

2.2.3. Steam (gas) flow rate through the convergent nozzle

Consider the problem.

how will the flow rate *G* through the convergent nozzle of the area F_1 , change at different parameters of deceleration at the inlet $(p_0 = const, t_0 = const)$ and alternating pressure after the nozzle p_1 ?

* Practical implementation \mathcal{E}_*

Set:
$$\overline{p_0}, p_1, \quad \text{T.e.} \quad \mathcal{E} = \frac{p_1}{p_0}.$$

A. Choice of the nozzle type:

- if $\mathcal{E} < \mathcal{E}_*$, the nozzle is to be divergent
- if $\mathcal{E} > \mathcal{E}_*$, the nozzle is to be convergent

B. Operating mode of the convergent nozzle

- if $\mathcal{E} > \mathcal{E}_*$, the nozzle operates in the subcritical mode, and in the nozzle outlet section, the pressure is equal to the pressure after the nozzle (p_1)
- if $\mathcal{E} < \mathcal{E}_*$, the nozzle operates in critical mode, and in the nozzle outlet section, the pressure is

$$p_{1^*} = \mathcal{E}_* p_0$$

Questions which **must** occur when studying this unit:

I. No equations that allow us to determine the length of the nozzle.

G-одинаковый equal

II. The obtained result contradicts practical observations

Thus,
$$c_{1t}$$
 \uparrow , a $F_1 = const$.

Nonsense the continuity equation is not fulfilled.

2.3. Loss of available energy in the real gas flow in the channel

2.3.1 Physical nature of the available energy losses

2.3.2. Characteristics of the real flow in nozzles

A) Energy characteristics

- for isentropic process

Energy conservation equation:

- for real flow

$$\frac{c_1^2}{2} = \overline{h_0} - h_1$$
$$\frac{c_{1t}^2}{2} = \overline{h_0} - h_{1t}$$

Difference between the kinetic energies of the theoretical and real flows:

$$\Delta H_c = \frac{c_{1t}^2}{2} - \frac{c_1^2}{2} = h_1 - h_{1t}$$

The loss of available
energy

Relative magnitude of the loss is referred to as a loss coefficient

$$\zeta_c = \frac{\Delta H_c}{\overline{H_0}}$$

$$\overline{H_0} = \frac{c_{1t}^2}{2} \qquad \Delta H_c = \frac{c_{1t}^2}{2} - \frac{c_1^2}{2}$$

$$\varphi = \frac{c_1}{c_{1t}}$$

is nozzle velocity coefficient

$$\zeta_c = 1 - \varphi^2$$
$$\varphi = \sqrt{1 - \zeta_c}$$

$$\zeta_c$$
 or φ is known (why)?
 $\Delta H_c = \zeta_c \overline{H_0}$
 $h_1 = h_{1t} + \Delta H_c$

Б) Flow characteristics

Known:

▶ the area of the nozzle outlet section (F₁);
▶ the initial parameters (p₀, t₀, c₀);
▶ final pressure (p₁).

Gas flow through the nozzle:

- for theoretical expansion
- For real expansion

$$\mu = \frac{G}{G_t}$$

is nozzle flow coefficient

h

$$\mu = \frac{F_{1}c_{1}}{\nu_{1}} \frac{\nu_{1t}}{F_{1}c_{1t}} = \varphi \frac{\nu_{1t}}{\nu_{1}}$$

$$\underbrace{\upsilon_{1} > \upsilon_{1t} \Rightarrow \mu < \varphi}_{\downarrow t}$$

It is true for a single-phase medium only!!!

$$v_{1t}$$
 v_1

 \overrightarrow{s}

 $G_t = \frac{F_1 c_{1t}}{\upsilon_{1t}}$ $G = \frac{F_1 c_1}{\upsilon_1}$

Application of the notion We know the theoretical expansion What is the actual flow through the nozzle with a specified outlet area? $G = \frac{F_1 c_{1t} \mu}{\nu_{1t}}$ What outlet area of the nozzle should be to allow the specified flow? $F_1 = \frac{G \nu_{1t}}{c}$