Unit 13. Alkylation. Exercises

Read the description of alkylation mechanism stages Complete the alkylation mechanism with the name of each stage.

Alkylation is one of the classic examples of a reaction or reactions proceeding via the **carbenium ion mechanism**. These reactions include an **initiation step** and a **propagation step** and may include an **isomerization step**. In addition, **polymerization**, **cracking steps** and **hydrogen transfer** may be involved. However, these side reactions are generally undesirable.

Isomerization

Isomerization is very important in producing good octane quality from a feed that is high in 1-butene. The isomerization of 1-butene is favored by thermodynamic equilibrium. Allowing 1-butene to isomerizes to 2-butene reduces the production of dimethylhexanes and increases the production of trimethylpentanes.

Hydrogen transfer

The hydrogen transfer reaction is most pronounced with propylene feed. The reaction also proceeds via the carbenium ion mechanism. In the first reaction, propylene reacts with isobutane to produce butylene and propane. The butylene is then alkylated with isobutane to form trimethylpentane.

Cracking disproportion

The larger polymer cations are susceptible to cracking or disproportionation reactions, which form fragments of various molecular weights. These fragments can then undergo further alkylation.

Initiation

The initiation step (generates the tertiary butyl cations that will subsequently carry on the alkylation reaction.

Overall reaction

From the viewpoint of octane, this reaction can be desirable because trimethylpentane has substantially higher octane than the dimethylpentane normally formed from propylene. However, two molecules of isobutane are required for each molecule of alkylate, and so this reaction may be undesirable from an economic viewpoint.

Propagation

Propagation reactions involve the tertiary butyl cation reacting with an olefin to form a larger carbenium ion, which then abstracts a hydride from an isobutane molecule. The hydride abstraction generates the isoparaffin plus a new tertiary butyl cation to carry on the reaction chain.

Polymerization

The polymerization reaction results in the production of heavier paraffins, which are undesirable because they reduce alkylate octane and increase alkylate endpoint. Minimization of this reaction is achieved by proper choice of reaction conditions.

Unit 13. Alkylation. Exercises

Alkylation mechanism.

1)
$$C = C-C + HF \longrightarrow C-C-C \longrightarrow C-C-C \xrightarrow{iC_4} C-C-C + C-C-C \xrightarrow{i} C$$

- Match the type of alkylation process with its description.
- 1) Alkylation without catalyst
- 3) Alkylation in presence of hydrofluoric acid
- 2) Alkylation in presence of sulphuric acid 4) Alkylation in presence of zeolite catalyst
- A Process has no mechanical stirring. The catalyst of this process is a very hazardous material for humans because it can penetrate and damage tissue and bone. This type of process is less favourable because of the mitigation of acid catalyst vapour.
- C Alkylation between isobutane and olefin must be run under severe conditions such as T = 500 °C and P = 20-40 MPa.
- 1).....; 2).....; 3).....; 4)......

- In this process multiple reactors are used to allow for the catalyst regeneration cycle. This process is considered as less harmful for equipment, environment and people's health because of the fact that catalyst is not corrosive and does not vaporize.
- The contactor reactor is used in this type of alkylation technology as one of the technology configuration. Another configuration of this process represents a train of reactors with mixing devices.

Fill in the gaps with suitable words from the list. Alkylate

branched hydrocarbons	isostrinner tower	
isostripper tower	tube bundle	low temperature conditions
acid strength	FCC unit	feed for the alkylation unit
emulsion	sulfuric acid	isobutylene with isobutane
product, normal butane as side of	lraw, and alkylate as l	pottom product.
		to remove isobutene as overhea
	_	
• •		taline water stream. The treated contractor
acid is charged to the reactor. The impure alkylate stream	m contain some esters	s, which are removed by reacting with fres
	it acid is withdrawn a	nd an equivalent amount of 98.5 wt % fres
		ed 9) (90 wt 9
		ount of acid is consumed as a result of sid
		for the alkylation reaction and theoreticall
-	•	lsion pump between the reactor and settler.
		o the bottom and is returned to the suctio
-		an acid settler where acid and hydrocarbo
		s withdrawn from the contractor on th
		by the impeller at high rates within th
		erses hydrocarbon feed into the acid catalys
• •	•	ected into the suction side of the impelle
		to remove hea
	-	r are horizontal pressure vessels containin
range. Alkylate has an RON of		
		in the gasoline boilin
allzuloto product is a minter-	Ine	process is carried out at 7 to 10 °C. The
		s and highly exothermic and is favored by
isobutane separated from field b		a and highly avadagmais and in face.
•	·	the olefin. So provision is made to suppl
		ase the MTBE unit is shut down, feed to the
	_	ISO butylene and isobutane become
•		nainly depletes isobutylene from this feed
		d lighter constituents. The bottom from th
		FCC gases ar
hydrofluoric acid (HF) catalyst.		700
		n the presence of sulfuric acid (H_2SO_4) of
		manufactured by the reaction of
•	_	viation gasoline blend stock because of it