Введение в биохимию. Аминокислоты. Пептиды

Лекция 1

Автор Е.А. Кузнецова, 2020 Ред. О.В.Стронин, 2024

Томск, 2020

Структура курса:

- Лекции 32 ч
- Практика 16 ч
- Лабораторные работы 40 ч

Всего - 216 ч

Рекомендуемая литература:

- 1. Нельсон Д.Л., Кокс М.М. Основы биохимии Ленинджера. М., Бином, 2011/2014, тт. 1, 2.
- 2. Ленинджер А. Основы биохимии. тт. 1-3, М., Мир, 1985.
- 3. Биохимия. Учебник для ВУЗов под ред. Е.С. Северина, М., ГЭОТАР-Медиа, 2005.
- 4. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М., Медицина, 1998.
- 5. Эллиот В., Эллиот Д. Биохимия и молекулярная биология. М., МАИК Наука/Интерпериодика, 2002.
- 6. Кольман Я., Рем К.-Г. Наглядная биохимия. М., Мир, 2000.

План:

- 1. Биохимия, определение, классификация.
- Биомолекулы. Определение, функции, классификация.
- 3. Аминокислоты. Строение, классификация, физико-химические свойства.
- 4. Пептиды. Особенности образования и строения пептидной связи.

Биологическая химия - это наука о химическом составе живой материи и химических процессах, лежащих в их основе.

Биохимия

Статическая (структурная) биохимия

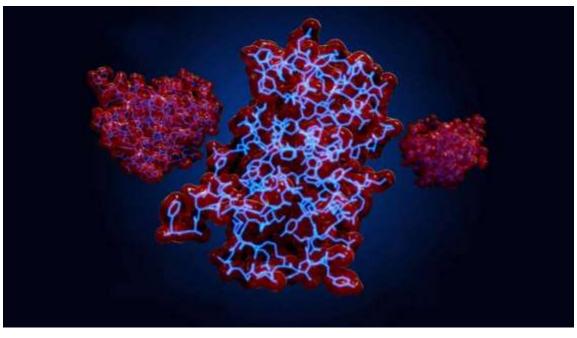
• Изучает химический состав живых организмов и структуру входящих в них веществ

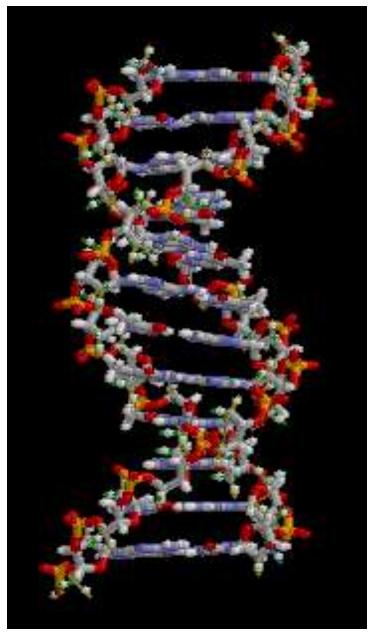
Метаболическая (динамическая) биохимия

 Изучает обмен веществ и энергии в живых организмах

Функциональная биохимия

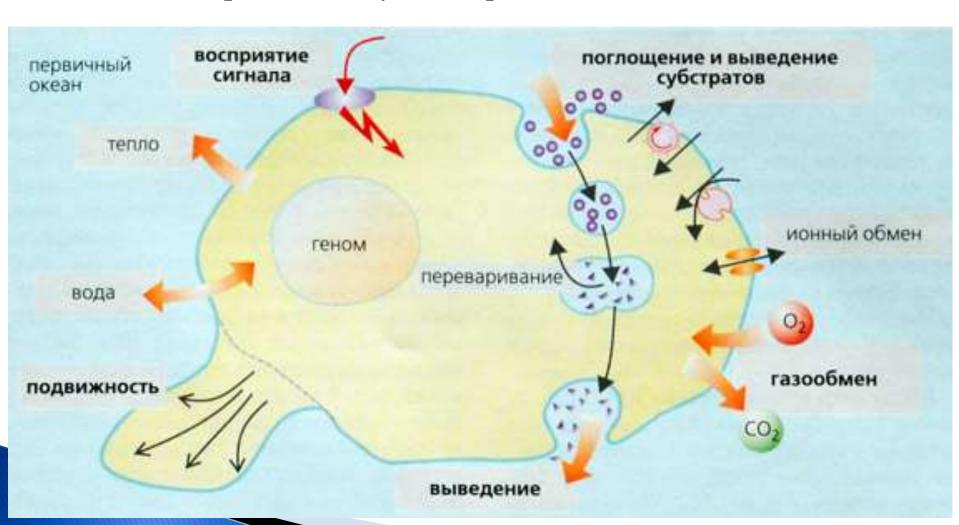
• Изучает биохимические реакции, лежащие в основе физиологических функций

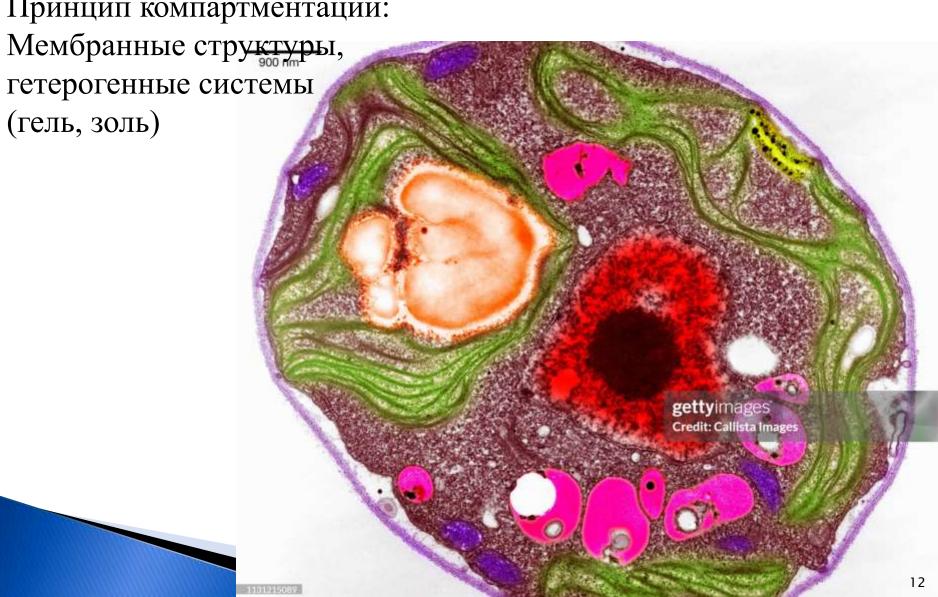

Биохимия


Классификация по объекту исследования:

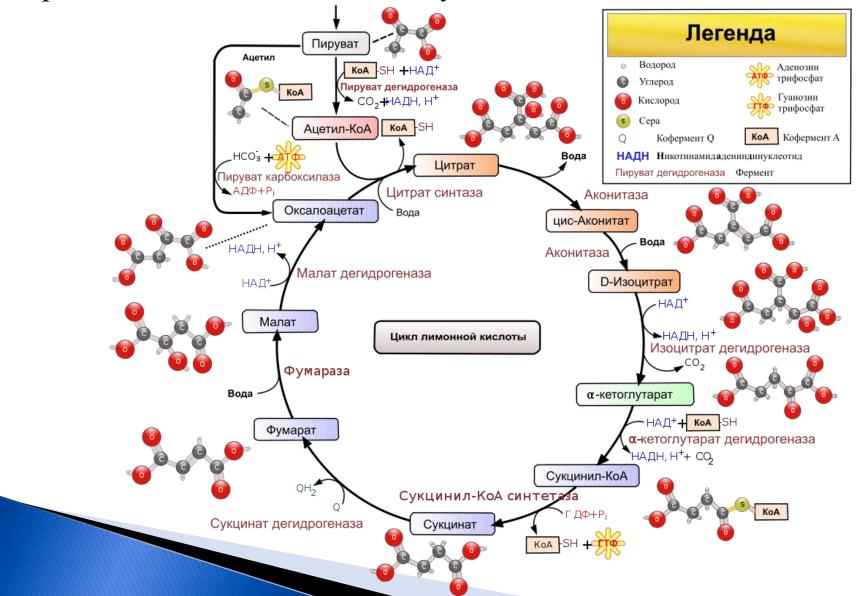
- Общая биохимия;
- ◆Биохимия животных организмов;
- ◆Биохимия растений, и т.д.

Важнейшая роль биополимеров.

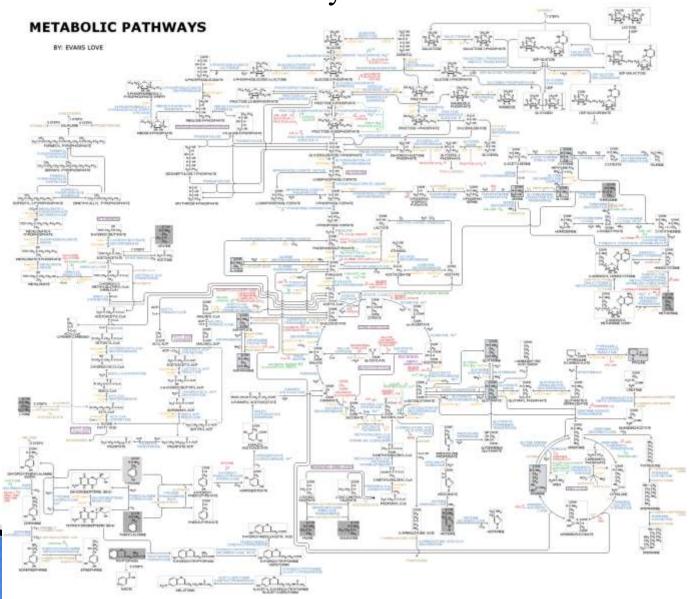



Ферментативный катализ.

Реакции и процессы идут в открытой системе живой клетки.



Принцип компартментации:



химии.

Сопряженные метаболические пути

Сопряженные метаболические пути

- 1. Важнейшая роль биополимеров
- 2. Ферментативный катализ
- 3. Реакции и процессы идут в открытой системе живой клетки
- 4. Принцип компартментации
- 5. Сопряженные метаболические пути

Биомолекулы

органические соединения, входящие в состав организмов, образующие клеточные структуры участвующие И биохимических реакциях обмена веществ. Мономеры: **Аминокислоты** Моносахариды Нуклеотиды Олигомеры: Биополимеры, Олигопептиды Олигосахариды Мономеры, Олигомеры, Олигонуклеотиды Полимеры: Полипептиды, белки Биомолекулы Полисахариды Нуклеиновые кислоты Липиды, фосфолипиды, гликолипиды, Малые молекулы глицеролипиды, витамины, гормоны, нейромедиаторы

Биомолекулы

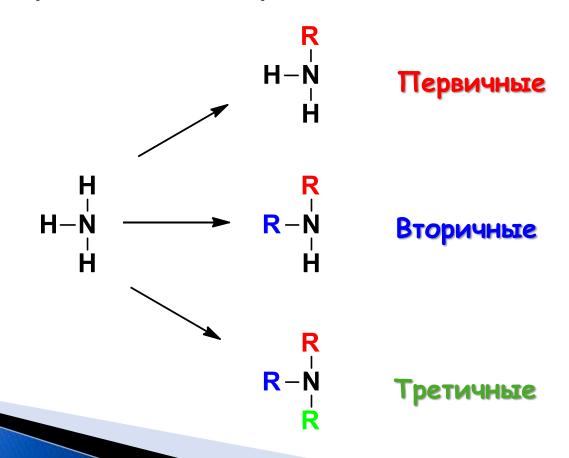
	Углеводы	Белки	Нуклеиновы е кислоты	Прочие
Полимеры	Полисахарид ы	Полипептид ы	Полинуклеот иды	
Олигомер ы	Дисахариды, олигосахари ды	Олигопепти ды	Олигонуклео тиды	
Малые молекулы	Моносахари ды	Аминокисл оты (α,L- AA)	Нуклеотиды (Пурины, пиримидины)	Липиды, ЖК, орг. кислоты, спирты, гетероцик л. и т.д.

Биомолекулы. Сложные структуры, надмолекулярные комплексы

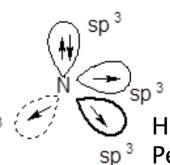
- Гликопротеины (гликозилированные белки)
- Липопротеины
- Металлопротеины (ферменты, гемоглобин)
- Гликолипиды, липополисахариды (бакт ЛПС)
- Нуклеопротеиновые комплексы (рибосома)

Функции Роль биомолекул

Биомолекулы участвуют:


в реакциях обмена веществ в роли промежуточных продуктов (метаболитов: аминокислоты, моносахариды, моноглицериды).

в образовании сложных молекул (белков, нуклеиновых кислот, липидов, полисахаридов) или биологических структур (мембран, рибосом, ядерного хроматина и др.).


в регуляции биохимических процессов и функций отдельных клеток и организма в целом (витамины, гормоны, циклические нуклеотиды цАМФ, цГМФ и др.).

Амины

класс органических соединений, представляющий собой органические производные аммиака, в котором один, два или три атома водорода замещены органическими радикалами.

Электронное строение аминов

Внешняя электронная оболочка – 3 неспаренных е, гибридные орбитали

Основные свойства аминов

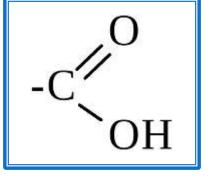
Неподеленная пара е -> основание Льюиса Реакции с кислотами по донорно-акцепторному механизму

$$H_3C-NH_2 + H-C1 \longrightarrow [H_3C-NH_3] \stackrel{\ominus}{C1}$$

хлорид метиламмония

Нуклеофильные свойства аминов

Реакции алкилирования

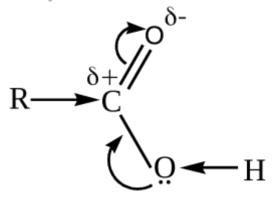

$$R - NH_{2} + CH_{3} \longrightarrow \begin{bmatrix} R-NH_{2}-CH_{3} \end{bmatrix} \stackrel{\ominus}{I}$$

$$R - NH_{2}-CH_{3} \stackrel{\ominus}{I} + NaOH \longrightarrow R-NH-CH_{3} + NaI + H_{2}O$$

Карбоновые кислоты

органические соединения, содержащие одну

или несколько карбоксильных групп.



Электронное строение карбоновых кислот

Кислотные свойства карбоновых кислот

$$R-C \xrightarrow{O} \frac{\text{NaOH}}{\text{OH}} \xrightarrow{R-C \xrightarrow{O}} + H_2O$$

$$R-C \xrightarrow{O} R-C \xrightarrow{NaHCO_3} R-C \xrightarrow{O} CO_2 + H_2O$$

Реакции нуклеофильного замещения гидроксильной группы в карбоновых кислотах

$$R-C' \xrightarrow{\ddot{N}H_3} R-C' \xrightarrow{\oplus} \xrightarrow{\otimes} R-C' \xrightarrow{+} H_2O$$

$$R_1-C' \xrightarrow{\Delta} R_1-C' \xrightarrow{\Delta} R_1-C' \xrightarrow{\Lambda} H_2O$$

$$R_1-C' \xrightarrow{\Delta} R_1-C' \xrightarrow{\Lambda} R_1-C' \xrightarrow{\Lambda} H_2O$$

Аминокислоты

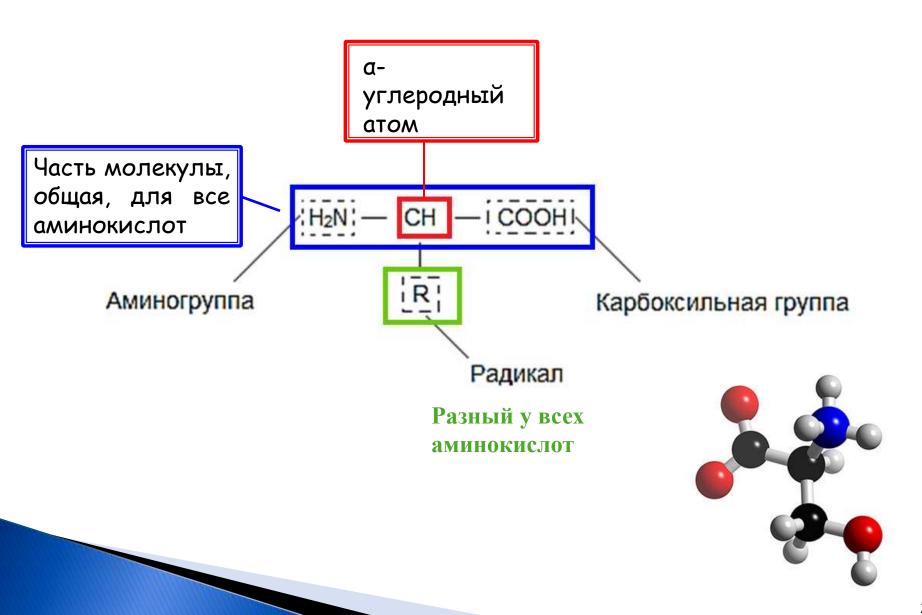
гетерофункциональные органические соединения, содержащие амино- (NH_2) и карбоксильную (-COOH) группы.

По расположению аминогруппы в цепи:

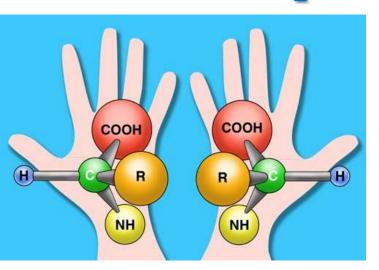
$$\begin{array}{ccc} \alpha & O \\ H_2N-CH-C-OH \\ CH_3 \end{array}$$

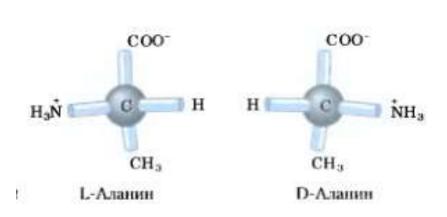

$$H_2N-H_2C+CH_2$$

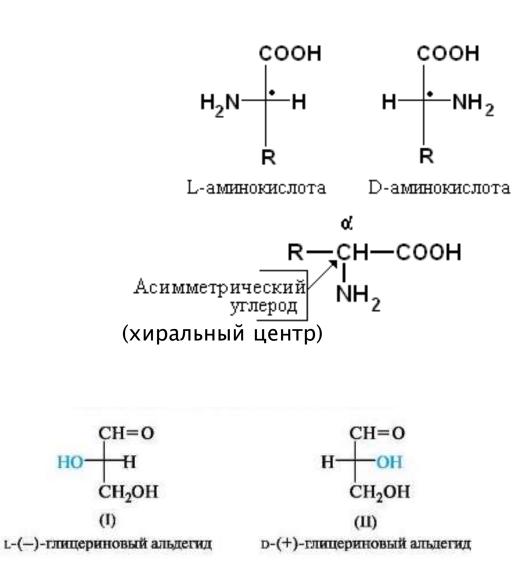
 α -аминокислота β -аминокислота ω -аминокислота


По участию аминокислот в синтезе белка

протеиногенные


непротеиногенные




В состав белков входят а-аминокислоты

Стереохимия аминокислот

Классификация а-аминокислот по строению радикала

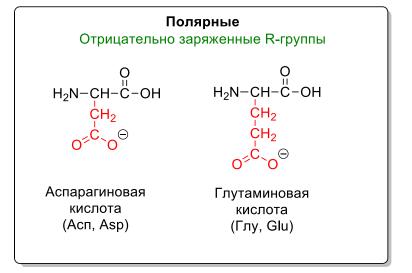
Неполярные

Алифатические R-группы

Триптофан (Тир, Тгр)

Неполярные

Ароматические R-группы


$$H_2N-CH-C-OH$$
 $H_2N-CH-C-OH$
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2

енилаланин (Фен, Phe) Тирозин (Тир, Tyr)

Классификация а-аминокислот по строению радикала

Полярные Незаряженные R-группы
$$O_{L_2}^{O} = O_{L_2}^{O} = O_{L_2}^{O$$

Кислотно-основные свойства аминокислот

Изоэлектрическая точка аминокислоты (рI)

– это такое значение pH раствора, при котором преобладающей формой будет биполярный ион аминокислоты.

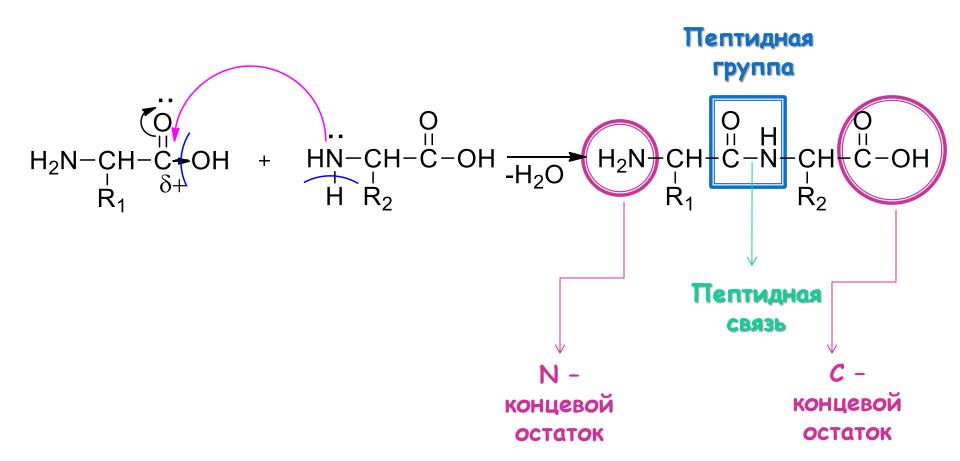
Кислотно-основные свойства аминокислот

pΙ КИСЛЫХ аминокислот $pI_{\Gamma_{J}}$ 3,2, $pI_{AC\Pi}$

$$_{H_3N-CH-C-O}^{\oplus}$$
 $_{H_3N-CH-C-O}^{+H^+}$ $_{H_3N-CH-C-O}^{\oplus}$ $_{H$

рІ большинства (Фен) до 6,3 (Про).

Цвиттер-ион pI при более низком pH Анионная форма pH~7.4


$$\stackrel{\oplus}{\text{H}_3}\text{N-CH-C-O} \stackrel{-\text{H}^+}{\underset{\text{I} \oplus}{\text{NH}_3}} + \text{H}^+ \stackrel{\oplus}{\underset{\text{NH}_2}{\text{NH}_2}} \stackrel{\ominus}{\underset{\text{NH}_2}{\text{NH}_2}} \stackrel{\text{PI}}{\underset{\text{O}}{\text{O}}} \stackrel{\text{OCHOBHЫX}}{\underset{\text{аминокислот}}{\text{аминокислот}} - \text{pI}_{\text{Гис}}$$

$$\oplus$$
 $H_3N-CH-C-O$ Z

Катионная форма $pH \sim 7.4$

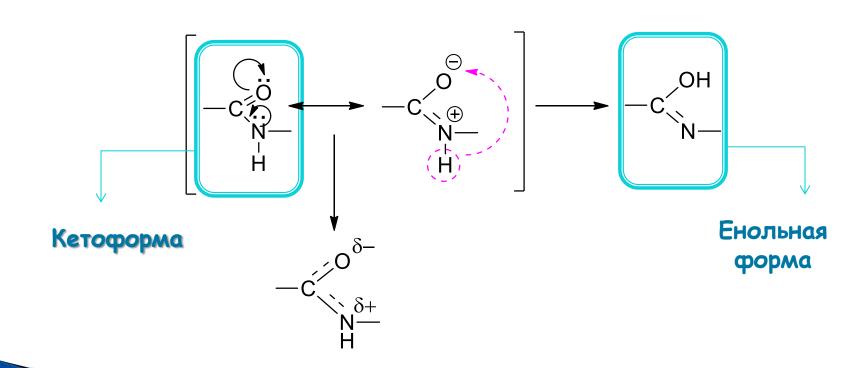
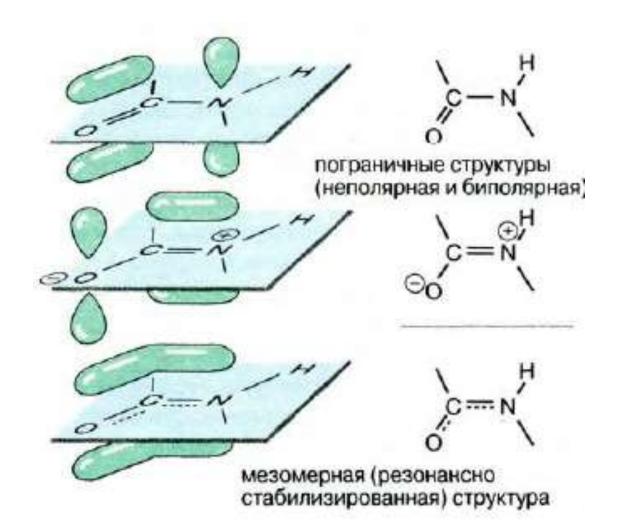

Цвиттер-ион рI при более высоком р H

Схема синтеза пептида



Свойства пептидной связи

- 1. Компланарность все атомы, входящие в пептидную группу лежат в одной плоскости.
- 2. Наличие сопряжения в пептидной группе.

Мезомерия пептидной связи

Свойства пептидной связи

3. Радикала расположены в *транс*-положении относительно пептидных групп.

Название пептида

- 1. Пептид называют начиная с N-концевого остатка (слева направо).
- 2. В названиях всех аминокислот, кроме С-концевой, окончание *-ин* изменяют на *-ил* (остатки аспаргановой и глутаминовой кислот называют "аспартил" и "глутамил", а остатки аспрагина и гулатамина "аспарагинил" и "глутаминил").
- 3. Название С-концевой аминокислоты остается неизменным

Тетрапептид Аланил-фенилаланил-аспартил-цистеин сокращенная запись: Ala-Phe-Asp-Cys

Запись первичной структуры пептида

- 1. Трехбуквенное латиница
- 2. Однобуквенное (самостоятельно найти таблицу кодировки и мнемонические правила)

GIVEQCCTSICS Gly-Ile-Val-Glu-Gln-Cys-Cys-Thr-Ser-Ile-Cys-Ser

Классификация пептидов

Дополнительно.

Принцип компартментации: реализация через мембранные структуры, гетерогенные системы клетки (гель, золь, цитоскелет)
<u>Harvard MCB – BioVisions Lab: The Inner Life of the Cell</u>
(Narrated) (youtube.com)

Сюжет:

- Лимфоцит получает сигнал воспаления и останавливает свое движение в быстром потоке крови в капилляре.
- Чтобы добраться до очага воспаления, лейкоциту нужно провести каскад сложных реакций для изменения формы и проникновения между клетками эндотелия,
- Перед вами разворачивается завораживающий внутренний мир клетки, демонстрирующий сложность ее устройства и процессов в ней протекающих.

Таймлайн содержит краткое описание событий (англ.)