Unit 2. Light Naphtha Isomerization

Assistant lecturers
Belinskaya Nataliya Sergeevna
Kirgina Maria Vladimirovna
Isomerization of Light Naphtha

Isomerization is the process in which light straight chain paraffins of low RON (C$_6$, C$_5$ and C$_4$) are transformed with proper catalyst into branched chains with the same carbon number and high octane numbers.

Light naphtha C$_5$ – 80 °C is used as a feed to the isomerization unit.

There are two reasons for this fractionation:

- light hydrocarbons tend to hydrocrack in the reformer;
- C$_6$ hydrocarbons tend to form benzene in the reformer.

Gasoline specifications require a very low value of benzene due to its carcinogenic effect.
Thermodynamic of Isomerization

- The isomerization reactions are **slightly exothermic** and the reactor works in the **equilibrium** mode.

- There is no change in the number of moles and thus the **reaction is not affected by pressure change**.

- Better conversions are achieved at **lower temperature**.

- **Paraffin recycle** substantially increases the conversion.

Figure 1. Thermodynamic equilibrium with and without recycling normal paraffin.
Isomerization Reactions

- Isomerization is a reversible and slightly exothermic reaction

\[\text{n-paraffin} \rightleftharpoons \text{i-paraffin} \]

- The conversion to iso-paraffin is not complete since the reaction is equilibrium conversion limited.

- It does not depend on pressure, but it can be increased by lowering the temperature.

- However operating at low temperatures will decrease the reaction rate.

- For this reason a very active catalyst must be used.
Isomerization of Light Naphtha

Isomerization Catalysts

Standard catalyst
- Platinum
- Chlorinated alumina

Zeolite catalyst
- Platinum
- Zeolite

Operating conditions
- Temperature, °C
 - 120-180
- Pressure (bar)
 - 20-30
- Space velocity (h^{-1})
 - 1-2
- H₂/HC (mol/mol)
 - 0.1-2
- Product RON
 - 83-84

- Sensitivity to impurities (water, sulphur)
- Feed must be treated
- Carbon tetrachloride must be injected in the reactor

- Low activity

Hydrogen transfer centres
Acidic centres

+ Resists impurities
- Does not require feed pretreatment
Isomerization activity of SI-2 catalyst is much higher than that of zeolite catalysts and is as good as that of chlorinated ones.

SI-2 catalyst is tolerant to catalytic poisons, the catalyst restores its activity even after short-time water skip-ups up to 100 ppm and sulfur skip-ups up to 5 ppm.

Supply of acid reactants is not required and thus there is no off gas alkalization block.

High yield of commercial isomerate – 97-99%.

SI-2 catalyst service life is 10-12 years.
Table 4. Comparative table for process flow diagram

<table>
<thead>
<tr>
<th>PROCESS DIAGRAM</th>
<th>Once-through</th>
<th>DIP+DP</th>
<th>DIH</th>
<th>DIP+DIH</th>
<th>DIP+DP+DIH</th>
<th>DIP+SuperDIH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isomerate RON</td>
<td>81-85</td>
<td>86-88</td>
<td>87-88</td>
<td>89-90</td>
<td>91-92</td>
<td>90.5-91.5</td>
</tr>
<tr>
<td>Space velocity, hour⁻¹</td>
<td>2.0-3.0</td>
<td>2.0-3.0</td>
<td>2.0-3.0</td>
<td>2.0-3.0</td>
<td>2.0-3.0</td>
<td>2.0-3.0</td>
</tr>
<tr>
<td>Temperature, °C</td>
<td>120 - 180</td>
</tr>
<tr>
<td>Pressure, MPa</td>
<td>3.0 - 3.5</td>
</tr>
<tr>
<td>Circulation ratio H₂ gas/HC, nm³/m³</td>
<td>450-500</td>
<td>450-500</td>
<td>450-500</td>
<td>450-500</td>
<td>450-500</td>
<td>450-500</td>
</tr>
<tr>
<td>Isomerate yield, wt. %</td>
<td>98-99</td>
<td>98-99</td>
<td>97-98</td>
<td>97-98</td>
<td>97-98</td>
<td>97-98</td>
</tr>
<tr>
<td>H₂ consumption, wt. %</td>
<td>0.15-0.25</td>
<td>0.20-0.25</td>
<td>0.20-0.25</td>
<td>0.15-0.25</td>
<td>0.20-0.35</td>
<td>0.20-0.35</td>
</tr>
<tr>
<td>Catalyst service cycle, years</td>
<td>5-6</td>
<td>5-6</td>
<td>5-6</td>
<td>5-6</td>
<td>5-6</td>
<td>5-6</td>
</tr>
<tr>
<td>Catalyst service life, years</td>
<td>10-12</td>
<td>10-12</td>
<td>10-12</td>
<td>10-12</td>
<td>10-12</td>
<td>10-12</td>
</tr>
</tbody>
</table>

DIP – Deisopentanization
DP – Depentanization
DIH – Deisoheexanization
Isomalk-2 ONCE-THROUGH

- Least capital and operating costs
- Production of isocomponent with RON 81 – 85
- Yield is at least 98 wt. %

Figure 2. Isomalk-2 ONCE-THROUGH
Isomalk-2 N-PENTANE RECYCLE (DIP+DP)

- Production of isocomponent with RON 86 – 88
- Yield is not less than 98 wt. %

Figure 3. Isomalk-2 N-PENTANE RECYCLE (DIP+DP)
Isomalk-2 RECYCLE OF LOW-BRANCHED HEXANES (DIH)

- RON of isocomponent 87 – 88

- Installation of Deisohexanizer is optimum technical solution for processing of feed, containing 50-70% of hexanes and with high content C7+ hydrocarbons and benzene
Isomalk-2 N-PENTANE AND LOW-BRANCHED HEXANES RECYCLE (DIP+DP+DIH)

Figure 5. Isomalk-2 N-PENTANE AND LOW-BRANCHED HEXANES RECYCLE (DIP+DP+DIH)

- RON of isocomponent 91 – 92
Figure 6. Isomalk-2 PFD - N-PENTANE AND LOW-BRANCHED HEXANES RECYCLE (DIP+SuperDIH)

- RON of isocomponent 90.5 – 91.5
Issues for Self Study and Revision

 - UOP Butamer™ process p. 432-438
 - UOP Penex™ process p. 439-451

- ISOMALK-2 Pentane-Hexane Fractions Isomerization Technology
 http://nefthim.com/developments/slot1-0

- UOP Isomerization Technology and Catalysts
 http://www.uop.com/products/catalysts/isomerization/