

$$\delta q = dh - v dp$$

The supplied heat is spent on the change in the enthalpy and mechanical work.

Particular cases:

Isobaric process:p = const $\delta q = dh$;the supplied heat is spent only on the change in the
enthalpyThe amount of the supplied heat is determined as: $q = \int_{Hay}^{KOH} dh$; $q_{p=const} = h_{KOH} - h_{Hay}$ Adiabatic process: $\delta q = 0$:hence:ds = 0:T.e. s=const.

 $dh = \upsilon dp$ changed enthalpy leads to technical work

The amount of work obtained in the adiabatic process is determined as:

$$l_{mex} = \int_{hay}^{KOH} \upsilon dp = \int_{hay}^{KOH} dh = h_{KOH} - h_{Hay}$$

1. Steam Supply System and its EF

 $h_f \rightarrow h'_{\kappa}$ enthalpy of the saturated water at the condenser outlet $[=f(p_{\kappa}, x=1)];$ The change in the parameters is due to the external effect on the working medium, in particular:

the initial parameters are set by: p_0 , the feedwater pump due to work input in compression; t_0 the steam supply system due to heat supply;

final pressure: p_c , the condenser due to heat removal.

• Work that can be produced within a cycle per 1 kg of steam:

$$L = q_{TV} - q_{K} = (h_{0} - h_{ne}) - (h_{\kappa t} - h_{\kappa}')$$
$$L = (h_{0} - h_{\kappa t}) - (h_{ne} - h_{\kappa}') = L_{Tt} - L_{H}$$

where

 $L_{Tt} = \begin{pmatrix} h_0 - h_{\kappa t} \end{pmatrix} \text{ work made by 1 kg of steam}$ in an ideal turbine called **available** work

 $L_{H} = (h_{n_{\mathcal{B}}} - h'_{\kappa})$ $[p. a] \quad [p. f]$

work in the pump

1.2. Absolute and relative efficiency factor (EF)

The **effectiveness** of energy conversion in technical devices is estimated through the **efficiency factor** (**EF**)

• *EF of an ideal cycle*

$$\eta_{t} = \frac{L}{q_{TY}} = \frac{q_{TY} - q_{K}}{q_{TY}} = \frac{(h_{0} - h_{\kappa t}) - (h_{ne} - h_{\kappa}')}{h_{0} - h_{ne}} + h_{\kappa}' - h_{\kappa}'$$
$$\eta_{t} = \frac{L}{q_{TY}} = \frac{(h_{0} - h_{\kappa t}) - (h_{ne} - h_{\kappa}')}{(h_{0} - h_{\kappa}') - (h_{ne} - h_{\kappa}')}$$

$$\eta_t \approx \frac{L}{q_{TY}} \approx \frac{h_0 - h_{\kappa t}}{h_0 - h'_{\kappa}}$$

 η_t *absolute*, or thermal, EF of an ideal cycle.

$$\eta_{t} = \frac{q_{TY} - q_{K}}{q_{TY}} = 1 - \frac{q_{K}}{q_{TY}}$$

<u>Test 1</u>

<u>Set:</u> $p_0 = (var) MPa; x_0 = 1; p_{\kappa} = 4 kPa$

<u>Find:</u> 1. η_t with no account of the expansion work in FWP;

2. η_t considering the expansion work in FWP;

3. x_{κ} – the final degree of dryness.

p_0 , МПа	
3,0	- Самех
5,0	- Джошуа
7,0	- Лиджу
9,0	- Принсвилл
13,0	- Ашок
17,0	- Стэлла
22,0	- Гордон

Work in the pump:

$$l_{FWP} = \int_{f}^{a} \upsilon dp = \int_{f}^{a} dh = h_{ns} - h_{\kappa}' = \upsilon_{cp} (p_{0} - p_{\kappa})$$

 $v_{cp} \approx 0,00101$

<u>Test 2</u>

<u>Set:</u> $p_0 = (\text{var}) MPa; t_0 = (t_s + 50) C; p_{\kappa} = 4 kPa$

<u>Find:</u> 1. η_t with no account of the expansion work in FWP;

2. η_t considering the expansion work in FWP; 3. x_{κ} – *the final degree of dryness*.

p_0 , МПа	
3,0	- Самех
5,0	- Джошуа
7,0	- Лиджу
9,0	- Принсвилл
13,0	- Ашок
17,0	- Стэлла
22,0	- Гордон

Work in the pump:

$$l_{FWP} = \int_{f}^{a} \upsilon dp = \int_{f}^{a} dh = h_{ns} - h_{\kappa}' = \frac{\upsilon_{cp} (p_{0} - p_{\kappa})}{\upsilon_{cp} (p_{0} - p_{\kappa})}$$

 $v_{cp} \approx 0,00101$