1. Schematic diagram and cycle of the turbine with the reheating stage

The schematic diagram shows the so-called **fired** steam reheating

2. Impact of reheating on the cycle economy

Turbine cycle with reheating stage – *abcdefa*.

Divide this cycle into two parts:

- basic cycle *abkfa* o
- additional cycle $cdekc \Delta$

The EF of the cycle with the reheating stage is:

$$\eta_{t}^{c\Pi\Pi} = \frac{l_{u}}{q_{TE}}$$

$$l_{u} = l_{o} + l_{\Delta}$$

$$l_{u} - \operatorname{process}(bc + de - af)$$

$$l_{o} - \operatorname{process}(bk - af)$$

$$l_{\Delta} - \operatorname{process}(de - ck)$$

$$q_{\Delta} - \operatorname{process}(cd)$$

$$\frac{l_o}{q_o} = \eta_o$$
 – EF of the basic cycle

 $\frac{l_{\Delta}}{l_o} = A_3 - \text{energy efficiency of the additional cycle}$

$$\frac{l_{\Delta}}{\eta_{t}^{c\Pi\Pi}} = \eta_{o} \frac{1 + A_{9}}{1 + A_{9} \frac{\eta_{o}}{\eta_{\Delta}}}$$

$$\frac{l_{\Delta}}{1 + A_{9} \frac{\eta_{o}}{\eta_{\Delta}}} = A_{9} - \text{energy efficiency of the additional cycle}$$

$$\frac{q_{\Delta}}{q_{o}} = \frac{q_{\Delta} l_{o} l_{\Delta}}{q_{o} l_{o} l_{\Delta}} = A_{9} \frac{\eta_{o}}{\eta_{\Delta}}; \qquad \frac{l_{\Delta}}{q_{\Delta}} = \eta_{\Delta} - \text{EF of the additional cycle}$$

$$\eta_t^{c\Pi\Pi} = \eta_o \frac{1 + A_9}{1 + A_9 \frac{\eta_o}{\eta_\Lambda}}$$

$$\eta_t^{c\Pi\Pi} = \eta_o \frac{1 + A_{\Im}}{1 + A_{\Im} \frac{\eta_o}{\eta_{\Delta}}}$$

$$\delta \eta = \frac{\eta_{\Delta}^{c\Pi\Pi} - \eta_{t}^{\delta e 3\Pi\Pi}}{\eta_{t}^{\delta e 3\Pi\Pi}} = \frac{\eta_{t}^{c\Pi\Pi} - \eta_{o}}{\eta_{o}} = \frac{1 + A_{3}}{1 + A_{3}} - 1 = \frac{A_{3} - A_{3} \frac{\eta_{o}}{\eta_{\Delta}}}{1 + A_{3} \frac{\eta_{o}}{\eta_{\Delta}}}$$

$$\delta \eta = \frac{1 - \frac{\eta_o}{\eta_\Delta}}{\frac{1}{A_{\Im}} + \frac{\eta_o}{\eta_\Delta}}$$

The numerator determines the sign of the $\delta\eta$ value.

if:

A.
$$\eta_{\Delta} > \eta_{o} \left(\frac{\eta_{o}}{\eta_{\Delta}} < 1 \right)$$
, positive numerator $\delta \eta > 0$

B.
$$\eta_{\Delta} < \eta_{o} \left(\frac{\eta_{o}}{\eta_{\Delta}} > 1 \right)$$
, negative numerator) $\delta \eta < 0$

C.
$$\eta_{\Delta} = \eta_o \left(\frac{\eta_0}{\eta_{\Delta}} = 1, \text{ numerator equals zero} \right) \delta \eta = 0$$

3. Available heat drop and the final dryness factor in the steam turbine with the reheating stage

4. Real steam expansion in the turbine with the reheating stage

The parameters of the reheated steam p_{nn} and t_{nn} are set at the LPS inlet

The steam pressure at the outlet of HPS should be higher than that at the LPS inlet due to trunking losses:

$$p_{nn}^* = (1,07 \div 1,1) p_{nn}$$

 h_0 is enthalpy of the starting point of steam expansion in the turbine, $= f(p_0, t_0)$ h_{nnt}^* is enthalpy at the end of theoretical steam expansion in HPS, $= f(p_{nn}^*, s_0)$

Available heat drop in HPS

$$H_0^{HPS} = h_0 - h_{nnt}^*$$

Real heat drop in HPS:

$$H_{i}^{HPS} = H_{0}^{HPS} \eta_{oi}^{HPS} = h_{0} - h_{nn}^{*}$$

 η_{oi}^{HPS} is relative internal EF in HPS (is set).

Then: $h_{nn}^* = h_0 - H_i^{HPS}$

 h_{nn} is is enthalpy of the starting point of steam expansion in LPS, $=f(p_{nn}, t_{nn})$

 $h_{\kappa t}$ is enthalpy at the end of theoretical steam expansion in LPS, = $f(p_{\kappa}, s_{nn})$

Available heat drop in LPS:

$$H_0^{LPS} = h_{nn} - h_{\kappa t}$$

Real heat drop in LPS:

$$H_i^{LPS} = H_0^{LPS} \eta_{oi}^{LPS} = h_{nn} - h_{\kappa}$$

 η_{oi}^{LPS} – relative internal EF in HPS (is set).

Then:
$$h_{\kappa} = h_{nn} - H_i^{LPS}$$

Real heat drop in the turbine:

$$H_{i} = H_{i}^{HPS} + H_{i}^{LPS} = (h_{0} - h_{nn}^{*}) + (h_{nn} - h_{\kappa})$$

$$H_{i} == (h_{0} - h_{\kappa}) + (h_{nn} - h_{nn}^{*})$$

Heat supplied to the turbine :

$$q_{TE} = (h_0 - h_{ne}) + (h_{nn} - h_{nn}^*)$$

Absolute internal EF of the turbine:

$$\eta_{i} = \frac{L_{i}}{q_{TE}} = \frac{\left(h_{0} - h_{\kappa}\right) + \left(h_{nn} - h_{nn}^{*}\right)}{\left(h_{0} - h_{ne}\right) + \left(h_{nn} - h_{nn}^{*}\right)}$$

2.3.6. Steam reheating of steam

 p_0 , t_0 , p_0 are set

If these parameters are set for a simple steam turbine, inadmissible final degree of steam dryness will be obtained at the end of expansion

$$H_{i} = (h_{0} - h_{nn}^{*}) + (h_{nn} - h_{\kappa}) = H_{i}^{YBJ} + H_{i}^{YHJ};$$
 $q_{TV} = (1 + \alpha_{nn})(h_{0} - h_{ne});$

$$\alpha_{nn} = \frac{h_{nn} - h_{nn}^*}{h_0 - h_0'}; \quad h_{ne} = \frac{h_{\kappa}' + \alpha_{nn} h_0'}{1 + \alpha_{nn}};$$

$$\eta_{i} = \frac{L_{i}}{q_{TY}} = \frac{\left(h_{0} - h_{\kappa}\right) + \left(h_{nn} - h_{nn}^{*}\right)}{\left(1 + \alpha_{nn}\right)\left(h_{0} - h_{ne}\right)}.$$