
 
2. GAS FLOW IN THE TURBINE STAGE  
CHANNELS  
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2.1. Basic equations of compressible 
fluid motion 

System of equations (!!!), adequately describes gas flow through 

channels: 

 Equation of state 

 Continuity equation 

 Momentum equation 

 Energy-conservation equation 

 

 



 The state of matter can be uniquely determined if we 

know two independent parameters. 

2.1.1. Equation of state 

See: Lecture 1 
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The state changes as a result of the thermodynamic process. 

 

We consider the adiabatic process - without external heat supply. 

An ideal adiabatic (isentropic) process is described by the equation:  
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Find the volume flow rate [m3/s], 

passing through section 0-0:  
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2.1.2. Continuity equation 
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a) Ideal flow is the one without friction 
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b) Real flow is the one where viscous forces 

(friction) are taken into account 
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Continuity equation in a differential form 
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Take the logarithm of the continuity equation 

ln ln ln lnG F c   

Differentiate this expression (with G = const in mind)  
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The channel is to get narrowed.  
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The channel is to get expanded.  



A) The notion of momentum and energy in dynamic systems  
                  Newton's second law: 

- for uniformly accelerated motion 

   

 where R  is force, N;     m  is mass, kg;    a  is acceleration, m/s2. 

- for motion with variable acceleration (differential 

   form of the equation): 

 

 

 

 where s is distance;    τ  is time. 

R ma

2

2

s
R m








2.1.3. Equations of momentum 
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Force impulse is equal to the change in 

the amount of motion 

the amount of motion is changed by the 

force impulse 
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B) Applying the momentum equation for liquid (gas) circulation through the channel  

I. Phenomenological approach 

If  the second mass flow G [kg/s] and flow velocities at the channel input  с1 [m/s] and output с2 

[m/s] are known, we can determine the force R [N], which changed the amount of motion. 

 2 1R G c c  

II. The problem of  determining the actual velocity 

As according to Newton's third law, to every action there is always opposed and equal reaction, 

we can determine the force with which the flow acts on the channel walls. 
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