	/404.72	/403.96		
$v_3 + 4v_5 + v_6, 2E$	/154.98	/1/4.20	/1/3.40			$\nu_4 + 4\nu_5, \ 2A_1$	/404.45	/411.60	/411.11		
$v_1 + 3v_3 + v_5, E$	7201.22	/1/6.84	/1/5.17			$5v_5 + v_6, 1E$	/388.54	/414.55	/412.46		

Table 13. Continued.

Band	Centre [64]	Centre calc., I	Centre calc., II	Centre exp.	Ref.	Band	Centre [64]	Centre calc., I	Centre calc., II	exp.	Ref.
1	2	3	4	5	6	1	2	3	4	5	6
$v_1 + v_2 + 2v_6, A_1$	7193.63	7185.66	7184.59			$v_1 + v_2 + v_5 + v_6, A_1$	7436.64	7429.54	7429.26		
$2\nu_3 + 4\nu_5, 2E$	/1/0.3/	/18/.99	/18/.20			$5v_5 + v_6, 2E$	/428.08	/433.06	/431.91		
$4v_5 + 2v_6, 1A_1$	/151.20	/190.40	/189.00			$v_1 + v_2 + v_5 + v_6, E$	/438.48	7440.93	7440.08		
$v_1 + v_2 + 2v_6, E$	7102.04	7106 46	7106.10			$\nu_1 + \nu_4 + \nu_5 + \nu_6, 1E$	7522.41	7400.90	7450.09		
$4v_5 + 2v_6, 2A_1$	/182.19	/190.40	7105 (2)			$v_1 + v_4 + v_5 + v_6, 2E$	/333./3	/403.03	7403.00		
$v_3 + 4v_5 + v_6, IA_1$	/138.00	7102.00	7107.60			$5v_5 + v_6, 5E$	7403.01	7408.13	7403.33		
$4v_5 + 2v_6, 1E$	71(4.26)	/198.90	7200.00			$v_1 + 2v_3 + 2v_5, A_1$	7484.43	74/2.42	/408./8		
$4v_5 + 2v_6, 2E$	/104.20	7216.20	7209.90			$v_3 + 3v_5, 2E$	7481.02	7400.13	7402.22		
$v_2 + 4v_5, A_1$	7217.07	7210.29	7213.03			$v_1 + 2v_4, A_1$	7441.01	7406.05	7501.02		
$v_3 + 4v_5 + v_6, 2A_1$	7100.56	7225.02	7220.10			$v_1 + 2v_4, E$	7512.60	7505 17	7504.26		
$4\nu_5 + 2\nu_6, 5E$	7169.30	1255.92	7225.02			$5v_5 + v_6, 4E$	7506.04	7505.17	7501.02		
$v_2 + 4v_5, 1E$	7243.77	7229 42	7233.92			$v_1 + 2v_3 + 2v_5, E$	7300.04	/303.48	7522.10		
$v_1 + 2v_3 + v_4, E$	7202.38	7242 25	7240 76			$v_1 + v_3 + v_4 + v_5, A_1$	7524.14	7541 72	7520.77		
$4\nu_5 + 2\nu_6, 4E$	7259.27	7245.25	7240.70			$v_1 + v_4 + v_5 + v_6, A_1$	7525 71	7541.75	7541 20		
$v_1 + v_3 + v_4 + v_6, E$	1238.21	7240.82	7240.89			$v_1 + v_4 + v_5 + v_6, 5E$	/333./1	7547.20	7547.50		
$v_1 + 2v_3 + v_5 + v_6, A_1$	7225.24	7246.07	7247.39			$v_1 + v_3 + v_4 + v_5, E$	7521.00	7562.64	7550.09		
$v_3 + 4v_5 + v_6, 5E$	7252.34	7260.52	7205.15			$5v_5 + v_6, 2A_1$	7542.07	7575.40	7559.90		
$v_1 + 2v_2, A_1$	7232.40	7209.39	7270.40			$v_1 + v_3 + 2v_5 + v_6$, 1E	7562 74	7591.64	7590.95		
$4\nu_5 + 2\nu_6, 5E$	7245.54	7274.15	7290.62			$v_1 + v_3 + 2v_5 + v_6, 2E$	7586.26	7584 20	7501.05		
$v_1 + v_4 + 2v_6, 1E$	7200.10	7285.06	7283.83			$0\nu_5, 1A_1$	7566.28	7504.50	7508.02		
$v_1 + v_4 + 2v_6, 2E$	7294.04	7283.90	7203.03			$\nu_1 + 2\nu_5 + 2\nu_6, 1A_1$	7507.20	7600.38	7508 56		
$v_4 + 4v_5, 1L$	7250 73	7201.02	7201.64			$v_1 + 2v_5 + 2v_6, 2A_1$ $v_1 + v_2 + 2v_5 + v_6, 4$	7566 /3	7602.34	7600 10		
$v_1 + v_3 + v_4 + v_6, A_1$	7201 73	7291.92	7291.04			$v_1 + v_3 + 2v_5 + v_6, A_1$	7570.28	7602.25	7600.10		
$v_1 + v_4 + 2v_6, A_1$ $v_1 + 2v_1 + v_2 + v_1 = F$	7275 70	7292.01	7291.00			$\nu_1 + 2\nu_5 + 2\nu_6, 1E$	7607.07	7605.00	7602.36		
$v_1 + 2v_3 + v_5 + v_6, L$ $v_2 + 4v_2, 2E$	7308 61	7300.00	7208 54			$0\nu_5, 1L$ $\nu_1 \pm 2\nu_2 \pm 2\nu_2, 2F$	7587.80	7614 68	7613.22		
$v_2 + 4v_5, 2L$	7300.01	7300.09	7220.34			$\nu_1 + 2\nu_5 + 2\nu_6, 2E$	7604 58	7643 77	76/1 86		
$v_4 + 4v_5, 1A_1$ $v_4 + 4v_5, 2E$	7339.23	7326.12	7327.00			$v_1 + 2v_5 + 2v_6, 3E$ $v_1 + v_2 + 2v_6, 3E$	76/3 85	7645.77	7645.40		
$v_4 + +v_5, 2L$	7258.08	7320.12	7325.67			$v_1 + v_2 + 2v_5, A_1$	7665 47	7666.60	7666 10		
$4v_5 \pm 2v_6, 5A_1$ $v_1 \pm v_2 \pm 2v_4, 1F$	7230.00	7329.49	7329.17			$v_1 + v_2 + 2v_5, E$ 6 $v_2 - 2E$	7672.80	7668 10	7665 30		
$v_1 + v_3 + v_5 + 2v_6, 1E$ $v_1 + v_2 + v_2 + 2v_6, 2F$	73274.26	73/0.05	7330.25			$0v_5, 2E$ $v_5 \pm v_5 \pm 3v_5 = E$	7756.84	7676.20	7671.87		
$v_1 + v_3 + v_5 + 2v_6, 2E$ $v_1 + v_2 + v_1, F$	7345 46	7346 55	7345 20			$v_1 + v_3 + 3v_5, E$ $v_1 + v_2 + 2v_5, A$	7771 69	7762.08	7759.88		
$v_1 + v_2 + v_4, L$ $v_1 + v_2 + 3v_5 = 1F$	7330.10	7347.43	7347.07			$v_1 + v_4 + 2v_5, n_1$ $v_1 + v_2 + 2v_5, n_1$	7750.20	7768.93	7769 11		
$v_1 + v_5 + 3v_6, 1L$ $v_1 + v_2 + 3v_6, 4$	7328.26	7348 64	7347.71			$6v_{2}$ 24.	7780.86	7772.85	7769.67		
$v_1 + v_5 + 3v_6, A_1$ $v_1 + 3v_5 + v_6, A_1$	7799.45	7795.04	7794 42			$2v_{1} \pm v_{2} = 4$	7994 72	8004.98	8004 79		
$v_1 + v_5 + v_6, n_1$ $v_1 + v_2 + 2v_5, 2F$	7771.93	7802 74	7802.26			$2v_1 + v_2, n_1$ $v_1 + 4v_2, 1F$	8018 44	8021 56	8019 35		
$2v_1 + v_4 + 2v_5, 2L$ $2v_1 + 2v_2 = 4$.	7814 12	7823.21	7822.20			$v_1 + 4v_5, 12$ $v_2 + 4v_5, 2F$	8083.28	8083.67	8082 56		
$v_1 + 2v_3, n_1$ $v_2 + 3v_5 + v_5, 1F$	7801 29	7823.40	7822.05			$2v_1 + v_5, 2L$ $2v_2 + v_2 + v_5$	8091 50	8088.39	8087 11		
$v_1 + v_2 + 3v_5 + v_6, 1L$	7800.06	7835.76	7834 29			$2v_1 + v_3 + v_5, L$ $2v_1 + v_2 + F$	8111 80	8137.87	8136.45		
$v_1 + v_3 + 3v_5, A_1$ $v_1 + 3v_5 + v_6, 2F$	7840.83	7841.85	7841 72			$2v_1 + v_4, E$ $2v_1 + v_2 + v_4, A$	8141 36	8149 64	8149 39		
$v_1 + 3v_5 + v_6, 2E$ $v_1 + 3v_5 + v_6, 3E$	7846 35	7876 74	7874 98			$2v_1 + v_5 + v_6, 21_1$ $2v_1 + v_5 + v_6, E$	8143 21	8161 44	8159 37		
$2v_1 + 5v_5 + v_6, 5L$ $2v_1 + v_2 + v_5 - E$	7879.91	7880.87	7880 44			$2v_1 + v_5 + v_6, L$ $2v_1 + 2v_5 - A$	8336 47	8347.05	8346.88	8346 919	tw.
$2v_1 + v_3 + v_6, L$ $2v_1 + 2v_6, A_1$	7910 47	7921 17	7920.15			$2v_1 + 2v_5, T_1$ $2v_1 + 2v_5, F$	8358 08	8368.65	8367.05	0.510.717	<i>L 1V</i>
$2v_1 + 2v_6, x_1$ $2v_1 + 2v_6, E$	7923 48	7928 59	7927.66			$\frac{2\nu_1}{3\nu_1}$ $\frac{2\nu_5}{4}$	8605 28	8622.89	8622 78	8623 349	tw.
$v_1 + 4v_5 + 4$.	7996 83	7999 40	7999 17			501, 21	0000.20	0022.07	0022.70	0023.347	LVV
v1 + +v5, A1	1770.05	,,,,,,+0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								

Note: ^aSee footnote to Table 12.

numbers l_{λ} :

$$q_{\lambda}^{+}|\nu_{\lambda} l_{\lambda}\rangle = \left\{\frac{\nu-l}{2}\right\}^{1/2}|\nu_{\lambda}-1 l_{\lambda}+1\rangle$$
$$-\left\{\frac{\nu+l+2}{2}\right\}^{1/2}|\nu_{\lambda}+1 l_{\lambda}+1\rangle \quad (33)$$

and

$$q_{\lambda}^{-}|v_{\lambda} l_{\lambda}\rangle = -\left\{\frac{\nu+l}{2}\right\}^{1/2}|v_{\lambda}-1 l_{\lambda}-1\rangle -\left\{\frac{\nu-l+2}{2}\right\}^{1/2}|v_{\lambda}+1 l_{\lambda}-1\rangle \quad (34)$$

Parameter	Present work, I	Present work, II	[64]	[32]
$F_{11}/aJ Å^{-2}$	5.47384 ^a	5.47384 ^a	5.47384	5.47384 ^a
F_{22}/aJ	0.574225(638)	0.574203(613)	0.57770	0.578602
$F_{33}/aJ Å^{-2}$	5.374354(744)	5.400781(731)	5.37696	5.387874
$F_{34}/aJ Å^{-1}$	-0.16080(983)	-0.21057^{a}	-0.21057	-0.21057^{a}
F_{44}/aJ	0.531674(539)	0.532938(506)	0.53225	0.533740
N^{b}	124	124		
n ^b	64	63		
$d_{\rm rms}/{\rm cm}^{-1}$	0.73	0.75		

Table 14. F_{ij} parameters of the methane molecule.

Notes:^aConstrained to the value from [64].

^bN is the number of experimental band centres; n is the number of fitted parameters.

As a result of our analysis of experimental band centres a set of 64 parameters was obtained which are presented in column 2 of Table 14 and columns 2 and 5 of Table 15. Values in parenthesis are 1σ statistical confidence intervals. Columns 4 and 5 of Table 14 give, for comparison, the values of quadratic F_{ij} parameters obtained from *ab initio* calculations, [64], and from the fit of experimental band centres of the CH₂D₂ molecule, [32], respectively. One finds reasonable agreement between all sets of parameters.

The parameters obtained reproduce the experimental band centres used in the fit with the $d_{\rm rms} = 0.73$ cm⁻¹. In order to illustrate the accuracy of the results derived, column 3 of Tables 12 and 13 give the values of the band centres calculated with our parameters from Tables 14 and 15. One finds a good agreement between the experimental and calculated band centres. The columns 2 of Tables 12 and 13 present, for comparison, the values of the same band centres calculated with the parameters from [64].

As can be seen from Table 14, the values of the parameters F_{22} , F_{33} , and F_{44} obtained from the fit are close to the values of the corresponding parameters from [64] and [9]. On the other hand, larger differences arise for the values of the F_{34} parameter. To understand the origin of this inconsistency, we repeated the fit with a fixed value of the parameter F_{34} . The results of this second fit are very close to the results of the first fit (see column 3 of Table 14, columns 3 and 6 of Table 15, and column 4 of Tables 12 and 13). The $d_{\rm rms}$ increases only a little, to $0.75 \,{\rm cm}^{-1}$. Comparison of results of the first and the second fit shows, that the fit to just the frequencies in our experimental data is not able to determine the parameter F_{34} .

6. Discussion and conclusion

Using the strategy of the direct assignment of the J=0 states of excited vibrational levels [29,32,65] we have

thus been able to identify and precisely determine a large number of pure vibrational state energies for CH_3D extending to about 6300 cm^{-1} and for CHD_3 extending up to $8700 \,\mathrm{cm}^{-1}$. Essential to such an analysis are very high resolution spectra with reduced Doppler width taken at low temperatures of about 80 K and allowing for assignment of the low Jtransitions in these spectra. Besides applications in atmospheric and planetary science (particularly for the isotopomer CH₃D) these results open a window towards the complete nine-dimensional quantum dynamics of intramolecular vibrational motion and redistribution in the fundamental methane molecule. The present results are of sufficient accuracy to serve as benchmarks for further experimental and theoretical studies.

As one application of the present results we might compare with the results on the spectrum and femtosecond intramolecular vibrational redistribution by the strong Fermi-resonance within the CH-chromophore in CHD₃ [7,20,21,33,34,66]. Table 16 provides such a comparison for the lower polyads designated by the symbol N_i , where N is the polyad quantum number $(N = v_1 + v_5/2$ in the normal mode basis) and j gives a state index increasing with decreasing energy within each polyad. The polyads with A_1 symmetry have integer N, whereas polyads with E symmetry have halfodd integer N. One recognises a good agreement of the experimental level positions where overlap exists in Table 16. The differences between experiment and the effective hamiltonian fit as well as the three-dimensional vibrational variational calculations of [20] using 180 basis functions for the CH chromophore's stretching and bending levels remain modest and are of the expected magnitude for such model fits. This provides one confirmation for the validity of the time dependent wavepacket dynamics obtained from the variational calculations in the CH-chromophore subspace [19,33,34]. Table 16 indicates the obvious need to

CH ₃ D				CHD ₃		
1	2	3	4	5	6	7
Parameter	Present work, I	Present work, II	[64]	Present work, I	Present work, II	[64]
ω_1	3072.6833 ^a	3073.6784 ^a	3071.4	3133.8793 ^a	3136.1717 ^a	3130.5
ω_2	2289.9925 ^a	2288.7415 ^a	2285.2	2192.8606 ^a	2192.3649 ^a	2191.3
ω_3	1339.8435 ^a	1340.7082 ^a	1339.8	1026.1678 ^a	1026.0830 ^a	1025.4
ω_4	3160.6238 ^a	3163.8824 ^a	3156.8	2343.7880 ^a	2342.3602 ^a	2337.0
ω_5	1504.4874 ^a	1504.3008 ^a	1508.1	1318.6017 ^a	1319.0257 ^a	1321.4
ω_6	1188.8961 ^a	1188.2985 ^a	1188.1	1054.2383 ^a	1054.9672 ^a	1055.5
<i>x</i> ₁₁	-4.0633(818)	-5.3214(855)	-17.197	-58.7895(452)	-58.9936(486)	-59.221
x_{12}	-2.9308(787)	-2.5552(753)	-1.878	-2.4050(615)	-2.9045(640)	-2.204
x ₁₃	5.6371(651)	488461(664)	-0.981	-9.0383(489)	-9.1934(502)	-9.731
x_{14}	-99.5704(782)	-99.0218(766)	-72.771	2.7796(381)	2.3367(363)	2.184
<i>x</i> ₁₅	-9.5368(521)	-9.1793(542)	-19.016	-21.2261(337)	-21.3667(396)	-21.111
<i>x</i> ₁₆	-7.4372(527)	-7.2330(570)	-5.612	-0.7920(333)	-1.4056(347)	-0.309
<i>x</i> ₂₂	-28.0925(886)	-27.9443(898)	-31.167	0.7911(316)	1.1391(307)	-8.826
<i>x</i> ₂₃	-7.3640(473)	-7.3118(433)	-6.739	3.1231(796)	3.0935(757)	15.727
<i>x</i> ₂₄	-7.8757(779)	-7.7295(758)	1.639	-42.9968(658)	-42.7271(649)	-37.352
<i>x</i> ₂₅	-3.6385(505)	-3.5220(550)	-3.331	-5.1721(857)	-5.2201(826)	-4.017
<i>x</i> ₂₆	-17.8095(565)	-17.5869(550)	-22.266	-2.3816(904)	-2.4885(875)	4.674
<i>x</i> ₃₃	-7.6676(813)	-7.7593(809)	-6.802	-6.1956(351)	-6.1883(368)	-7.230
<i>x</i> ₃₄	-10.3564(459)	-10.5173(490)	-9.440	-7.0455(441)	-6.9765(464)	-8.449
<i>x</i> ₃₅	-2.8660(632)	-2.9084(618)	-2.033	-2.9438(832)	-2.7954(798)	-1.029
<i>x</i> ₃₆	-3.0865(617)	-3.0729(622)	-1.091	3.5503(873)	3.4450(824)	1.638
<i>x</i> ₄₄	-31.8247(753)	-32.4024(774)	-31.611	-16.6579(791)	-16.3487(761)	-18.601
<i>x</i> ₄₅	-8.1681(558)	-8.3727(578)	-14.611	-8.4413(424)	-8.4541(409)	-7.195
<i>x</i> ₄₆	-9.3785(841)	-9.3041(850)	-7.686	-11.2718(978)	-11.0441(975)	-8.402
<i>x</i> ₅₅	-4.4819(536)	-4.4168(547)	-1.874	-4.5233(368)	-4.5516(401)	-4.604
<i>x</i> ₅₆	-5.1763(831)	-5.0898(800)	-4.068	5.1780(380)	4.9188(415)	0.055
x_{66}	0.261 ^b	0.261 ^b	0.261	-5.2427(860)	-5.3057(865)	-5.500
Y666	-0.2239(789)	-0.2166(807)				
g_{44}	27.0956(326)	28.5389(352)	12.636	8.5470(662)	8.5598(640)	8.252
g_{45}	-7.0826(727)	-7.0618(759)	-1.721	3.6205(449)	3.5837(422)	-0.060
g_{46}	3.1700(852)	3.1598(873)	-0.230	1.1200(874)	1.1429(854)	-0.729
g_{55}	2.4586(317)	2.3804(385)	0.384	5.1145(384)	5.0951(373)	5.403
g_{56}	-4.6803(674)	-4.6841(713)	-5.056	6.1304(751)	5.8940(730)	0.921
g_{66}	1.4987(830)	1.5158(789)	0.645	2.8833(910)	2.8714(889)	3.251
k ₁₅₅	-56.3671(349)	-56.6885(342)		30.0°	30.0°	
k ₃₄₅				-70.8100(638)	-70.6261(671)	
$F_{11,44}$	-70.1382(896)	-74.8129(912)				
F _{33,56}	15.7181(785)	15.3674(714)				
F _{33,66}				-18.0922(812)	-17.9093(824)	
$F_{1,333}$				8.2431(786)	8.1787(757)	

Table 15. Vibrational spectroscopic parameters of the CH₃D and CHD₃ molecules (in cm⁻¹).

Notes:^aWas not fitted, but calculated on the basis of the F_{ij} parameters given in columns 2 and 3 of Table 14. ^bWas constrained to the value from [64].

"Was constrained to the value from [20], obtained including intensity information.

extend the present analyses to higher excitations, with currently available data from our cold samples extending to about $12,000 \text{ cm}^{-1}$. Indeed, our analysis of 1988 extended to about $19,000 \text{ cm}^{-1}$ using also further results from the literature [67]–[74] (see also [4–9,19,33,66,75,76]).

While the present analysis confirms the results on the quantum dynamics in the three-dimensional subspace of the CH-chromophore, our current analyses extend well beyond this by including excitations of all vibrations in the full nine-dimensional coordinate space of normal modes. They thus will allow analyses of intramolecular vibrational redistribution to non-CH chromophore modes, which is generally expected on longer time scales than the 100 fs times for intrachromophore redistribution.

Table 16 illustrates a further important aspect. The approximate zero order assignments of the vibrational

Table 16. Results for CH-chromophore polyad states in CHD₃ (all term values $\tilde{\nu}/cm^{-1}$).

N_j	Exp. from Table 13, this work	Calc. I from table 13, this work	Exp. ref. [20]	Theory \tilde{v}_{var} ref. [20]
$(1/2)_1$	1292.500	1292.12	1292.499	1292.63
12	2564.676	2564.63	2564.67	2568.42
11	2992.786	2992.73	2992.75	2990.85
$(3/2)_2$ $(3/2)_1$	3838.040 4261.662	3838.48 4261.91	4262.1	3839.96 4261.40
2_{3} 2_{2} 2_{1}		5092.73 5514.98 5865.64	5515.7 5864.98	5092.15 5515.96 5865.47
$(5/2)_3$ $(5/2)_2$ $(5/2)_1$	 7115.499	-	 7115.48	6346.88 6766.40 7113.98
$ \begin{array}{c} 3_4 \\ 3_3 \\ 3_2 \\ 3_1 \end{array} $	 8346.919 8623.349	7584.30 7999.40 8347.05 8622.89	8005.4 8347.1 8623.32	7582.97 8000.91 8347.25 8624.19

levels as given in columns 1 of Tables 12 and 13 have, of course, only a very rough, qualitative meaning. Only the symmetry assignments and band centre wavenumbers have a real significance. Similarly, the parameters of the effective hamiltonians used in the fits (Tables 14 and 15) have significance only in the framework of a given effective fit and should not be considered to be simply related to the parameters of the potential hypersurface (see discussion in [20,77]–[79]). Finally, the effective Hamiltonian used may not necessarily lead to very accurate level predictions, if far removed from the fitted range. This deserves a further test.

An aspect not analysed here in detail concerns the absorption intensities and dipole function related among other things to the important question of the dipole moment direction in CH₃D and CD₃H [4,80]. Analyses of our current results will provide further important experimental information on the multidimensional dipole function in these isotopomers [6,9,19]. The relation to the quantum dynamics in excited electronic states of methane [17] and in the limit of electronic excitation the Rydberg states and the cations of methane isotopomers [81] deserves mention as well as the use of understanding the true nature of the multidimensional coupled vibrational states in methane isotopomers reacting with reactive atoms [12]-[15]. Particularly for the isotopomer CH₃D our accurate experimental results and their analysis should prove useful in understanding features in planetary atmospheres including the moon Titan [82].

Acknowledgements

Our work is supported financially by ETH Zürich and the Schweizerischer Nationalfonds. Part of the work benefited from the joint PICS grant of CNRS (France) and RFBR (Russia), 4221N0000211752a and from the Russian Science and Innovations Federal Agency under contract No. 02.740.11.0238. We gratefully acknowledge discussions with Tucker Carrington, Veronika Horká Zelenková, Roberto Marquardt, Hans Martin Niederer, and Georg Seyfang. We enjoyed many years of fruitful scientific exchange and friendship with Richard N. Zare to whom this paper is thus justly dedicated.

References

- [1] J.H. van't Hoff, Vorlesungen über theoretische und physikalische Chemie (Vieweg, Braunschweig, 1898).
- [2] L. Pauling, *The Nature of the Chemical Bond*, 2nd ed. (Oxford University Press, London, 1940).
- [3] R.N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988).
- [4] H. Hollenstein, R. Marquardt, M. Quack and M.A. Suhm, J. Chem. Phys. 101 (5), 3588 (1994).
- [5] H. Hollenstein, R. Marquardt, M. Quack and M.A. Suhm, Ber. Bunsenges. Phys. Chem. 99 (3), 275 (1995).
- [6] R. Marquardt and M. Quack, J. Chem. Phys. 109 (24), 10628 (1998).
- [7] S.D. Peyerimhoff, M. Lewerenz and M. Quack, Chem. Phys. Lett. **109** (6), 563 (1984).
- [8] D.W. Schwenke, Spectrochim. Acta A 58 (4), 849 (2002).
- [9] R. Marquardt and M. Quack, J. Phys. Chem. A 108 (15), 3166 (2004).
- [10] M. Quack and J. Troe, Ber. Bunsen-Ges. Phys. Chem. 81, 329 (1977).
- [11] M. Quack, J. Phys. Chem. 83 (1), 150 (1979).
- [12] J.P. Camden, H.A. Bechtel, D.J.A. Brown and R.N. Zare, J. Chem. Phys. **124** (3), 034311 (2006).
- [13] W.F. Hu, G. Lendvay, D. Troya, G.C. Schatz, J.P. Camden, H.A. Bechtel, D.J.A. Brown, M.R. Martin and R.N. Zare, J. Phys. Chem. A 110 (9), 3017 (2006).
- [14] J.P. Camden, H.A. Bechtel, D.J.A. Brown, M.R. Martin, R.N. Zare, W.F. Hu, G. Lendvay, D. Troya and G.C. Schatz, J. Am. Chem. Soc. 127 (34), 11898 (2005).
- [15] J.P. Camden, W.F. Hu, H.A. Bechtel, D.J.A. Brown, M.R. Martin, R.N. Zare, G. Lendvay, D. Troya and G.C. Schatz, J. Phys. Chem. A **110** (2), 677 (2006).
- [16] M. Quack, Angew. Chem. Int. Ed. (Engl.) 28 (5), 571 (1989).
- [17] M.J.M. Pepper, I. Shavitt, P.v. Ragué Schleyer, M.N. Glukhovtsev, R. Janoschek and M. Quack, J. Comput. Chem. 16 (2), 207 (1995).
- [18] A. Bakasov, T.K. Ha and M. Quack, J. Chem. Phys. 109 (17), 7263 (1998).

- [19] R. Marquardt, M. Quack and I. Thanopulos, J. Phys. Chem. A 104 (26), 6129 (2000).
- [20] M. Lewerenz and M. Quack, J. Chem. Phys. 88 (9), 5408 (1988).
- [21] T. Carrington, L. Halonen and M. Quack, Chem. Phys. Lett. **140** (5), 512 (1987).
- [22] X.G. Wang and T. Carrington, J. Chem. Phys. 118 (14), 6260 (2003).
- [23] X.G. Wang and T. Carrington, J. Chem. Phys. 119 (1), 94 (2003).
- [24] X.G. Wang and T. Carrington, J. Chem. Phys. 119 (1), 101 (2003).
- [25] H.G. Yu, J. Chem. Phys. **121** (13), 6334 (2004).
- [26] S. Albert, S. Bauerecker, V. Boudon, L.R. Brown, J.-P. Champion, M. Loëte, A. Nikitin and M. Quack, Chem. Phys. 356 (1–3), 131 (2009).
- [27] O.N. Ulenikov, E.S. Bekhtereva, S. Albert, S. Bauerecker, H.M. Niederer, M. Quack, in preparation.
- [28] H.M. Niederer, S. Albert, S. Bauerecker, V. Boudon, J.P. Champion and M. Quack, Chimia **62** (4), 273 (2008).
- [29] M. Hippler and M. Quack, J. Chem. Phys. 116 (14), 6045 (2002).
- [30] O.N. Ulenikov, E.S. Bekhtereva, S.V. Grebneva, H. Hollenstein and M. Quack, Phys. Chem. Chem. Phys. 7 (6), 1142 (2005).
- [31] O.N. Ulenikov, E.S. Bekhtereva, S.V. Grebneva, H. Hollenstein and M. Quack, Mol. Phys. 104, 3371 (2006).
- [32] O.N. Ulenikov, E.S. Bekhtereva, S. Albert, S. Bauerecker, H. Hollenstein and M. Quack, J. Phys. Chem. A 113 (10), 2218 (2009).
- [33] R. Marquardt and M. Quack, J. Chem. Phys. 95 (7), 4854 (1991).
- [34] R. Marquardt and M. Quack, in *Encyclopedia of Chemical Physics and Physical Chemistry, Vol. 1 (Fundamentals)*, edited by J.H. Moore and N. Spencer (IOP, Bristol, 2001), pp. 897–936.
- [35] H.R. Dübal and M. Quack, J. Chem. Phys. 81 (9), 3779 (1984).
- [36] J. Segall, R.N. Zare, H.R. Dübal, M. Lewerenz and M. Quack, J. Chem. Phys. 86 (2), 634 (1987).
- [37] A. Amrein, M. Quack and U. Schmitt, J. Phys. Chem. 92 (19), 5455 (1988).
- [38] O.N. Ulenikov, E.S. Bekhtereva, A.S. Bulavenkova, S. Bauerecker, H. Hollenstein and M. Quack, in *Proceedings Nineteenth Colloquium on High Resolution Molecular Spectroscopy, Salamanca, Spain*, 11–16 September 2005, edited by D. Bermejo, J.L. Doménech, and M.A. Moreno (Sociedad Española de Óptica, Salamanca, 2005), paper N10.
- [39] E.S. Bekhtereva, O.N. Ulenikov, E.A. Sinitsin, S. Albert, S. Bauerecker, H. Hollenstein and M. Quack, in *Proceedings of the 20th Colloquium on High-Resolution Molecular Spectroscopy*, edited by V. Boudon (Université de Dijon, Dijon, 2007), paper J 30, p. 268.

- [40] A.V. Nikitin, J.P. Champion and L.R. Brown, J. Mol. Spectrosc. 240 (1), 14 (2006).
- [41] S. Albert, K.K. Albert and M. Quack, in *Trends in Optics and Photonics (TOPS)* (Optical Society of America, Washington, DC, 2003), Vol. 84, pp. 177–180.
- [42] S. Albert and M. Quack, Chem. Phys. Chem. 8 (9), 1271 (2007).
- [43] S. Albert, S. Bauerecker, M. Quack and A. Steinlin, Mol. Phys. 105 (5), 541 (2007).
- [44] S. Bauerecker, M. Taraschewski, C. Weitkamp and H.K. Cammenga, Rev. Sci. Instrum. 72 (10), 3946 (2001).
- [45] S. Bauerecker, Phys. Rev. Lett. 94 (3), 033404 (2005).
- [46] S. Bauerecker, F. Taucher, C. Weitkamp, W. Michaelis and H.K. Cammenga, J. Mol. Struct. 348, 237 (1995).
- [47] A.G. Maki and J.S. Wells, NIST Spec. Publ. 821 (1991).
- [48] L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, Flaud, R.R. Gamache, Α. Goldman. J.M. J.M. Hartmann. K.W. Jucks. A.G. Maki. J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi and G. Wagner, J. Quant. Spectrosc. Radiat. Transfer 96 (2), 139 (2005).
- [49] M. Quack, Mol. Phys. 34 (2), 477 (1977).
- [50] M. Quack, in Symmetries and Properties of Non-rigid Molecules: A Comprehensive Survey, edited by J. Maruani and J. Serre, in series Studies in Physical and Theoretical Chemistry, Vol. 23 (Elsevier, Amsterdam, 1983) pp. 355–378.
- [51] E.B. Wilson, J.C. Decius and P.C. Cross, *Molecular Vibrations the Theory of Infrared and Raman Vibrational Spectra* (McGraw-Hill, New York, 1955).
- [52] H.C. Longuet-Higgins, Mol. Phys. 6 (5), 445 (1963).
- [53] E.R. Cohen, T. Cvitas, J.G. Frey, B. Holmström, K. Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stohner, H.L. Strauss, M. Takami and A.J. Thor, *Quantities, Units and Symbols in Physical Chemistry*, 3rd ed., second corrected printing (IUPAC and Royal Society of Chemistry, RSC Publishing, Cambridge, 2008).
- [54] O.N. Ulenikov, G.A. Onopenko, N.E. Tyabaeva, J. Schroderus and S. Alanko, J. Mol. Spectrosc. 200 (1), 1 (2000).
- [55] O.N. Ulenikov, G.A. Onopenko, N.E. Tyabaeva, S. Alanko, M. Koivusaari and R. Anttila, J. Mol. Spectrosc. 186 (2), 293 (1997).
- [56] O.N. Ulenikov, G.A. Onopenko, N.E. Tyabaeva, J. Schroderus, S. Alanko and M. Koivusaari, J. Mol. Struct. 517–518, 25 (2000).
- [57] E.P. Wigner, *Quantum Theory of Angular Momentum* (Academic Press, New York, 1965).
- [58] V.N. Saveliev and O.N. Ulenikov, J. Phys. B At. Mol. Opt. Phys. 20 (1), 67 (1987).
- [59] Y.S. Makushin, O.N. Ulenikov and A.E. Cheglokov, Symmetry and Its Applications to the Problems of

Molecular Vibration–Rotation Spectroscopy, Parts I and II (in Russian) (Tomsk State University Press, Tomsk, 1990).

- [60] D.A. Varshalovitch, A.N. Moskalev and V.K. Khersonsky, *Quantum Theory of Angular Momentum* (Nauka, Leningrad, 1975).
- [61] U. Fano and G. Racah, *Irreducible Tensorial Sets* (Academic Press, New York, 1959).
- [62] O.N. Ulenikov, G.A. Onopenko, N.E. Tyabaeva, J. Schroderus and S. Alanko, J. Mol. Spectrosc. 193 (2), 249 (1999).
- [63] O.N. Ulenikov, G.A. Onopenko, N.E. Tyabaeva, S. Alanko, M. Koivusaari and R. Anttila, J. Mol. Spectrosc. 186 (2), 230 (1997).
- [64] T.J. Lee, J.M.L. Martin and P.R. Taylor, J. Chem. Phys. 102 (1), 254 (1995).
- [65] M. Quack, Chimia 57 (4), 147 (2003).
- [66] T.K. Ha, M. Lewerenz, R. Marquardt and M. Quack, J. Chem. Phys. 93 (10), 7097 (1990).
- [67] L.F.H. Bovey, J. Chem. Phys. 21 (5), 830 (1953).
- [68] J.K. Wilmshurst and H.J. Bernstein, Can. J. Chem. Rev. Can. Chim. 35 (3), 226 (1957).
- [69] T.A. Wiggins, E.R. Shull, J.M. Bennett and D.H. Rank, J. Chem. Phys. 21 (11), 1940 (1953).
- [70] G.J. Scherer, K.K. Lehmann and W. Klemperer, J. Chem. Phys. 81 (12), 5319 (1984).
- [71] G.A. Voth, R.A. Marcus and A.H. Zewail, J. Chem. Phys. 81 (12), 5494 (1984).
- [72] J.W. Perry, D.J. Moll, A. Kuppermann and A.H. Zewail, J. Chem. Phys. 82 (3), 1195 (1985).
- [73] A. Campargue and F. Stoeckel, J. Chem. Phys. 85 (3), 1220 (1986).
- [74] A. Campargue, F. Stoeckel, M. Chenevier and H. Ben Kraiem, J. Chem. Phys. 87 (10), 5598 (1987).
- [75] D. Permogorov, A. Campargue, M. Chenevier and H.B. Kraiem, J. Mol. Spectrosc. 170 (1), 10 (1995).
- [76] C. Domingo, A. Delolmo, R. Escribano,
 D. Bermejo and J.M. Orza, J. Chem. Phys. 96 (2), 972 (1992).

- [77] M. Quack, Annu. Rev. Phys. Chem. 41, 839 (1990).
- [78] A. Beil, D. Luckhaus, M. Quack and J. Stohner, Ber. Bunsenges. Phys. Chem. 101 (3), 311 (1997).
- [79] D. Luckhaus and M. Quack, Chem. Phys. Lett. 205 (2–3), 277 (1993).
- [80] R. Signorell, R. Marquardt, M. Quack and M.A. Suhm, Mol. Phys. 89 (1), 297 (1996).
- [81] H.J. Wörner and F. Merkt, Angew. Chem.-Int. Edit. 48 (35), 6404 (2009).
- [82] D.E. Jennings, P.N. Romani, G.L. Bjoraker, P.V. Sada, C.A. Nixon, A.W. Lunsford, R.J. Boyle, B.E. Hesman and G.H. McCabe, J. Phys. Chem. A **113** (42), 11101 (2009).
- [83] O.N. Ulenikov, A.B. Malikova, S. Alanko, M. Koivusaari and R. Anttila, J. Mol. Spectrosc. 179, 175 (1996).

Appendix 1. Tables of line wavenumbers

The appendix contains tables of observed transition wavenumbers for more than 9000 lines for CH_3D and CD_3H with their preliminary assignments as used for the final assignment of transitions leading to the J=0 levels of excited vibrational states. The Appendix can be viewed online. These tables contain as Table A the results for CH_3D and as Table B the results for CHD_3 . These tables have nine columns with the following content:

- (I) Observed wavenumbers, $v^{exp.}$ (in cm⁻¹).
- (II, III) Quantum numbers of the upper ro-vibrational state, J', K'.
- (V, VI) Quantum numbers of the lower ro-vibrational state, J'', K''.
- (IV, VII) Symmetry of the upper and lower ro-vibrational states, respectively. Index 0 corresponds to A_1 symmetry; indices 1 and 2 correspond to A_2 and *E*, respectively; index '*a*' corresponds to a pair of degenerate A_1/A_2 ro-vibrational states (not split under the conditions of our experiment). (VIII) Band.
- (IX) Symmetry of the vibrational state.