Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=13.0~M\Pi a;~t_0=540^{0}C;~t_{nn}=550~^{0}C;~p_{\kappa}=3.5\kappa\Pi a.$ Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0.1p_{0}$ до $p_{nn}=0.6p_{0}$ (пять значений). Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева. Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0,85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0,83;$ б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-2

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=13.0~M\Pi a$; $t_0=540^{0}C$; $p_{\kappa}=3.5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0.1p_{0}$ до $p_{nn}=0.8p_{0}$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{0s}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=10^{\circ}\mathrm{C}$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-3

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =13,0 МПа, t_0 = 540^{0} C, t_{nn} = 550^{0} C, p_{κ} = $5,5\kappa$ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = $0,1p_{0}$ до p_{nn} = $0,6p_{0}$ (пять значений).Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре

определить по формуле $\eta_{oi}^{en} = \eta_{oi}^{nn} \frac{1 + x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-4

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =9,0 МПа; t_0 = $490^{\circ}C$; p_{κ} =3,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{sn}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{\mathit{0s}}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=10^{\circ}C$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-5

Определить оптимальное давление огневого промежуточного перегрева (по максимуму абсолютного внутреннего КПД). Заданные параметры цикла: $p_0=23.5~M\Pi a$, $t_0=570^{\circ}C$, $t_{nn}=570^{\circ}C$, $p_{\kappa}=3.5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0.1p_0$ до $p_{nn}=0.6p_0$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0,85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0,83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-6

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=17,0~M\Pi a;~t_0=540^{0}C;~t_{nn}=550~^{0}C;~p_{\kappa}=3,5\kappa\Pi a.$ Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_{0}$ до $p_{nn}=0,6p_{0}$ (пять значений). Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева. Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0,85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0,83;$ б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-7

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=11,0$ МПа; $t_0=500^{0}C$; $p_{\kappa}=3,5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_{0}$ до $p_{nn}=0,6p_{0}$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{nn}=t_{0s}-\Delta t_{nn}$, где $\Delta t_{nn}=10^{\circ}\mathrm{C}$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-8

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=11,0~M\Pi a,~t_0=500^{0}C,~t_{nn}=550~^{0}C,~p_{\kappa}=3,5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_{0}$ до $p_{nn}=0,6p_{0}$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-9

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =8,0 МПа; t_0 = $450^{\circ}C$; p_{κ} =3,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{\mathit{0s}}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=10^{\circ}C$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-10

Определить оптимальное давление огневого промежуточного перегрева (по максимуму абсолютного внутреннего КПД). Заданные параметры цикла: $p_0=23.5~M\Pi a$, $t_0=570^{\circ}C$, $t_{nn}=570^{\circ}C$, $p_{\kappa}=3.5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0.1p_0$ до $p_{nn}=0.6p_0$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0,85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0,83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-11

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =6,0 МПа; t_0 = $300^{\circ}C$; p_{κ} =3,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{0s}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=10^{\circ}C$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-12

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=13.0~M\Pi a;~t_0=540^{0}C;~t_{nn}=550~^{0}C;~p_{\kappa}=3.5\kappa\Pi a.$ Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0.1p_0$ до $p_{nn}=0.6p_0$ (пять значений). Построить зависимости терми-

ческого КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева. Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-13

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=7.0$ МПа; $t_0=480^{0}$ С; $p_{\kappa}=4.5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0.1p_{0}$ до $p_{nn}=0.8p_{0}$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.87$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.85$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{\mathit{0s}}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=10^{\circ}\mathrm{C}$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-14

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=11,0~M\Pi a,~t_0=540^{0}C,~t_{nn}=550~^{0}C,~p_{\kappa}=3,5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_{0}$ до $p_{nn}=0,6p_{0}$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0,85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0,83;$ б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-15

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =8,0 МПа; t_0 = $440^{\circ}C$; p_{κ} =3,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{\mathit{0s}}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=10^{\circ}C$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-16

Определить оптимальное давление огневого промежуточного перегрева (по максимуму абсолютного внутреннего КПД). Заданные параметры цикла: p_0 =23,5 МПа, t_0 = 540^{0} С, t_{nn} = 540^{0} С, p_{κ} = $5,5\kappa$ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = $0,1p_0$ до p_{nn} = $0,6p_0$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0,85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0,83;$ б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-17

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=19,0\ M\Pi a;\ t_0=560^{0}C;\ t_{nn}=550\ ^{0}C;\ p_{\kappa}=5,5\kappa\Pi a.$ Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_0$ до $p_{nn}=0,6p_0$ (пять значений). Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева. Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=15,0~M\Pi a$; $t_0=380^{0}C$; $p_{\kappa}=3,5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_{0}$ до $p_{nn}=0,6p_{0}$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.83$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{\mathit{0s}}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=14^{\circ}\mathrm{C}$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-19

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=15.0~M\Pi a$, $t_0=530^{0}C$, $t_{nn}=550~{}^{0}C$, $p_{\kappa}=3.5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0.1p_{0}$ до $p_{nn}=0.6p_{0}$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\textit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\textit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\textit{en}}=\eta_{oi}^{\textit{nn}}\frac{1+x_{\textit{kt}}}{2}$, где $x_{\textit{kt}}-$ конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-20

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =10,0 МПа; t_0 = $470^{\circ}C$; p_{κ} =4,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температу-

ра перегретого пара после промежуточного пароперегревателя $t_{nn} = t_{0s} - \Delta t_{nn}$, где $\Delta t_{nn} = 14$ °C; г) энтальпию питательной воды определить после точки смешения.

Задача 2-21

Определить оптимальное давление огневого промежуточного перегрева (по максимуму абсолютного внутреннего КПД). Заданные параметры цикла: p_0 =30,0 МПа, t_0 = 600^{0} С, t_{nn} = 600^{0} С, p_{κ} =3,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений).Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-22

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =11,0 МПа; t_0 =480°C; p_{κ} =4,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} =0,1 p_0 до p_{nn} =0,6 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{sn}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{0s}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=15^{\circ}C$; г) энтальпию питательной воды определить после точки смешения.

<u>Задача 2-23</u>

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=13.0~M\Pi a$; $t_0=540^{\circ}C$; $t_{nn}=540^{\circ}C$; $p_{\kappa}=4.0\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0.1p_0$ до $p_{nn}=0.6p_0$ (пять значений). Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева. Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0,87$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0,84;$ б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-24

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =13,0 МПа; t_0 = $500^{0}C$; p_{κ} =3,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,8 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{nn}=t_{0s}-\Delta t_{nn}$, где $\Delta t_{nn}=10^{\circ}\mathrm{C}$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-25

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =13,0 МПа, t_0 = 565^{0} С, t_{nn} = 550^{0} С, p_{κ} =4,0 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений).Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-26

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =9,0 МПа; t_0 = $470^{\circ}C$; p_{κ} =4,0 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{0s}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=10^{\circ}C$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-27

Определить оптимальное давление огневого промежуточного перегрева (по максимуму абсолютного внутреннего КПД). Заданные параметры цикла: p_0 =25,5 МПа, t_0 = $580^{\circ}C$, t_{nn} = $580^{\circ}C$, p_{κ} =3,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} =0,1 p_0 до p_{nn} =0,6 p_0 (пять значений).Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-28

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=17,0~M\Pi a;~t_0=560^{0}C;~t_{nn}=565~^{0}C;~p_{\kappa}=3,5\kappa\Pi a.$ Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_{0}$ до $p_{nn}=0,6p_{0}$ (пять значений). Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева. Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0,85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0,83;$ б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

З<mark>адача 2-29</mark>

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =11,0 МПа; t_0 = 510^{0} C; p_{κ} =4,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне

от $p_{nn} = 0$, lp_0 до $p_{nn} = 0$, $6p_0$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{\mathit{0s}}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=10^{\circ}\mathrm{C}$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-30

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=11,0~M\Pi a,~t_0=510^{0}C,~t_{nn}=550~^{0}C,~p_{\kappa}=4,5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_{0}$ до $p_{nn}=0,6p_{0}$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-31

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =8,0 МПа; t_0 = $400^{\circ}C$; p_{κ} =3,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{nn}=t_{0s}-\Delta t_{nn}$, где $\Delta t_{nn}=10^{\circ}C$; г) энтальпию питательной воды определить после точки смешения.

<u>Задача 2-32</u>

Определить оптимальное давление огневого промежуточного перегрева (по максимуму абсолютного внутреннего КПД). Заданные параметры цикла: $p_0=23.5 \ M\Pi a, t_0=$

 540^{0} С, t_{nn} = 540^{0} С, p_{κ} = $3,5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = $0,1p_{0}$ до p_{nn} = $0,6p_{0}$ (пять значений).Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn} = 0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn} = 0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{en} = \eta_{oi}^{nn} \frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-33

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =6,0 МПа; t_0 = $320^{\circ}C$; p_{κ} =3,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{\mathit{0s}}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=15\,^{\circ}C$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-34

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=12.0~M\Pi a;~t_0=550^{0}C;~t_{nn}=550~^{0}C;~p_{\kappa}=3.5\kappa\Pi a.$ Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0.1p_{0}$ до $p_{nn}=0.6p_{0}$ (пять значений). Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева. Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0,85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0,83;$ б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =7,0 МПа; t_0 = $460^{0}C$; p_{κ} =5,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,8 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.87$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.85$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{sn}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{\mathit{0s}}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=10^{\circ}\mathrm{C}$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-36

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=11,0~M\Pi a,~t_0=540^{\circ}C,~t_{nn}=540^{\circ}C,~p_{\kappa}=5,5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_0$ до $p_{nn}=0,6p_0$ (пять значений).Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0,86$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0,84$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-37

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =8,0 МПа; t_0 = $400^{\circ}C$; p_{κ} =3,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{qBД}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{qHД}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{sn}=\eta_{oi}^{nn}\frac{1+x_{\kappa t}}{2}$, где $x_{\kappa t}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{nn}=t_{0s}-\Delta t_{nn}$, где $\Delta t_{nn}=10^{\circ}C$; г) энтальпию питательной воды определить после точки смешения.

Определить оптимальное давление огневого промежуточного перегрева (по максимуму абсолютного внутреннего КПД). Заданные параметры цикла: p_0 =23,5 МПа, t_0 =570 0 C, t_{nn} =570 0 C, p_{κ} =4,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} =0,1 p_0 до p_{nn} =0,6 p_0 (пять значений).Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.86$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.86$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{sn}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где $x_{\mathit{kt}}-$ конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-39

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=19,0\ M\Pi a;\ t_0=540^{\circ}C;\ t_{nn}=540^{\circ}C;\ p_{\kappa}=4,5\kappa\Pi a.$ Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_0$ до $p_{nn}=0,6p_0$ (пять значений). Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева. Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{^{\mathit{ЧВД}}}\right)^{nn}=0,85$ для ЧНД $\left(\eta_{oi}^{^{\mathit{ЧНД}}}\right)^{nn}=0,83;$ б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{^{\mathit{en}}}=\eta_{oi}^{^{\mathit{nn}}}\frac{1+x_{_{\mathit{K}t}}}{2}$, где $x_{_{\mathit{K}t}}$ – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-40

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=15,0~M\Pi a;~t_0=350^{0}C;~p_{\kappa}=3,5\kappa\Pi a.$ Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_{0}$ до $p_{nn}=0,6p_{0}$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.85$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температу-

ра перегретого пара после промежуточного пароперегревателя $t_{nn} = t_{0s} - \Delta t_{nn}$, где $\Delta t_{nn} = 14$ °C; г) энтальпию питательной воды определить после точки смешения.

Задача 2-41

Определить оптимальное давление промежуточного перегрева (огневого) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: p_0 =15,0 МПа, t_0 = 550^{0} C, t_{nn} = 550^{0} C, p_{κ} =4,0 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений).Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где $x_{\mathit{kt}}-$ конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

<u>Задача 2-42</u>

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=10,0~M\Pi a;~t_0=470\,^{\circ}C;~p_{\kappa}=4,5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_0$ до $p_{nn}=0,6p_0$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{\mathit{0s}}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=14^{\circ}C$; г) энтальпию питательной воды определить после точки смешения.

Задача 2-43

Определить оптимальное давление огневого промежуточного перегрева (по максимуму абсолютного внутреннего КПД). Заданные параметры цикла: p_0 =30,0 МПа, t_0 = 600^{0} С, t_{nn} = 600^{0} С, p_{κ} =3,5 κ Па. Значения давления промежуточного перегрева принять в диапазоне от p_{nn} = 0,1 p_0 до p_{nn} = 0,6 p_0 (пять значений).Определить термический КПД при оптимальном давлении промежуточного перегрева. Построить зависимости термического КПД цикла ПТУ, средней температуры подвода теплоты и средней температуры отвода теплоты в исходном и дополнительном циклах в зависимости от давления промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где $x_{\mathit{kt}}-$ конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара.

Задача 2-44

Определить оптимальное давление промежуточного перегрева (парового) по максимуму абсолютного внутреннего КПД. Заданные параметры цикла: $p_0=11,0~M\Pi a;~t_0=480^{\circ}C;~p_{\kappa}=4,5\kappa\Pi a$. Значения давления промежуточного перегрева принять в диапазоне от $p_{nn}=0,1p_0$ до $p_{nn}=0,6p_0$ (пять значений). Определить термический КПД при оптимальном давлении промежуточного перегрева.

Принять: а) внутренний относительный КПД на перегретом паре для ЧВД $\left(\eta_{oi}^{\mathit{ЧВД}}\right)^{nn}=0.85$ для ЧНД $\left(\eta_{oi}^{\mathit{ЧНД}}\right)^{nn}=0.83$; б) внутренний относительный КПД на влажном паре определить по формуле $\eta_{oi}^{\mathit{en}}=\eta_{oi}^{\mathit{nn}}\frac{1+x_{\mathit{kt}}}{2}$, где x_{kt} – конечная степень сухости в соответствующей части турбины взятая по изоэнтропе в области влажного пара; в) температура перегретого пара после промежуточного пароперегревателя $t_{\mathit{nn}}=t_{\mathit{0s}}-\Delta t_{\mathit{nn}}$, где $\Delta t_{\mathit{nn}}=15^{\circ}C$; г) энтальпию питательной воды определить после точки смешения.