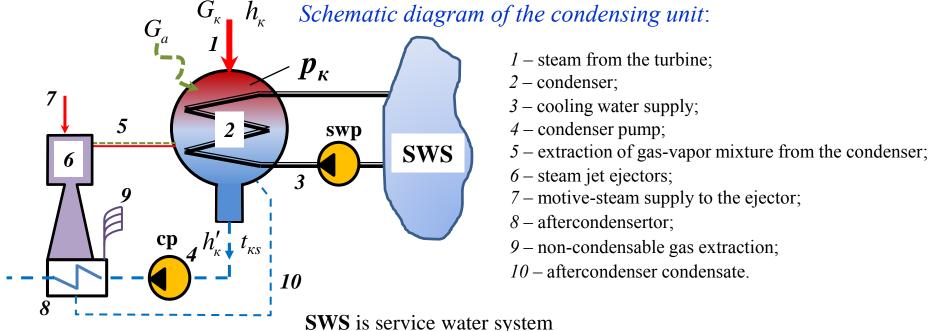

2.4. Impact of final pressure on EF of ST

2.4.1. Impact of final pressure on thermal EF of ST



$$\eta = 1 - \frac{q_K}{q_{TV}} = 1 - \frac{T_{2cp}}{T_{1cp}}.$$

$$\eta'' > \eta',$$
 т.к. $T''_{2cp} < T'_{2cp}$.

2.4.2. Factors which affect the final pressure

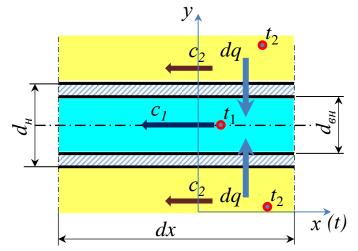
The final pressure built by the **condensing unit.**

The mission of the condensing unit

- 1. Thermodynamic mission: Heat extraction in the cold source.
- 2. Thermodynamic mission: Building low pressure (vacuum) increase η_t
- 3. Possibility to use the operating substance in a closed cycle.

Vacuum in the condenser is created due to sharply reduced volume during steam condensation (by 25 – 30 thousand times).

Heat is extracted from steam through circulating cooling water, its temperature being close to the ambient temperature, inside the capacitor piping.


Excursus Consider heat transfer

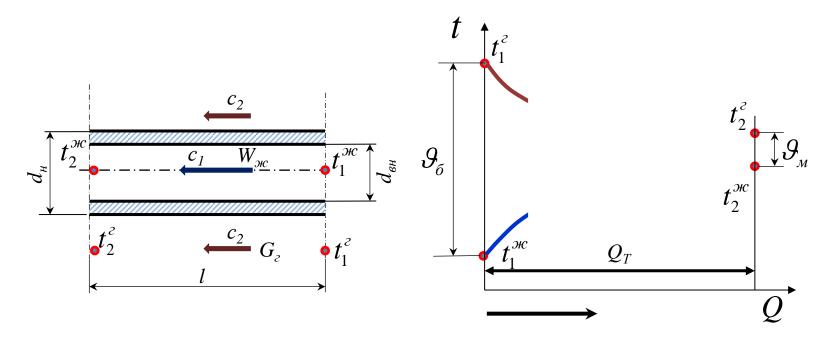
Heat exchangers are devices used to transfer heat from one heat-conducting medium to another one.

<u>Shell-and-tube heat exchangers</u> – heat is transferred through the separating surface (tube), i.e. heat-conducting media are not mixed.

Heat transfer via mixed heat-conducting media.

dq – heat flow through an elementary surface dF:

$$dq = k_{M} \cdot (t_{2} - t_{1}) dF, \qquad \longleftarrow$$

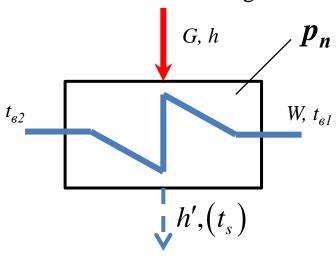

 $k_{\scriptscriptstyle M}$ - heat transfer coefficient (local), $\lceil W/m^2K \rceil$.

$$k_{M} = \frac{1}{\frac{1}{\alpha_{1}} + \frac{\lambda}{\delta} + \frac{1}{\alpha_{2}}}$$

$$\begin{array}{c|c} c_2 & dq \\ \hline \\ c_1 & t_{c2} \\ \hline \\ dx & t \\ \hline \\ dq = \alpha_1 \cdot (t_1 - t_{c1}) dF, \end{array}$$

$$\begin{cases} dq = \alpha_1 \cdot (t_1 - t_{c1}) dF, \\ dq = \frac{\lambda}{\delta} \cdot (t_{c1} - t_{c2}) dF, \\ dq = \alpha_2 \cdot (t_{c2} - t_2) dF. \end{cases}$$

The tube of finite length



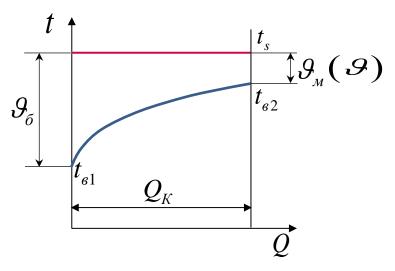
$$Q_{T} = W_{\mathcal{H}} c_{p}^{\mathcal{H}} \left(t_{2}^{\mathcal{H}} - t_{1}^{\mathcal{H}} \right) = G_{\varepsilon} c_{p}^{\varepsilon} \left(t_{1}^{\varepsilon} - t_{2}^{\varepsilon} \right)$$

$$Q_T = k \cdot \Delta t_{cn} \cdot F$$

$$\Delta t_{cn} = \frac{9_{\delta} - 9_{M}}{\ln \frac{9_{\delta}}{9_{M}}}$$

Steam-water heat exchanger

$$Q = G(h - h') = W c_p(t_{e2} - t_{e1})$$

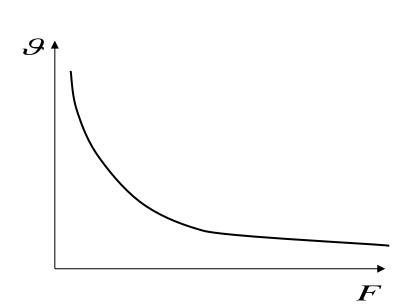

$$Q = k \cdot \Delta t_{cn} \cdot F$$

$$\Delta t_{cn} = \frac{9_{\delta} - 9_{M}}{\ln \frac{9_{\delta}}{9_{M}}} = \frac{t_{e2} - t_{e1}}{\ln \left(\frac{9_{\delta}}{9_{M}}\right)}$$

$$\mathcal{G}_{\delta} = t_{s} - t_{e1}$$

$$\mathcal{G}_{_{M}}=t_{_{S}}-t_{_{62}}$$

$$p_n = f(t_s)$$



$$Wc_{p}\left(t_{e2} - t_{e1}\right) = k \cdot \frac{t_{e2} - t_{e1}}{\ln\left(\frac{\theta_{\delta}}{\theta_{M}}\right)} \cdot F$$

$$\ln\left(\frac{\theta_{\delta}}{\theta_{M}}\right) = \frac{k F}{W c_{p}}$$

$$\frac{\mathcal{G}_{\tilde{o}}}{\mathcal{G}_{M}} = e^{\frac{k F}{W c_{p}}} \qquad \qquad \mathcal{G}_{M} = \mathcal{G}_{\tilde{o}} e^{-\frac{k F}{W c_{p}}}$$

 ϑ – subcooling in the preheater.

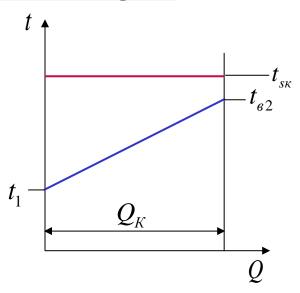
$$\mathcal{G}_{_{M}}=\mathcal{G}_{\tilde{o}}e^{-\frac{kF}{Wc_{_{p}}}}$$

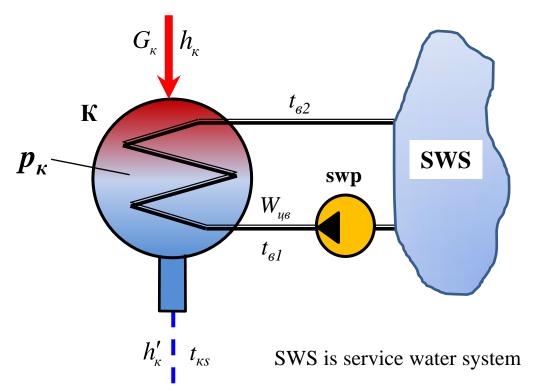
If
$$F \to \infty$$
, hence $\theta \to 0$.

1. The greater the *F* value, the higher the cost of the heater.

The lower the ϑ value, the higher the EF of the equipment and the smaller the heat input to generate the desired amount of electric energy. (?)

Note 1. If flows of heat-conducting media are mixed correctly in mixing preheaters, $\vartheta \approx 0$.


Note 2: in steam-water heaters with steam condensation, pressure in the preheater and water temperature are strongly interrelated:


$$t_{e2} = t_{sn}(p_n) - \theta_n.$$

In currently used closed heaters:

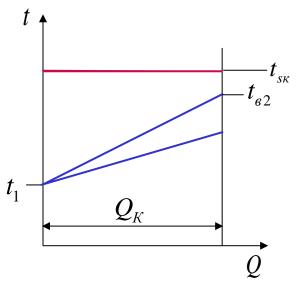
$$\mathcal{G}_n = (2 \div 7)^o C.$$

ST condensing unit

Factors affecting pressure in the condenser

$$t_{sk} = t_{e2} + \mathcal{G}_{k} = t_{e1} + \Delta t_{e} + \mathcal{G}_{k}$$

 $\Delta t_e = t_{e2} - t_{e1}$ is water heating in the


- condenser t_{el} depends on the environmental conditions and SWS.
 - Water heating in the condenser

$$Q_{K} = G_{K}(h_{K} - h_{K}') = W_{\mu s}c_{p}(t_{2} - t_{1}).$$

$$\Delta t_{\scriptscriptstyle g} = \frac{G_{\scriptscriptstyle K} \left(h_{\scriptscriptstyle \kappa} - h_{\scriptscriptstyle \kappa}' \right)}{W_{\scriptscriptstyle \mathcal{U} \scriptscriptstyle g} c_{\scriptscriptstyle p}} = \frac{\left(h_{\scriptscriptstyle \kappa} - h_{\scriptscriptstyle \kappa}' \right)}{m c_{\scriptscriptstyle p}}$$

$$m = \frac{W_{us}}{G_{v}}$$

 $m = \frac{W_{ue}}{G_{\kappa}}$ is multiplicity of cooling

$$\Delta t_{\scriptscriptstyle g} = \frac{\left(h_{\scriptscriptstyle \kappa} - h_{\scriptscriptstyle \kappa}'\right)}{mc_{\scriptscriptstyle p}}; \qquad m = \frac{W_{\scriptscriptstyle \mu g}}{G_{\scriptscriptstyle \kappa}}$$

Other factors being equal, G_{κ} depends weakly on p_{κ} (in the considered range of p_{κ} variation).

$$W_{us} \uparrow \Longrightarrow (t_2 - t_1) \downarrow_{m.\kappa.Q_\kappa \approx const} \Longrightarrow t_2 \downarrow$$

However:

$$dl_{mex} = \upsilon \cdot dp;$$
 $l_{mex} = \int_{a}^{b} \upsilon \cdot dp = \upsilon_{cp} \cdot (p_b - p_a) = \upsilon_{cp} \cdot \Delta p;$ $L_{mex} = N = W \cdot \upsilon_{cp} \cdot \Delta p;$

 Δp — повышение давления в насосе (напор, создаваемый насосом).

For **circulating** pumps: $\Delta p = \Delta p_{ec}$;

 $\Delta p_{_{\Gamma C}}$ – гидравлическое сопротивление тракта, через который насос прокачивает жидкость.

$$\Delta p_{zc} = f(W^2);$$
 $N_{u\mu} = f(W_{ue}^3).$

Thus, with regard to the number of water passes in the condenser, m is within the limit $40 \div 80$.

$$Q_K = k_{\kappa} F_K \Delta t_{cn}$$
 etc.

In currently used ST condensers:

$$\mathcal{G}_{\kappa} = (2 \div 5)^{\circ} C.$$

Effect of the structure of the outlet section of the turbine.